CN112542516B - Active switch, manufacturing method thereof and display panel - Google Patents
Active switch, manufacturing method thereof and display panel Download PDFInfo
- Publication number
- CN112542516B CN112542516B CN202011219615.5A CN202011219615A CN112542516B CN 112542516 B CN112542516 B CN 112542516B CN 202011219615 A CN202011219615 A CN 202011219615A CN 112542516 B CN112542516 B CN 112542516B
- Authority
- CN
- China
- Prior art keywords
- gate
- insulating layer
- layer
- doped region
- active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000002161 passivation Methods 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 17
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 14
- 229910052738 indium Inorganic materials 0.000 claims abstract description 14
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000011787 zinc oxide Substances 0.000 claims abstract description 13
- 238000005530 etching Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 12
- 230000004888 barrier function Effects 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 230000000694 effects Effects 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 167
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000002210 silicon-based material Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
- H10D30/6756—Amorphous oxide semiconductors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/121—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
- H10K59/1213—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
技术领域Technical field
本申请涉及显示技术领域,尤其涉及一种主动开关及其制作方法和显示面板。The present application relates to the field of display technology, and in particular to an active switch, a manufacturing method thereof, and a display panel.
背景技术Background technique
在液晶显示领域中,薄膜晶体管的有源层一直使用稳定性能、加工性能等优异的硅系材料,硅系材料主要分为非晶硅和多晶硅,其中非晶硅材料的迁移率很低,而多晶硅材料虽然有较高的迁移率,但用其制造的器件均匀性较差,良率低,单价高。所以近年来,将透明氧化物半导体膜用于沟道形成区来制造薄膜晶体管(TFT)等,并应用于电子器件及光器件的技术受到广泛关注。其中,尤其是利用以铟、镓、锌、氧为构成元素的非晶质In-Ga-Zn-O(铟镓锌氧化物,indium gallium zinc oxide,IGZO)系材料的场效应型晶体管因其具有较高迁移率,较大开关比,更被人重视。In the field of liquid crystal display, the active layer of thin film transistors has always used silicon-based materials with excellent stability and processing performance. Silicon-based materials are mainly divided into amorphous silicon and polycrystalline silicon. The mobility of amorphous silicon materials is very low, and Although polycrystalline silicon material has a high mobility, devices made with it have poor uniformity, low yield, and high unit price. Therefore, in recent years, technology in which a transparent oxide semiconductor film is used in a channel formation region to manufacture thin film transistors (TFTs) and is applied to electronic devices and optical devices has attracted widespread attention. Among them, in particular, field effect transistors using amorphous In-Ga-Zn-O (indium gallium zinc oxide, IGZO)-based materials containing indium, gallium, zinc, and oxygen as constituent elements are With higher mobility and larger switching ratio, it is more valued.
但是,由于铟镓锌氧化物是非晶结构,薄膜中氧空位的存在会使薄膜的载流子的浓度增加,使得有源层的特性不稳定,导致薄膜晶体管的性能变差。However, since indium gallium zinc oxide has an amorphous structure, the presence of oxygen vacancies in the film will increase the carrier concentration of the film, making the characteristics of the active layer unstable and resulting in poor performance of the thin film transistor.
发明内容Contents of the invention
本申请的目的是提供一种主动开关及其制作方法和显示面板,以提高铟镓锌氧化物型有源层的稳定性。The purpose of this application is to provide an active switch, a manufacturing method thereof, and a display panel to improve the stability of the indium gallium zinc oxide active layer.
本申请公开了一种主动开关,包括依次堆叠的衬底、缓冲层、有源层、栅极绝缘层、第一栅极、第二栅极、钝化层、源极和漏极,所述有源层由铟镓锌氧化物构成;所述第一栅极和第二栅极并列设置,且位于所述源极和漏极之间;所述钝化层设置在所述第一栅极和第二栅极的上方;所述源极和漏极贯穿所述钝化层,通过设置在所述钝化层中的过孔,分别与所述有源层的两端连接。The application discloses an active switch, which includes a substrate, a buffer layer, an active layer, a gate insulating layer, a first gate, a second gate, a passivation layer, a source and a drain stacked in sequence. The active layer is composed of indium gallium zinc oxide; the first gate electrode and the second gate electrode are arranged side by side and between the source electrode and the drain electrode; the passivation layer is arranged on the first gate electrode and above the second gate electrode; the source electrode and the drain electrode penetrate the passivation layer, and are respectively connected to both ends of the active layer through via holes provided in the passivation layer.
可选的,所述第一栅极和第二栅极同层设置。Optionally, the first gate and the second gate are arranged on the same layer.
可选的,所述有源层包括第一掺杂区、第二掺杂区、第三掺杂区、第一非掺杂区和第二非掺杂区,所述第一掺杂区设置在所述第一非掺杂区和第二非掺杂区之间,所述第一非掺杂区设置在所述第一掺杂区和第二掺杂区之间,所述第二非掺杂区设置在所述第一掺杂区和第三掺杂区之间;所述栅极绝缘层包括第一栅极绝缘层和第二栅极绝缘层,所述第一栅极绝缘层与所述第一非掺杂区重叠,所述第二栅极绝缘层与所述第二非掺杂区重叠。Optionally, the active layer includes a first doped region, a second doped region, a third doped region, a first non-doped region and a second non-doped region, and the first doped region is configured Between the first undoped region and the second undoped region, the first undoped region is disposed between the first doped region and the second doped region, and the second undoped region A doped region is provided between the first doped region and the third doped region; the gate insulating layer includes a first gate insulating layer and a second gate insulating layer, and the first gate insulating layer Overlapping the first non-doped region, the second gate insulating layer overlaps the second non-doped region.
