CN112259611B - Oxide semiconductor thin film transistor and method for manufacturing the same - Google Patents
Oxide semiconductor thin film transistor and method for manufacturing the same Download PDFInfo
- Publication number
- CN112259611B CN112259611B CN202011084344.7A CN202011084344A CN112259611B CN 112259611 B CN112259611 B CN 112259611B CN 202011084344 A CN202011084344 A CN 202011084344A CN 112259611 B CN112259611 B CN 112259611B
- Authority
- CN
- China
- Prior art keywords
- oxide layer
- layer
- thin film
- photoresist
- film transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 75
- 239000010409 thin film Substances 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 40
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 229920002120 photoresistant polymer Polymers 0.000 claims description 92
- 229910044991 metal oxide Inorganic materials 0.000 claims description 66
- 150000004706 metal oxides Chemical class 0.000 claims description 65
- 239000000463 material Substances 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 238000005530 etching Methods 0.000 claims description 9
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 238000004544 sputter deposition Methods 0.000 claims description 5
- 238000000059 patterning Methods 0.000 claims description 4
- 238000003475 lamination Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 240
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 17
- 230000037230 mobility Effects 0.000 description 11
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 9
- 229910052733 gallium Inorganic materials 0.000 description 9
- 229910052738 indium Inorganic materials 0.000 description 9
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 9
- 239000011787 zinc oxide Substances 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000013077 target material Substances 0.000 description 3
- 229920001621 AMOLED Polymers 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6704—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
- H10D30/6727—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device having source or drain regions connected to bulk conducting substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
Landscapes
- Thin Film Transistor (AREA)
Abstract
一种氧化物半导体薄膜晶体管,包括基板,依次设置在基板上的栅极、栅极绝缘层、氧化物半导体层和源漏极金属层,源漏极金属层包括间隔设置的源极和漏极,氧化物半导体层包括第一氧化物层和层叠设置在第一氧化物层上方的第二氧化物层,第一氧化物层的含氧量低于第二氧化物层;部分第一氧化物层从第二氧化物层的两侧露出,源极和漏极相互间隔并分别与从第二氧化物层的两侧露出的第一氧化物层直接接触连接,使得源极、漏极与氧化物半导体层形成了较好的欧姆接触,有效地提高了薄膜晶体管的开态电流,优化了薄膜晶体管的综合性能。本发明还涉及一种氧化物半导体薄膜晶体管的制作方法。
An oxide semiconductor thin film transistor comprises a substrate, a gate, a gate insulating layer, an oxide semiconductor layer and a source-drain metal layer sequentially arranged on the substrate, the source-drain metal layer comprises a source and a drain arranged at intervals, the oxide semiconductor layer comprises a first oxide layer and a second oxide layer stacked on the first oxide layer, the oxygen content of the first oxide layer is lower than that of the second oxide layer; part of the first oxide layer is exposed from both sides of the second oxide layer, the source and the drain are spaced from each other and are directly contacted and connected with the first oxide layer exposed from both sides of the second oxide layer, so that the source and the drain form a good ohmic contact with the oxide semiconductor layer, effectively improving the on-state current of the thin film transistor and optimizing the comprehensive performance of the thin film transistor. The present invention also relates to a method for manufacturing an oxide semiconductor thin film transistor.
Description
技术领域Technical Field
本发明涉及薄膜晶体管技术领域,且特别是涉及一种氧化物半导体薄膜晶体管及其制作方法。The present invention relates to the technical field of thin film transistors, and in particular to an oxide semiconductor thin film transistor and a manufacturing method thereof.