可选的,所述第一栅极绝缘层与所述第一栅极重叠,所述第二栅极绝缘层与所述第二栅极重叠。Optionally, the first gate insulating layer overlaps the first gate, and the second gate insulating layer overlaps the second gate.
可选的,所述栅极绝缘层包括堆叠设置的第三栅极绝缘层和第四栅极绝缘层,所述第三绝缘层设置在所述第四绝缘层与所述有源层之间。Optionally, the gate insulating layer includes a stacked third gate insulating layer and a fourth gate insulating layer, the third insulating layer being disposed between the fourth insulating layer and the active layer. .
可选的,所述第一掺杂区、第二掺杂区和第三掺杂区都为N型高掺杂区。Optionally, the first doped region, the second doped region and the third doped region are all N-type highly doped regions.
可选的,所述第一栅极与所述第二栅极的宽度相等。Optionally, the widths of the first gate and the second gate are equal.
本申请还公开了一种主动开关的制作方法,包括步骤:This application also discloses a method for making an active switch, which includes the steps:
在衬底上形成缓冲层;forming a buffer layer on the substrate;
在所述缓冲层上形成铟镓锌氧化物型的有源层;forming an indium gallium zinc oxide type active layer on the buffer layer;
在所述有源层上形成栅极绝缘层;forming a gate insulating layer on the active layer;
在所述栅极绝缘层上形成第一栅极和第二栅极;forming a first gate and a second gate on the gate insulating layer;
对所述有源层中除与所述第一栅极、第二栅极和栅极绝缘层重叠部分以外的区域进行高掺杂;Highly doping the area of the active layer except the overlapping portions with the first gate, the second gate and the gate insulating layer;
在所述第一栅极、第二栅极上形成钝化层;以及forming a passivation layer on the first gate and the second gate; and
在所述钝化层上蚀刻通孔,并形成源极和漏极分别与所述有源层的两端连接;Etching through holes on the passivation layer, and forming source electrodes and drain electrodes respectively connected to both ends of the active layer;
其中,所述第一栅极和第二栅极并列设置,且位于所述源极和漏极之间。Wherein, the first gate electrode and the second gate electrode are arranged in parallel and located between the source electrode and the drain electrode.
可选的,所述在栅极绝缘层上同步形成第一栅极和第二栅极的步骤中,包括步骤;Optionally, the step of simultaneously forming the first gate and the second gate on the gate insulating layer includes the steps;
在所述栅极绝缘层上形成栅极金属层;forming a gate metal layer on the gate insulating layer;
将所述栅极金属层蚀刻成第一栅极和第二栅极;以及Etching the gate metal layer into a first gate and a second gate; and
以所述第一栅极和第二栅极为蚀刻阻挡层将所述栅极绝缘层蚀刻成第一栅极绝缘层和第二栅极绝缘层;Etching the gate insulating layer into a first gate insulating layer and a second gate insulating layer using the first gate and the second gate as etching barrier layers;
其中,所述第一栅极绝缘层与所述第一栅极的图案相同,所述第二栅极绝缘层与所述第二栅极的图案相同。Wherein, the first gate insulating layer has the same pattern as the first gate electrode, and the second gate insulating layer has the same pattern as the second gate electrode.
本申请还公开了一种显示面板,包括如上所述的主动开关,以及被配置为显示画面的像素,所述主动开关控制所述像素打开与关闭。This application also discloses a display panel, which includes an active switch as described above, and pixels configured to display a picture. The active switch controls the pixels to turn on and off.
本申请通过采用双顶栅结构的主动开关,并列的双栅极相当于两个级联主动开关由同一个栅信号控制,双栅型TFT在打开状态时,其电流大小与等沟道长度的单栅TFT一致;在关态时,其漏电流明显小于单栅;也就是说和同等沟道长度的单栅主动开关相比,采用双栅结构可以使关态漏电流明显减小而几乎不影响开态电流的大小,因此并列的双栅型主动开关能够提高对栅极的控制能力,改善TFT的漏电效果,提高铟镓锌氧化物型半导体的稳定性;而且双顶栅结构中,栅极还能够有效阻挡外界光对有源层的影响,防止漏电流的产生。This application uses an active switch with a double top gate structure. The parallel double gates are equivalent to two cascaded active switches controlled by the same gate signal. When the double gate TFT is in the open state, its current size is the same as that of the same channel length. Single-gate TFT is consistent; in the off state, its leakage current is significantly smaller than that of a single gate; that is to say, compared with a single-gate active switch of the same channel length, the use of a double-gate structure can significantly reduce the off-state leakage current with almost no change. Affects the size of the on-state current, so the parallel double-gate active switch can improve the control ability of the gate, improve the leakage effect of TFT, and improve the stability of the indium gallium zinc oxide semiconductor; and in the double top gate structure, the gate It can also effectively block the impact of external light on the active layer and prevent leakage current.