背景技术Background Art
目前应用于显示器的开关元件仍为非晶硅(a-Si)薄膜晶体管和多晶硅(p-Si)薄膜晶体管,其中非晶硅薄膜晶体管应用最为广泛,但非晶硅薄膜晶体管存在电子迁移率低(只有0.3~1cm2/V·s)、光照稳定性差等问题。而多晶硅薄膜晶体管虽然在电子迁移率方面高出非晶硅薄膜晶体管很多,但具有构造复杂、漏电流大、膜质均一性差等问题。随着显示技术的快速发展,视频格式从标清到高清到超清,对显示的分辨庇的要求逐渐增加,对薄膜晶体管的性能及尺寸提出了越来越高的要求,非晶硅薄膜晶体管和多晶硅薄膜晶体管已不能完全满足这些要求,且高温制作工艺也没办法制备较大尺寸的显示面板。At present, the switching elements used in displays are still amorphous silicon (a-Si) thin film transistors and polycrystalline silicon (p-Si) thin film transistors. Among them, amorphous silicon thin film transistors are the most widely used, but amorphous silicon thin film transistors have problems such as low electron mobility (only 0.3~ 1cm2 /V·s) and poor light stability. Although polycrystalline silicon thin film transistors are much higher than amorphous silicon thin film transistors in terms of electron mobility, they have problems such as complex structure, large leakage current, and poor film uniformity. With the rapid development of display technology, video formats have changed from standard definition to high definition to ultra-high definition, and the requirements for display resolution have gradually increased, which has put forward higher and higher requirements on the performance and size of thin film transistors. Amorphous silicon thin film transistors and polycrystalline silicon thin film transistors can no longer fully meet these requirements, and high-temperature manufacturing processes cannot produce larger display panels.
近年来,无定形氧化物半导体薄膜晶体管(Amorphous Oxide SemiconductorThin Film Transistor,AOS TFT)因具有良好的电学特性和光学特性,在学术界、工业界受到了广泛关注。尤其是非晶铟镓锌氧化物薄膜晶体管(Amorphous InGaZnO Thin FilmTransistor,a-IGZO TFT),以其电子迁移率高(>10cm2/V·s)、功耗低、工艺简单(无需高温制作)、响应速度快、大面积均匀性好、可见光范围内透过率高等优点被认为是有源矩阵有机发光二极管(Active Matrix Organic Light Emitting Diode,AMOLED)和有源矩阵液晶显示器(Active Matrix Liquid Crystal Display,AMLCD)驱动电路的核心部件,也被认为是随着显示器向大尺寸、柔性化、轻便方向发展的最具有竞争力的背板驱动技术。In recent years, amorphous oxide semiconductor thin film transistors (Amorphous Oxide Semiconductor Thin Film Transistor, AOS TFT) have attracted extensive attention in academia and industry due to their good electrical and optical properties. In particular, amorphous indium gallium zinc oxide thin film transistors (a-IGZO TFT) are considered to be the core components of active matrix organic light emitting diodes (AMOLED) and active matrix liquid crystal displays (AMLCD) drive circuits due to their high electron mobility (>10cm 2 /V·s), low power consumption, simple process (no need for high temperature production), fast response speed, good uniformity over a large area, and high transmittance in the visible light range. They are also considered to be the most competitive backplane drive technology as displays develop towards large size, flexibility, and lightness.
对于性能优良的薄膜晶体管,需要具备较大的阈值电压,较高的开关态电流比,较小的亚阈值摆幅,以及较高的稳定性。一般来说,薄膜晶体管的场效应迁移率越大,像素存储电容充电越快,薄膜晶体管的漏电流越小,像素存储电容放电越快,薄膜晶体管的亚阈值摆幅越小,薄膜晶体管的开关态转换越快、越省电。但这些对氧化物半导体层的结构、表面缺陷态、载流子浓度和载流子迁移率等特性提出了较高的要求。For a thin film transistor with excellent performance, it is necessary to have a larger threshold voltage, a higher on-off current ratio, a smaller subthreshold swing, and higher stability. Generally speaking, the greater the field effect mobility of the thin film transistor, the faster the pixel storage capacitor charges, the smaller the leakage current of the thin film transistor, the faster the pixel storage capacitor discharges, the smaller the subthreshold swing of the thin film transistor, the faster the on-off state conversion of the thin film transistor, and the more power-saving. However, these put forward higher requirements on the characteristics of the oxide semiconductor layer, such as the structure, surface defect state, carrier concentration, and carrier mobility.
如图1所示,现有的一种氧化物半导体薄膜晶体管中,包括基板1,依次设置在基板1上的栅极2、栅极绝缘层3、氧化物半导体层4和源漏电极层5。其中,氧化物半导体层4一般采用单层结构,在制作氧化物半导体层4的过程中,通过控制氧化物半导体层4的含氧量来调节载流子浓度,从而使氧化物半导体层4具有不同的电子迁移率。然而,具有不同的含氧量的氧化物半导体层4均存在优缺点,例如含氧量较低的氧化物半导体层4虽然电子迁移率高、阈值电压较大,但关态电流也较大;含氧量较高的氧化物半导体层4则电子迁移率较低,关态电流较小,但阈值电压也相应的变小,单层结构的氧化物半导体层4其非单一性的特征限制了薄膜晶体管的综合性能的提高。As shown in FIG1 , an existing oxide semiconductor thin film transistor includes a substrate 1, a gate 2, a gate insulating layer 3, an oxide semiconductor layer 4 and a source-drain electrode layer 5 arranged on the substrate 1 in sequence. Among them, the oxide semiconductor layer 4 generally adopts a single-layer structure. In the process of manufacturing the oxide semiconductor layer 4, the carrier concentration is adjusted by controlling the oxygen content of the oxide semiconductor layer 4, so that the oxide semiconductor layer 4 has different electron mobilities. However, the oxide semiconductor layers 4 with different oxygen contents have advantages and disadvantages. For example, the oxide semiconductor layer 4 with a lower oxygen content has a high electron mobility and a larger threshold voltage, but the off-state current is also larger; the oxide semiconductor layer 4 with a higher oxygen content has a lower electron mobility and a smaller off-state current, but the threshold voltage is correspondingly smaller. The non-single feature of the oxide semiconductor layer 4 with a single-layer structure limits the improvement of the comprehensive performance of the thin film transistor.
为了提高薄膜晶体管的综合性能,现有技术还提出了另一种采用双层叠加氧化物沟道层(Double Stacked Channel Layers、DSCL)的氧化物半导体薄膜晶体管,如图2所示,即氧化物半导体薄膜晶体管的氧化物半导体层4包括上下两层,其中位于下层前沟道的第一层氧化物层41为含氧量较低的金属氧化物,位于上层背沟道的第二层氧化物层42为含氧量较高的金属氧化物,该结构的薄膜晶体管具有电子迁移率高、关态电流小、亚阈值摆幅小等特征,综合性能相较采用单层结构的氧化物半导体层的薄膜晶体管得到了较大的提升。但在该结构中,与源漏电极层5中的源极、漏极直接接触的背沟道采用的是高氧金属氧化物,因其电阻率较高,很难形成理想的欧姆接触,DSCL氧化物半导体薄膜晶体管的开态电流依然不够理想,影响了DSCL氧化物半导体薄膜晶体管的综合性能。In order to improve the comprehensive performance of thin film transistors, the prior art also proposes another oxide semiconductor thin film transistor using a double stacked oxide channel layer (Double Stacked Channel Layers, DSCL), as shown in FIG2, that is, the oxide semiconductor layer 4 of the oxide semiconductor thin film transistor includes two layers, the first oxide layer 41 located in the lower front channel is a metal oxide with a lower oxygen content, and the second oxide layer 42 located in the upper back channel is a metal oxide with a higher oxygen content. The thin film transistor of this structure has the characteristics of high electron mobility, small off-state current, and small subthreshold swing. The comprehensive performance is greatly improved compared with the thin film transistor using a single-layer oxide semiconductor layer. However, in this structure, the back channel directly contacting the source and drain in the source-drain electrode layer 5 uses a high-oxygen metal oxide. Due to its high resistivity, it is difficult to form an ideal ohmic contact. The on-state current of the DSCL oxide semiconductor thin film transistor is still not ideal, which affects the comprehensive performance of the DSCL oxide semiconductor thin film transistor.
发明内容Summary of the invention
本发明的目的在于提供一种氧化物半导体薄膜晶体管,其有效地提高了薄膜晶体管的开态电流,优化了薄膜晶体管的综合性能。The object of the present invention is to provide an oxide semiconductor thin film transistor, which effectively improves the on-state current of the thin film transistor and optimizes the comprehensive performance of the thin film transistor.
本发明实施例提供一种氧化物半导体薄膜晶体管,包括基板,依次设置在基板上的栅极、栅极绝缘层、氧化物半导体层和源漏极金属层,源漏极金属层包括间隔设置的源极和漏极,氧化物半导体层包括第一氧化物层和层叠设置在第一氧化物层上方的第二氧化物层,第一氧化物层的含氧量低于第二氧化物层;部分第一氧化物层从第二氧化物层的两侧露出,源极和漏极相互间隔并分别与从第二氧化物层的两侧露出的第一氧化物层直接接触连接。An embodiment of the present invention provides an oxide semiconductor thin film transistor, comprising a substrate, a gate, a gate insulating layer, an oxide semiconductor layer and a source-drain metal layer arranged in sequence on the substrate, the source-drain metal layer comprising a source and a drain arranged at intervals, the oxide semiconductor layer comprising a first oxide layer and a second oxide layer stacked on the first oxide layer, the oxygen content of the first oxide layer is lower than that of the second oxide layer; a portion of the first oxide layer is exposed from both sides of the second oxide layer, the source and the drain are spaced apart from each other and are respectively in direct contact and connection with the first oxide layer exposed from both sides of the second oxide layer.