附图说明Description of the drawings
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:The accompanying drawings are included to provide a further understanding of the embodiments of the application, and constitute a part of the specification for illustrating the embodiments of the application and together with the written description to explain the principles of the application. Obviously, the drawings in the following description are only some embodiments of the present application. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting any creative effort. In the attached picture:
图1是本申请的一实施例的一种显示面板的示意图;Figure 1 is a schematic diagram of a display panel according to an embodiment of the present application;
图2是本申请的一实施例的一种主动开关的示意图;Figure 2 is a schematic diagram of an active switch according to an embodiment of the present application;
图3是本申请的一实施例的另一种主动开关的示意图;Figure 3 is a schematic diagram of another active switch according to an embodiment of the present application;
图4是本申请的一实施例的一种主动开关制作方法的流程图。Figure 4 is a flow chart of an active switch manufacturing method according to an embodiment of the present application.
其中,100、显示面板;200、主动开关;210、衬底;220、缓冲层;230、有源层;231、第一掺杂区;232、第二掺杂区;233、第三掺杂区;234、第一非掺杂区;235、第二非掺杂区;240、栅极绝缘层;241、第一栅极绝缘层;242、第二栅极绝缘层;243、第三栅极绝缘层;244、第四栅极绝缘层;250、第一栅极;260、第二栅极;270、钝化层;280、源极;290、漏极;300、像素。Among them, 100. Display panel; 200. Active switch; 210. Substrate; 220. Buffer layer; 230. Active layer; 231. First doping region; 232. Second doping region; 233. Third doping region region; 234, first non-doped region; 235, second non-doped region; 240, gate insulating layer; 241, first gate insulating layer; 242, second gate insulating layer; 243, third gate 244, fourth gate insulating layer; 250, first gate; 260, second gate; 270, passivation layer; 280, source; 290, drain; 300, pixel.
具体实施方式Detailed ways
需要理解的是,这里所使用的术语、公开的具体结构和功能细节,仅仅是为了描述具体实施例,是代表性的,但是本申请可以通过许多替换形式来具体实现,不应被解释成仅受限于这里所阐述的实施例。It should be understood that the terminology used and the specific structural and functional details disclosed here are only for describing specific embodiments and are representative. However, the present application can be specifically implemented in many alternative forms and should not be interpreted as merely are limited to the embodiments set forth herein.
在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示相对重要性,或者隐含指明所指示的技术特征的数量。由此,除非另有说明,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征;“多个”的含义是两个或两个以上。术语“包括”及其任何变形,意为不排他的包含,可能存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。In the description of the present application, the terms "first" and "second" are used for descriptive purposes only and cannot be understood as indicating relative importance or implicitly indicating the number of indicated technical features. Therefore, unless otherwise stated, features defined as “first” and “second” may explicitly or implicitly include one or more of the features; “plurality” means two or more. The term "comprises" and any variations thereof, means the non-exclusive inclusion of the possible presence or addition of one or more other features, integers, steps, operations, units, components and/or combinations thereof.
另外,“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系的术语,是基于附图所示的方位或相对位置关系描述的,仅是为了便于描述本申请的简化描述,而不是指示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In addition, "center", "horizontal", "top", "bottom", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside" The terms indicating the orientation or positional relationship, etc. are described based on the orientation or relative positional relationship shown in the drawings, and are only used to facilitate the simplified description of the present application, and do not indicate that the device or element referred to must have a specific orientation. , is constructed and operated in a specific orientation and therefore cannot be construed as a limitation on this application.
此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,或是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。In addition, unless otherwise clearly stated and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense. For example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection. , or it can be an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
下面参考附图和可选的实施例对本申请作详细说明。The application is described in detail below with reference to the accompanying drawings and optional embodiments.
如图1所示,是一种显示面板100的示意图,所述显示面板100包括两块对向设置的阵列基板和彩膜基板,所述阵列基板上设有主动开关200,所述主动开关200用于控制所述显示面板100中像素300的打开和关闭。如图2所示,是一种主动开关200的示意图,所述主动开关200包括依次堆叠的衬底210、缓冲层220、有源层230、栅极绝缘层240、第一栅极250、第二栅极260、钝化层270、源极280和漏极290,所述有源层230由铟镓锌氧化物构成;所述第一栅极250和第二栅极260并列设置,被钝化层270隔开,且位于所述源极280和漏极290之间;所述源极280和漏极290贯穿所述钝化层270,通过设置在所述钝化层270中的过孔,分别与所述有源层230的两端连接。由于氧化物有源层230是一种非晶态材料,而氧空位是与材料结构有关的缺陷态,有源层230薄膜中氧空位的存在会使薄膜中的载流子的浓度增加,导致有源层230的特性不稳定;本申请通过采用双顶栅结构的主动开关200,并列的双栅极相当于两个级联主动开关由同一个栅信号控制,双栅型TFT在打开状态时,其电流大小与等沟道长度的单栅TFT一致;在关态时,其漏电流明显小于单栅;也就是说和同等沟道长度的单栅主动开关相比,采用双栅结构可以使关态漏电流明显减小而几乎不影响开态电流的大小,因此并列的双栅型主动开关能够提高对栅极的控制能力,改善TFT的漏电效果,使晶体管中的载流子迁移率得到有效提高,并且降低负电压偏置和正电压偏置引起的阈值电压飘移量,提高器件的电学稳定性和铟镓锌氧化物的稳定性。As shown in Figure 1, it is a schematic diagram of a display panel 100. The display panel 100 includes two array substrates and a color filter substrate arranged oppositely. An active switch 200 is provided on the array substrate. The active switch 200 Used to control the opening and closing of the pixels 300 in the display panel 100 . As shown in Figure 2, it is a schematic diagram of an active switch 200. The active switch 200 includes a substrate 210, a buffer layer 220, an active layer 230, a gate insulating layer 240, a first gate 250, and a third stacked in sequence. Two gates 260, a passivation layer 270, a source electrode 280 and a drain electrode 290. The active layer 230 is composed of indium gallium zinc oxide; the first gate 250 and the second gate 260 are arranged side by side and are passivated. The passivation layer 270 is separated and located between the source electrode 280 and the drain electrode 290; the source electrode 280 and the drain electrode 290 penetrate the passivation layer 270 and pass through the via holes provided in the passivation layer 270. , respectively connected to both ends of the active layer 230 . Since the oxide active layer 230 is an amorphous material, and oxygen vacancies are defect states related to the material structure, the presence of oxygen vacancies in the active layer 230 film will increase the concentration of carriers in the film, resulting in The characteristics of the active layer 230 are unstable; this application uses an active switch 200 with a double top gate structure. The parallel double gates are equivalent to two cascaded active switches controlled by the same gate signal. When the double gate TFT is in the open state , its current size is consistent with that of a single-gate TFT of equal channel length; in the off state, its leakage current is significantly smaller than that of a single-gate; that is to say, compared with a single-gate active switch of the same channel length, the use of a double-gate structure can make The off-state leakage current is significantly reduced and hardly affects the on-state current. Therefore, the parallel double-gate active switch can improve the control ability of the gate, improve the leakage effect of TFT, and improve the carrier mobility in the transistor. Effectively improve and reduce the threshold voltage drift caused by negative voltage bias and positive voltage bias, improve the electrical stability of the device and the stability of indium gallium zinc oxide.
另外,本申请中的主动开关200采用顶栅结构,由于在底栅结构中,外界光线可以透过层间绝缘层,照射到金属氧化物半导体层上,光照条件下会出现光激发缺陷;当金属氧化物薄膜晶体管外加电压之后,这些光激发缺陷会在外加电场的作用下扩散到背沟道区上,使背沟道区受到影响,出现界面态(指半导体界面处位于禁带中的能级或能带,它们可在很短的时间内和半导体交换电荷),由此会引起阈值电压偏移;而采用顶栅结构后,外界光线会被栅极遮挡住,不能照射到有源层230上,因此可以减少光线对器件有源层230的影响,使阈值电压维持在一个相对稳定的状态。In addition, the active switch 200 in this application adopts a top gate structure. Since in the bottom gate structure, external light can pass through the interlayer insulating layer and illuminate the metal oxide semiconductor layer, photoexcitation defects will occur under illumination conditions; when After an external voltage is applied to the metal oxide thin film transistor, these photoexcited defects will diffuse to the back channel area under the action of the external electric field, causing the back channel area to be affected and an interface state (referring to the energy at the semiconductor interface located in the forbidden band) to appear. level or energy band, which can exchange charges with the semiconductor in a very short period of time), which will cause a threshold voltage shift; with a top-gate structure, external light will be blocked by the gate and cannot illuminate the active layer. 230, thus reducing the impact of light on the active layer 230 of the device and maintaining the threshold voltage in a relatively stable state.
其中,所述第一栅极250和第二栅极260同层设置,这样可以通过同步制程形成第一栅极250和第二栅极260,减少了制备工艺的流程和制程成本。而且,所述绝缘层也包括第一栅极绝缘层241和第二栅极绝缘层242,所述第一栅极绝缘层241与所述第一栅极250的图案相同(即在所述衬底上的正投影方向上相重合),所述第二栅极绝缘层242与所述第二栅极260的图案相同;本实施例中,由于第一栅极250与第一栅极绝缘层241完全重叠,第二栅极260与第二栅极绝缘层242完全重叠;这样在蚀刻第一栅极绝缘层241和第二栅极绝缘层242时,第一栅极250和第二栅极260能够起到蚀刻阻挡层的作用,减少蚀刻阻挡层的制程。另外,所述第一栅极250与第二栅极260的宽度相等,这样每个栅极中的电流和电压相等,有利于提高TFT的栅极控制力。The first gate 250 and the second gate 260 are arranged in the same layer, so that the first gate 250 and the second gate 260 can be formed through a synchronous process, which reduces the preparation process and process cost. Moreover, the insulating layer also includes a first gate insulating layer 241 and a second gate insulating layer 242. The first gate insulating layer 241 has the same pattern as the first gate 250 (ie, on the lining). (the orthographic projection direction on the bottom coincides with each other), the second gate insulating layer 242 and the second gate 260 have the same pattern; in this embodiment, since the first gate 250 and the first gate insulating layer 241 completely overlaps, and the second gate 260 completely overlaps the second gate insulating layer 242; in this way, when the first gate insulating layer 241 and the second gate insulating layer 242 are etched, the first gate 250 and the second gate insulating layer 241 completely overlap. 260 can act as an etching barrier and reduce the process of etching the barrier. In addition, the widths of the first gate 250 and the second gate 260 are equal, so that the current and voltage in each gate are equal, which is beneficial to improving the gate control capability of the TFT.