进一步地,第一氧化物层的含氧量为0%~50%,第二氧化物层的含氧量为4%~60%。Furthermore, the oxygen content of the first oxide layer is 0% to 50%, and the oxygen content of the second oxide layer is 4% to 60%.
进一步地,第一氧化物层从第二氧化物层的每侧露出的宽度M为1~8微米。Further, a width M of the first oxide layer exposed from each side of the second oxide layer is 1 to 8 micrometers.
进一步地,源极覆盖从第二氧化物层的其中一侧露出的第一氧化物层并向第二氧化物层方向延伸覆盖部分的第二氧化物层,漏极覆盖从第二氧化物层的另一侧露出的第一氧化物层并向第二氧化物层方向延伸覆盖部分第二氧化物层。Furthermore, the source electrode covers the first oxide layer exposed from one side of the second oxide layer and extends toward the second oxide layer to cover part of the second oxide layer, and the drain electrode covers the first oxide layer exposed from the other side of the second oxide layer and extends toward the second oxide layer to cover part of the second oxide layer.
进一步地,源极与第二氧化物层的层叠位置以及漏极与第二氧化物层的层叠位置的宽度N大于或等于1微米。Furthermore, a width N of a stacking position of the source electrode and the second oxide layer and a width N of a stacking position of the drain electrode and the second oxide layer is greater than or equal to 1 micrometer.
进一步地,第一氧化物层的厚度D1为10~90纳米,第二氧化物层的厚度D2为10~90纳米。Furthermore, the thickness D1 of the first oxide layer is 10 to 90 nanometers, and the thickness D2 of the second oxide layer is 10 to 90 nanometers.
进一步地,第一氧化物层的宽度X1为10~20微米,第二氧化物层宽度X2为4~18微米,源极与漏极之间的距离为2~8微米,第一氧化物层从第二氧化物层两侧露出部分的宽度M为1~8微米。Furthermore, the width X1 of the first oxide layer is 10-20 microns, the width X2 of the second oxide layer is 4-18 microns, the distance between the source and the drain is 2-8 microns, and the width M of the first oxide layer exposed from both sides of the second oxide layer is 1-8 microns.
进一步地,第一氧化物层和第二氧化物层的材料均为金属氧化物。Furthermore, materials of the first oxide layer and the second oxide layer are both metal oxides.
本发明还提供一种上述的氧化物半导体薄膜晶体管的制作方法,包括:提供基板,在基板上图案化形成栅极。在基板上形成栅极绝缘层并覆盖栅极。在栅极绝缘层上依次制备第一金属氧化物层和位于第一金属氧化物层上的第二金属氧化物层并使形成的第一金属氧化物层的含氧量小于第二金属氧化物层的含氧量。在第二金属氧化物层上涂布一层光阻材料并进行图案化形成光阻层;光阻层包括第一光阻区域和第二光阻区域,第二光阻区域对应形成第二氧化物层的区域,第一光阻区域对应形成第一氧化物层去除掉第二氧化物层位置的区域;第二光阻区域的高度T1大于第一光阻区域的高度T2。蚀刻去除掉未覆盖光阻层的第二金属氧化物层和第一金属氧化物层以形成第一氧化物层。对光阻层进行减薄处理,使第一光阻区域的光阻材料完全去除。在第二光阻区域覆盖保护下,蚀刻去除掉位于第一光阻区域的第二金属氧化物层以形成第二氧化物层并使部分第一氧化物层从第二氧化物层的两侧露出。去除第二光阻区域的光阻材料;以及形成源极和漏极。The present invention also provides a method for manufacturing the above-mentioned oxide semiconductor thin film transistor, comprising: providing a substrate, patterning a gate on the substrate. Forming a gate insulating layer on the substrate and covering the gate. Preparing a first metal oxide layer and a second metal oxide layer located on the first metal oxide layer in sequence on the gate insulating layer, and making the oxygen content of the formed first metal oxide layer less than that of the second metal oxide layer. Coating a layer of photoresist material on the second metal oxide layer and patterning it to form a photoresist layer; the photoresist layer comprises a first photoresist region and a second photoresist region, the second photoresist region corresponds to a region where the second oxide layer is formed, and the first photoresist region corresponds to a region where the first oxide layer is formed and the second oxide layer is removed; the height T1 of the second photoresist region is greater than the height T2 of the first photoresist region. Etching and removing the second metal oxide layer and the first metal oxide layer that are not covered by the photoresist layer to form a first oxide layer. Thinning the photoresist layer to completely remove the photoresist material in the first photoresist region. Under the covering protection of the second photoresist region, etching and removing the second metal oxide layer located in the first photoresist region to form a second oxide layer and making part of the first oxide layer exposed from both sides of the second oxide layer. removing the photoresist material in the second photoresist region; and forming a source electrode and a drain electrode.