具体的,所述有源层230包括不与所述第一栅极250和第二栅极260重叠的第一掺杂区231、第二掺杂区232和第三掺杂区233,所述第二掺杂区232与所述源极280连接,所述第三掺杂区233与所述漏极290连接,所述第一掺杂区231设置在所述第二掺杂区232和第三掺杂区233之间;通过对不与第一栅极250和第二栅极260重叠的有源层230部分进行掺杂,提高有源层230的掺杂面积,限制有源层230中的电子迁移,防止产生漏电流;而且第一掺杂区231、第二掺杂区232和第三掺杂区233是间隔分布的,使得有源层230中的掺杂部分均匀分布;还令所述第一掺杂区231、第二掺杂区232和第三掺杂区233中的半导体都为N型高掺杂,进一步减小了有源层230中漏电流的产生,使源漏极290与有源层230形成良好的欧姆接触,提高了主动开关200的电学性能。Specifically, the active layer 230 includes a first doped region 231, a second doped region 232 and a third doped region 233 that do not overlap the first gate 250 and the second gate 260. The second doped region 232 is connected to the source electrode 280 , the third doped region 233 is connected to the drain electrode 290 , and the first doped region 231 is disposed between the second doped region 232 and the third doped region 232 . Between the three doping regions 233; by doping the portion of the active layer 230 that does not overlap the first gate 250 and the second gate 260, the doping area of the active layer 230 is increased, and the doping area of the active layer 230 is limited. electron migration to prevent leakage current; and the first doped region 231, the second doped region 232 and the third doped region 233 are spaced apart so that the doped parts in the active layer 230 are evenly distributed; The semiconductors in the first doped region 231, the second doped region 232 and the third doped region 233 are all N-type highly doped, which further reduces the generation of leakage current in the active layer 230, making the source-drain The pole 290 forms a good ohmic contact with the active layer 230, which improves the electrical performance of the active switch 200.
所述有源层230还包括设置在所述第一掺杂区231和第二掺杂区232之间的第一非掺杂区234,以及设置在所述第二掺杂区232和第三掺杂区233之间的第二非掺杂区235,所述第一栅极绝缘层241与所述第一非掺杂区234重叠,所述第二栅极绝缘层242与所述第二非掺杂区235重叠。这样第一栅极绝缘层241和第二栅极绝缘层242与非掺杂的有源层230部分重合,在对有源层230进行掺杂时,第一栅极绝缘层241和第二栅极绝缘层242能够充当蚀刻阻挡层的作用,减小蚀刻阻挡层的制程步骤。The active layer 230 further includes a first non-doped region 234 disposed between the first doped region 231 and the second doped region 232, and a first non-doped region 234 disposed between the second doped region 232 and a third doped region 232. The second undoped region 235 between the doped regions 233, the first gate insulating layer 241 and the first undoped region 234 overlap, the second gate insulating layer 242 and the second Undoped regions 235 overlap. In this way, the first gate insulating layer 241 and the second gate insulating layer 242 partially overlap the undoped active layer 230. When the active layer 230 is doped, the first gate insulating layer 241 and the second gate insulating layer 242 partially overlap. The polar insulating layer 242 can function as an etching barrier layer, reducing the process steps of etching the barrier layer.
进一步的,所述第一栅极250与所述第一非掺杂区234(第一沟道)重叠(也即所述第一栅极250与所述第一非掺杂区234在所述衬底210上的正投影方向上相重合),所述第二栅极260与所述第二非掺杂区235(第二沟道)重叠(也即所述第二栅极260与所述第二非掺杂区235在所述衬底210上的正投影方向上相重合)。由于传统底栅结构的有源层230的非掺杂部分(沟道)的精度主要是通过光罩制程和刻蚀的工艺来控制,此方法会有过刻蚀和刻蚀不足等问题,使得沟道的精度不高;相反通过掺杂方式,没有过蚀刻和蚀刻不足等问题,即使在掺杂前有过刻的问题,后续可以通过掺杂来补偿这个误差;本申请以第一栅极250和第二栅极260作为掩模对有源层230进行掺杂,比底栅结构更能获得更高的沟道尺寸精度,提高沟道质量。Further, the first gate 250 overlaps the first non-doped region 234 (first channel) (that is, the first gate 250 and the first non-doped region 234 are in the The orthographic projection direction on the substrate 210 coincides with the second gate electrode 260 and the second non-doped region 235 (second channel) (that is, the second gate electrode 260 overlaps with the second non-doped region 235 (second channel)). The second non-doped region 235 coincides with the orthographic projection direction on the substrate 210). Since the accuracy of the non-doped part (channel) of the active layer 230 of the traditional bottom gate structure is mainly controlled by the photomask process and the etching process, this method will have problems such as over-etching and under-etching, making The accuracy of the channel is not high; on the contrary, through doping, there are no problems such as over-etching and under-etching. Even if there is an over-etching problem before doping, this error can be compensated for by subsequent doping; this application uses the first gate 250 and the second gate 260 are used as masks to dope the active layer 230, which can achieve higher channel size accuracy and improve channel quality than the bottom gate structure.
如图3所示,是另一种主动开关的示意图,所述主动开关200包括依次堆叠的衬底210、缓冲层220、有源层230、栅极绝缘层240、第一栅极250、第二栅极260、钝化层270、源极280和漏极290,所述有源层230由铟镓锌氧化物构成;所述第一栅极250和第二栅极260并列设置,且位于所述源极280和漏极290之间;所述源极280和漏极290贯穿所述钝化层270,分别与所述有源层230的两端连接。所述第一栅极250和第二栅极260长度相同,且同层设置;所述栅极绝缘层240包括堆叠设置的第三栅极绝缘层243和第四栅极绝缘层244,所述第三绝缘层243设置在第四绝缘层244与有源层230之间;且所述第三栅极绝缘层243与所述第一栅极250、第二栅极260在正投影方向重叠,所述第四栅极绝缘层244与所述第一栅极250、第二栅极260在正投影方向重叠。As shown in FIG. 3 , it is a schematic diagram of another active switch. The active switch 200 includes a substrate 210 , a buffer layer 220 , an active layer 230 , a gate insulation layer 240 , a first gate 250 , and a third stacked in sequence. Two gates 260, passivation layer 270, source electrode 280 and drain electrode 290, the active layer 230 is composed of indium gallium zinc oxide; the first gate 250 and the second gate 260 are arranged side by side and located at Between the source electrode 280 and the drain electrode 290; the source electrode 280 and the drain electrode 290 penetrate the passivation layer 270 and are respectively connected to both ends of the active layer 230. The first gate 250 and the second gate 260 have the same length and are arranged in the same layer; the gate insulating layer 240 includes a stacked third gate insulating layer 243 and a fourth gate insulating layer 244. The third insulating layer 243 is disposed between the fourth insulating layer 244 and the active layer 230; and the third gate insulating layer 243 overlaps the first gate 250 and the second gate 260 in the orthographic projection direction, The fourth gate insulating layer 244 overlaps the first gate 250 and the second gate 260 in the orthographic projection direction.
所述第三栅极绝缘层243和第四栅极绝缘层244可以是由相同材料制作而成,例如,第三栅极绝缘层243和第四栅极绝缘层244可以都是氮化硅层或氧化硅层;也可以是由不同材料制作而成,例如,第三栅极绝缘层243是氮化硅层,第四栅极绝缘层244是氧化硅层,或者相反。第三栅极绝缘层243和第四栅极绝缘层244可以通过化学气相沉积技术沉积在有源层230上,等第三栅极绝缘层243冷却凝固后沉积第四栅极绝缘层244;通过栅极绝缘层240的堆叠设置,使得栅极绝缘层240能够更好的附着在有源层230上,防止第一栅极250和第二栅极260表面的金属毛刺会刺破栅极绝缘层240,导致主动开关200中出现漏电的问题。The third gate insulating layer 243 and the fourth gate insulating layer 244 may be made of the same material. For example, the third gate insulating layer 243 and the fourth gate insulating layer 244 may both be silicon nitride layers. Or a silicon oxide layer; it can also be made of different materials. For example, the third gate insulating layer 243 is a silicon nitride layer, and the fourth gate insulating layer 244 is a silicon oxide layer, or vice versa. The third gate insulating layer 243 and the fourth gate insulating layer 244 can be deposited on the active layer 230 through chemical vapor deposition technology, and the fourth gate insulating layer 244 is deposited after the third gate insulating layer 243 is cooled and solidified; by The stacked arrangement of the gate insulating layer 240 enables the gate insulating layer 240 to better adhere to the active layer 230 and prevents metal burrs on the surfaces of the first gate 250 and the second gate 260 from puncturing the gate insulating layer. 240, causing a leakage problem in the active switch 200.
本申请中,且有源层230可以是单层的也可以是多层结构,至于有源层230的原子配比,其因产品尺寸和器件的尺寸不同而变化;和钝化层270采用氧化硅或氮化硅以及它们的复合材料,同样可以是单层或多层材料;而源极280和漏极290可以采用Al、CU、Mo、Ti以及他们的合金和复合结构。In this application, the active layer 230 can be a single layer or a multi-layer structure. As for the atomic ratio of the active layer 230, it changes due to the size of the product and the size of the device; and the passivation layer 270 adopts oxidation. Silicon or silicon nitride and their composite materials can also be single-layer or multi-layer materials; and the source electrode 280 and the drain electrode 290 can be made of Al, CU, Mo, Ti, and their alloys and composite structures.
如图4所示,作为本申请的另一实施例,还公开了一种主动开关的制作方法,用于制备上述的主动开关,所述制作方法包括步骤:As shown in Figure 4, as another embodiment of the present application, a method for manufacturing an active switch is also disclosed, which is used to prepare the above-mentioned active switch. The manufacturing method includes the steps:
S1:在衬底上形成缓冲层;S1: Form a buffer layer on the substrate;
S2:在所述缓冲层上形成铟镓锌氧化物型的有源层;S2: Form an indium gallium zinc oxide type active layer on the buffer layer;
S3:在所述有源层上形成栅极绝缘层;S3: Form a gate insulating layer on the active layer;
S4:在所述栅极绝缘层上形成第一栅极和第二栅极;S4: Form a first gate and a second gate on the gate insulating layer;
S5:对所述有源层中除与所述第一栅极、第二栅极和栅极绝缘层重叠部分以外的区域进行高掺杂;S5: Highly dope the area of the active layer except the overlapping portions with the first gate, the second gate and the gate insulating layer;
S6:在所述第一栅极、第二栅极上形成钝化层;S6: Form a passivation layer on the first gate and the second gate;
S7:在所述钝化层上蚀刻通孔,并形成源极和漏极分别与所述有源层的两端连接。S7: Etch through holes on the passivation layer, and form source electrodes and drain electrodes respectively connected to both ends of the active layer.