进一步地,第一金属氧化物层和第二金属氧化物层采用同一靶材进行溅射,第一金属氧化物层在溅射过程中进入镀膜室的氧氩流量比为为x:y,其中x的范围是0~3,y的范围是5~20;第二金属氧化物层在溅射过程中进入镀膜室的氧氩流量比为a:b,其中a的范围是3~10,b的范围是5~20;且x:y小于a:b。Furthermore, the first metal oxide layer and the second metal oxide layer are sputtered using the same target material, and the oxygen-argon flow ratio of the first metal oxide layer entering the coating chamber during the sputtering process is x:y, wherein the range of x is 0 to 3, and the range of y is 5 to 20; the oxygen-argon flow ratio of the second metal oxide layer entering the coating chamber during the sputtering process is a:b, wherein the range of a is 3 to 10, and the range of b is 5 to 20; and x:y is less than a:b.
本发明实施例提供一种氧化物半导体薄膜晶体管及制作方法中,氧化物半导体薄膜晶体管包括基板,依次设置在基板上的栅极、栅极绝缘层、氧化物半导体层和源漏极金属层,源漏极金属层包括间隔设置的源极和漏极,氧化物半导体层包括第一氧化物层和层叠设置在第一氧化物层上方的第二氧化物层,第一氧化物层的含氧量低于第二氧化物层;部分第一氧化物层从第二氧化物层的两侧露出,源极和漏极相互间隔并分别与从第二氧化物层的两侧露出的第一氧化物层直接接触连接,使得源极、漏极与氧化物半导体层形成了较好的欧姆接触,有效地提高了薄膜晶体管的开态电流,优化了薄膜晶体管的综合性能。An embodiment of the present invention provides an oxide semiconductor thin film transistor and a manufacturing method, wherein the oxide semiconductor thin film transistor includes a substrate, a gate, a gate insulating layer, an oxide semiconductor layer and a source-drain metal layer arranged in sequence on the substrate, the source-drain metal layer includes a source and a drain arranged at intervals, the oxide semiconductor layer includes a first oxide layer and a second oxide layer stacked on the first oxide layer, the oxygen content of the first oxide layer is lower than that of the second oxide layer; a portion of the first oxide layer is exposed from both sides of the second oxide layer, the source and the drain are spaced apart and are directly contacted and connected with the first oxide layer exposed from both sides of the second oxide layer, respectively, so that the source and the drain form a good ohmic contact with the oxide semiconductor layer, which effectively improves the on-state current of the thin film transistor and optimizes the comprehensive performance of the thin film transistor.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是现有一种氧化物半导体薄膜晶体管的结构示意图。FIG. 1 is a schematic diagram of the structure of an existing oxide semiconductor thin film transistor.
图2是现有的另一种氧化物半导体薄膜晶体管的结构示意图。FIG. 2 is a schematic diagram of the structure of another existing oxide semiconductor thin film transistor.
图3是本发明较佳实施例的氧化物半导体薄膜晶体管的剖面结构示意图。FIG. 3 is a schematic cross-sectional structure diagram of an oxide semiconductor thin film transistor according to a preferred embodiment of the present invention.
图4A至图4H是本发明较佳实施例的氧化物半导体薄膜晶体管的制作过程的剖面示意图。4A to 4H are cross-sectional schematic diagrams of the manufacturing process of an oxide semiconductor thin film transistor according to a preferred embodiment of the present invention.
图5是本发明较佳实施例的氧化物半导体薄膜晶体管的部分结构的正视图。FIG. 5 is a front view of a partial structure of an oxide semiconductor thin film transistor according to a preferred embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
为更进一步阐述本发明为达成预定发明目的所采取的技术方式及功效,以下结合附图及实施例,对本发明的具体实施方式、结构、特征及其功效,详细说明如后。In order to further explain the technical methods and effects adopted by the present invention to achieve the predetermined invention purpose, the specific implementation methods, structures, features and effects of the present invention are described in detail below in conjunction with the accompanying drawings and embodiments.
图3为本发明较佳实施例的氧化物半导体薄膜晶体管剖面结构示意图,请参阅图3,氧化物半导体薄膜晶体管包括基板110,依次设置在该基板110上的栅极120、栅极绝缘层130、氧化物半导体层140和源漏极金属层150,源漏极金属层150包括间隔设置的源极151和漏极152,氧化物半导体层140包括第一氧化物层141和层叠设置在第一氧化物层141上方的第二氧化物层142,第一氧化物层141的含氧量低于第二氧化物层142;部分第一氧化物层141从第二氧化物层142的两侧露出,源极151和漏极152分别与从第二氧化物层142的两侧露出的第一氧化物层141直接接触连接。FIG3 is a schematic diagram of the cross-sectional structure of an oxide semiconductor thin film transistor according to a preferred embodiment of the present invention. Referring to FIG3 , the oxide semiconductor thin film transistor comprises a substrate 110, a gate 120, a gate insulating layer 130, an oxide semiconductor layer 140 and a source-drain metal layer 150 sequentially arranged on the substrate 110, the source-drain metal layer 150 comprising a source 151 and a drain 152 arranged at intervals, the oxide semiconductor layer 140 comprising a first oxide layer 141 and a second oxide layer 142 stacked on the first oxide layer 141, the oxygen content of the first oxide layer 141 being lower than that of the second oxide layer 142; a portion of the first oxide layer 141 is exposed from both sides of the second oxide layer 142, and the source 151 and the drain 152 are directly in contact and connected with the first oxide layer 141 exposed from both sides of the second oxide layer 142, respectively.
氧化物半导体层140为短接源极151和漏极152的导电沟道(即有源层)。本发明通过将含氧量高的第二氧化物层142置于含氧量低的第一氧化物层141的上方并使第一氧化物层141从第二氧化物层142的两侧露出分别与源极151和漏极152接触,第一氧化物层141与源极151、漏极152之间形成较好的欧姆接触,有效地提高了薄膜晶体管的开态电流,优化了薄膜晶体管的综合性能。The oxide semiconductor layer 140 is a conductive channel (i.e., an active layer) that short-circuits the source electrode 151 and the drain electrode 152. In the present invention, by placing the second oxide layer 142 with a high oxygen content above the first oxide layer 141 with a low oxygen content and exposing the first oxide layer 141 from both sides of the second oxide layer 142 to contact the source electrode 151 and the drain electrode 152 respectively, a good ohmic contact is formed between the first oxide layer 141 and the source electrode 151 and the drain electrode 152, thereby effectively improving the on-state current of the thin film transistor and optimizing the overall performance of the thin film transistor.
进一步地,第一氧化物层141的含氧量为0%~50%,第二氧化物层142的含氧量为4%~60%。Furthermore, the oxygen content of the first oxide layer 141 is 0% to 50%, and the oxygen content of the second oxide layer 142 is 4% to 60%.
其中,第一氧化物层141和第二氧化物层142采用磁控溅射法制备,第一氧化物层141和第二氧化物层142的含氧量可在制备时通过调节进入镀膜室的氧气(O2)流量和氩气(Ar)流量的体积比例(氧氩流量比)来控制。第一氧化物层141由于其含氧量较低,氧空位较多,载流子浓度相对第二氧化物层142更高,电子迁移率也更高。The first oxide layer 141 and the second oxide layer 142 are prepared by magnetron sputtering, and the oxygen content of the first oxide layer 141 and the second oxide layer 142 can be controlled by adjusting the volume ratio (oxygen-argon flow ratio) of the oxygen (O 2 ) flow rate and the argon (Ar) flow rate entering the coating chamber during preparation. Since the first oxide layer 141 has a lower oxygen content and more oxygen vacancies, the carrier concentration is higher than that of the second oxide layer 142, and the electron mobility is also higher.