通过提供一种上述双顶栅主动开关的制作方法,使得主动开关在关态漏电流明显减小而几乎不影响开态电流的大小,从而提高了主动开关的电学稳定性和栅极控制能力;还能够有效控制电子迁移,使得电子迁移率和开态电流有效提高;另外,以栅极作为掩模对有源层进行掺杂,比底栅结构更能获得更高的沟道尺寸精度,提高沟道质量。By providing a method for manufacturing the above-mentioned double top gate active switch, the off-state leakage current of the active switch is significantly reduced without almost affecting the on-state current, thereby improving the electrical stability and gate control capability of the active switch; It can also effectively control electron migration, effectively improving electron mobility and on-state current; in addition, using the gate as a mask to dope the active layer can achieve higher channel size accuracy than the bottom gate structure, improving Channel quality.
而且,在S4步骤中,还包括步骤:Moreover, in step S4, there are also steps:
S41:在所述栅极绝缘层上形成栅极金属层;S41: Form a gate metal layer on the gate insulation layer;
S42:将所述栅极金属层蚀刻成第一栅极和第二栅极;S42: Etch the gate metal layer into a first gate and a second gate;
S43:以所述第一栅极和第二栅极为蚀刻阻挡层将所述栅极绝缘层蚀刻成第一栅极绝缘层和第二栅极绝缘层。S43: Etch the gate insulating layer into a first gate insulating layer and a second gate insulating layer using the first gate and the second gate as etching barrier layers.
所述第一栅极绝缘层与所述第一栅极的图案相同,所述第二栅极绝缘层与所述第二栅极的图案相同;这样以第一栅极和第二栅极作为蚀刻阻挡层对有源层进行掺杂时,能保证掺杂图案的精准性。The first gate insulating layer has the same pattern as the first gate, and the second gate insulating layer has the same pattern as the second gate; in this way, the first gate and the second gate serve as When doping the active layer, the etching barrier layer can ensure the accuracy of the doping pattern.
需要说明的是,本方案中涉及到的各步骤的限定,在不影响具体方案实施的前提下,并不认定为对步骤先后顺序做出限定,写在前面的步骤可以是在先执行的,也可以是在后执行的,甚至也可以是同时执行的,只要能实施本方案,都应当视为属于本申请的保护范围。It should be noted that the restrictions on each step involved in this plan are not considered to limit the order of the steps as long as they do not affect the implementation of the specific plan. The steps written in front can be executed first. It can also be executed later, or even simultaneously. As long as this solution can be implemented, it should be regarded as belonging to the protection scope of this application.
本申请的技术方案可以广泛用于各种显示面板,如TN(Twisted Nematic,扭曲向列型)显示面板、IPS(In-Plane Switching,平面转换型)显示面板、VA(VerticalAlignment,垂直配向型)显示面板、MVA(Multi-Domain Vertical Alignment,多象限垂直配向型)显示面板,当然,也可以是其他类型的显示面板,如OLED(Organic Light-EmittingDiode,有机发光二极管)显示面板,均可适用上述方案。The technical solution of this application can be widely used in various display panels, such as TN (Twisted Nematic, twisted nematic) display panel, IPS (In-Plane Switching, plane conversion type) display panel, VA (VerticalAlignment, vertical alignment type) Display panels, MVA (Multi-Domain Vertical Alignment, multi-quadrant vertical alignment) display panels, of course, can also be other types of display panels, such as OLED (Organic Light-Emitting Diode, organic light-emitting diode) display panels, all of which are applicable to the above. plan.