进一步地,第一氧化物层141从第二氧化物层142的每侧露出的宽度M为1~8微米。Furthermore, a width M of the first oxide layer 141 exposed from each side of the second oxide layer 142 is 1 to 8 micrometers.
进一步地,源极151和漏极152还与部分第二氧化物层142层叠接触连接以将第一氧化物层141完全覆盖。具体地,源极151覆盖从第二氧化物层142的其中一侧露出的第一氧化物层141并向第二氧化物层142方向延伸覆盖部分的第二氧化物层142,漏极152覆盖从第二氧化物层142的另一侧露出的第一氧化物层141并向第二氧化物层142方向延伸覆盖部分第二氧化物层142,还有部分第二氧化物层142第二氧化物层142从源极151和漏极152的中间显露出来。Furthermore, the source electrode 151 and the drain electrode 152 are also connected to the part of the second oxide layer 142 in a stacked manner to completely cover the first oxide layer 141. Specifically, the source electrode 151 covers the first oxide layer 141 exposed from one side of the second oxide layer 142 and extends toward the second oxide layer 142 to cover part of the second oxide layer 142, and the drain electrode 152 covers the first oxide layer 141 exposed from the other side of the second oxide layer 142 and extends toward the second oxide layer 142 to cover part of the second oxide layer 142, and part of the second oxide layer 142 is exposed from the middle of the source electrode 151 and the drain electrode 152.
进一步地,如图4H所示,源极151与第二氧化物层142的层叠位置以及漏极152与第二氧化物层142的层叠位置的宽度N均大于或等于1微米,源极151、漏极152与第二氧化物层142的层叠位置的宽度可相等。4H , the width N of the stacking position of the source 151 and the second oxide layer 142 and the stacking position of the drain 152 and the second oxide layer 142 are both greater than or equal to 1 micron, and the widths of the stacking position of the source 151, the drain 152 and the second oxide layer 142 may be equal.
进一步地,如图4G所示,第一氧化物层141的厚度D1为10~90纳米,第二氧化物层142的厚度D2为10~90纳米。Furthermore, as shown in FIG. 4G , the thickness D1 of the first oxide layer 141 is 10 to 90 nanometers, and the thickness D2 of the second oxide layer 142 is 10 to 90 nanometers.
进一步地,如图4G和4H所示,第一氧化物层141的宽度X1为10~20微米,第二氧化物层142宽度X2为4~18微米;源极151与漏极152之间的距离(即沟道长度)为2~8微米;第一氧化物层141从第二氧化物层142两侧露出部分的宽度M为1~8微米。Furthermore, as shown in Figures 4G and 4H, the width X1 of the first oxide layer 141 is 10 to 20 microns, and the width X2 of the second oxide layer 142 is 4 to 18 microns; the distance between the source 151 and the drain 152 (i.e., the channel length) is 2 to 8 microns; the width M of the portion of the first oxide layer 141 exposed from both sides of the second oxide layer 142 is 1 to 8 microns.
进一步地,第一氧化物层141和第二氧化物层142的材料均为金属氧化物,具体例如为铟镓锌氧化物(IGZO)。Furthermore, the materials of the first oxide layer 141 and the second oxide layer 142 are both metal oxides, such as indium gallium zinc oxide (IGZO).
铟镓锌氧化物是一种基于氧化锌(ZnO)掺杂了铟(In)、镓(Ga)元素的混合氧化物,铟、镓作为掺杂元素的主要功能是调节载流子浓度。铟镓锌氧化物的载流子主要通过氧空位(Oxygen Vacancy,OV)生成,在特定的外界环境下,金属氧化物会造成晶格中的氧脱离导至氧缺失,形成氧空位。氧空位数量越多,载流子浓度越高,反之则越低。因此,控制含氧量即可调节载流子浓度进而使得氧化物半导体层140具有不同的电子迁移率。Indium gallium zinc oxide is a mixed oxide based on zinc oxide (ZnO) doped with indium (In) and gallium (Ga). The main function of indium and gallium as doping elements is to adjust the carrier concentration. The carriers of indium gallium zinc oxide are mainly generated through oxygen vacancies (Oxygen Vacancy, OV). Under specific external conditions, metal oxides will cause oxygen in the lattice to be separated, leading to oxygen deficiency and forming oxygen vacancies. The more oxygen vacancies there are, the higher the carrier concentration, and vice versa. Therefore, controlling the oxygen content can adjust the carrier concentration so that the oxide semiconductor layer 140 has different electron mobility.
本发明的氧化物半导体薄膜晶体管采用具有第一氧化物层141和第二氧化物层142的双层结构的氧化物半导体层140,通过将含氧量较低的第一氧化物层141从含氧量较高的第二氧化物层142的两侧露出分别与源极151和漏极152接触连接,氧化物半导体层140与源极151、漏极152之间形成较好的欧姆接触,提高了薄膜晶体管的开态电流,使得薄膜晶体管的综合性能得到了进一步地提升。The oxide semiconductor thin film transistor of the present invention adopts an oxide semiconductor layer 140 with a double-layer structure having a first oxide layer 141 and a second oxide layer 142. By exposing the first oxide layer 141 with a lower oxygen content from both sides of the second oxide layer 142 with a higher oxygen content to contact and connect with the source 151 and the drain 152 respectively, a good ohmic contact is formed between the oxide semiconductor layer 140 and the source 151 and the drain 152, thereby increasing the on-state current of the thin film transistor and further improving the overall performance of the thin film transistor.
图4A至图4H是本发明较佳实施例的氧化物半导体薄膜晶体管的制作过程的剖面示意图,请依次参阅,氧化物半导体薄膜晶体管采用灰度掩模版(Half-tone Mask)曝光和干法刻蚀技术,可以实现上述的特殊形状的DSCL结构,具体地,氧化物半导体薄膜晶体管的制作方法包括:4A to 4H are cross-sectional schematic diagrams of the manufacturing process of the oxide semiconductor thin film transistor of the preferred embodiment of the present invention, please refer to them in sequence, the oxide semiconductor thin film transistor adopts grayscale mask (Half-tone Mask) exposure and dry etching technology, and can realize the above-mentioned special shape DSCL structure. Specifically, the manufacturing method of the oxide semiconductor thin film transistor includes:
如图4A所示,提供基板110,在该基板110上图案化形成栅极120,形成栅极120方法为现有的成熟技术,在此不再赘述。As shown in FIG. 4A , a substrate 110 is provided, and a gate 120 is patterned on the substrate 110 . The method for forming the gate 120 is a well-known existing technology and will not be described in detail herein.
如图4B所示,在该基板110上形成一层栅极绝缘层130并覆盖栅极120,然后在该栅极绝缘层130上依次制备两层金属氧化物层,该两层金属氧化物层包括与栅极绝缘层130直接接触的第一金属氧化物层141a和位于第一金属氧化物层141a上的第二金属氧化物层142a并使形成的第一金属氧化物层141a的含氧量小于第二金属氧化物层142a的含氧量。其中,第一金属氧化物层141a用于形成氧化物半导体层140的第一氧化物层141,第二金属氧化物层142a用于形成氧化物半导体层140的第二氧化物层142。As shown in FIG4B , a gate insulating layer 130 is formed on the substrate 110 and covers the gate 120, and then two metal oxide layers are sequentially prepared on the gate insulating layer 130, the two metal oxide layers including a first metal oxide layer 141a directly in contact with the gate insulating layer 130 and a second metal oxide layer 142a located on the first metal oxide layer 141a, and the oxygen content of the formed first metal oxide layer 141a is less than that of the second metal oxide layer 142a. The first metal oxide layer 141a is used to form the first oxide layer 141 of the oxide semiconductor layer 140, and the second metal oxide layer 142a is used to form the second oxide layer 142 of the oxide semiconductor layer 140.
具体地,使用磁控溅射法依次制备第一金属氧化物层141a和第二金属氧化物层142a,本实施例采用同一种靶材进行溅射,以铟镓锌氧化物为例,其靶材是由氧化锌、氧化铟、氧化镓按特定比例混合加工制作形成。Specifically, the first metal oxide layer 141a and the second metal oxide layer 142a are sequentially prepared by magnetron sputtering. In this embodiment, the same target material is used for sputtering. Taking indium gallium zinc oxide as an example, the target material is formed by mixing zinc oxide, indium oxide, and gallium oxide in a specific ratio.
形成的第一金属氧化物层141a的含