以上内容是结合具体的可选实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。The above content is a further detailed description of the present application in combination with specific optional implementation modes, and it cannot be concluded that the specific implementation of the present application is limited to these descriptions. For those of ordinary skill in the technical field to which this application belongs, several simple deductions or substitutions can be made without departing from the concept of this application, which should be regarded as falling within the protection scope of this application.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011219615.5A CN112542516B (en) | 2020-11-03 | 2020-11-03 | Active switch, manufacturing method thereof and display panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011219615.5A CN112542516B (en) | 2020-11-03 | 2020-11-03 | Active switch, manufacturing method thereof and display panel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112542516A CN112542516A (en) | 2021-03-23 |
CN112542516B true CN112542516B (en) | 2024-01-30 |
Family
ID=75013765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011219615.5A Active CN112542516B (en) | 2020-11-03 | 2020-11-03 | Active switch, manufacturing method thereof and display panel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112542516B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116133480B (en) * | 2023-03-21 | 2025-07-25 | 湖北长江新型显示产业创新中心有限公司 | Display panel and display device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1719508A (en) * | 2005-08-10 | 2006-01-11 | 友达光电股份有限公司 | Display pixel circuit |
CN1913163A (en) * | 2005-08-13 | 2007-02-14 | 三星电子株式会社 | Thin film transistor substrate and method of manufacturing the same |
TW201407790A (en) * | 2012-08-14 | 2014-02-16 | Samsung Display Co Ltd | Thin film transistor, manufacturing method thereof and display device therewith |
CN105960712A (en) * | 2014-02-07 | 2016-09-21 | 株式会社半导体能源研究所 | Semiconductor device |
CN107086227A (en) * | 2017-05-11 | 2017-08-22 | 京东方科技集团股份有限公司 | Light emitting circuit, electronic device, thin film transistor and manufacturing method thereof |
CN109935551A (en) * | 2019-03-13 | 2019-06-25 | 惠科股份有限公司 | Manufacturing method of array substrate and array substrate |
CN109962114A (en) * | 2019-04-17 | 2019-07-02 | 京东方科技集团股份有限公司 | Double gate TFT, pixel circuit and control method thereof |
CN111710725A (en) * | 2020-06-10 | 2020-09-25 | 深圳市华星光电半导体显示技术有限公司 | Double gate electrode metal oxide thin film transistor and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4439766B2 (en) * | 2001-08-02 | 2010-03-24 | シャープ株式会社 | Thin film transistor device and manufacturing method thereof |
JP4447304B2 (en) * | 2003-12-22 | 2010-04-07 | 株式会社半導体エネルギー研究所 | Semiconductor device and manufacturing method thereof |
CN106353945A (en) * | 2016-11-18 | 2017-01-25 | 京东方科技集团股份有限公司 | Display substrate and manufacturing method thereof and display device |
-
2020
- 2020-11-03 CN CN202011219615.5A patent/CN112542516B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1719508A (en) * | 2005-08-10 | 2006-01-11 | 友达光电股份有限公司 | Display pixel circuit |
CN1913163A (en) * | 2005-08-13 | 2007-02-14 | 三星电子株式会社 | Thin film transistor substrate and method of manufacturing the same |
TW201407790A (en) * | 2012-08-14 | 2014-02-16 | Samsung Display Co Ltd | Thin film transistor, manufacturing method thereof and display device therewith |
CN105960712A (en) * | 2014-02-07 | 2016-09-21 | 株式会社半导体能源研究所 | Semiconductor device |
CN107086227A (en) * | 2017-05-11 | 2017-08-22 | 京东方科技集团股份有限公司 | Light emitting circuit, electronic device, thin film transistor and manufacturing method thereof |
CN109935551A (en) * | 2019-03-13 | 2019-06-25 | 惠科股份有限公司 | Manufacturing method of array substrate and array substrate |
CN109962114A (en) * | 2019-04-17 | 2019-07-02 | 京东方科技集团股份有限公司 | Double gate TFT, pixel circuit and control method thereof |
CN111710725A (en) * | 2020-06-10 | 2020-09-25 | 深圳市华星光电半导体显示技术有限公司 | Double gate electrode metal oxide thin film transistor and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN112542516A (en) | 2021-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE48290E1 (en) | Thin film transistor array panel | |
CN105390551B (en) | Thin film transistor (TFT) and its manufacturing method, array substrate, display device | |
WO2018099052A1 (en) | Method for manufacturing array substrate, array substrate and display apparatus | |
KR20120110040A (en) | Amorphous oxide thin film transistor, forming method thereof and display panel including the same | |
WO2021073253A1 (en) | Thin film transistor and manufacturing method therefor, array substrate, and display apparatus | |
CN108010850B (en) | Thin film transistor, method for making the same, and TFT substrate | |
US20180277661A1 (en) | Thin film transistor substrate, manufacturing method for thin film transistor substrate, and liquid crystal display | |
CN105589276A (en) | Array substrate, liquid crystal display panel and liquid crystal display device | |
CN105161523B (en) | A kind of electrode, thin film transistor (TFT), array substrate and display equipment | |
CN105895638A (en) | TFT (thin film transistor) array substrate and manufacturing method therefor, and liquid crystal display apparatus | |
US8653531B2 (en) | Thin film transistor and display device | |
CN107507839B (en) | An array substrate and its manufacturing method | |
CN112542516B (en) | Active switch, manufacturing method thereof and display panel | |
CN103367456B (en) | Thin-film transistor and manufacture method thereof | |
CN115483227A (en) | Array substrate, manufacturing method thereof and display panel | |
CN104934444B (en) | Coplanar type oxide semiconductor TFT substrate structure and preparation method thereof | |
CN107112365A (en) | Semiconductor device | |
KR102090518B1 (en) | Oxide semiconductor thin film transistor and Display Device and Method of manufacturing the sames | |
CN112259611B (en) | Oxide semiconductor thin film transistor and method for manufacturing the same | |
WO2022120746A1 (en) | Array substrate and manufacturing method therefor, and display panel | |
CN110808290A (en) | Thin film transistor, preparation method thereof and display device | |
CN114927532B (en) | Array substrate, manufacturing method thereof, and display panel | |
CN110808289A (en) | Top gate Schottky oxide thin film transistor and preparation method thereof | |
TW201631779A (en) | Semiconductor device and method of manufacturing same | |
WO2023184421A1 (en) | Thin film transistor, display substrate and display apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |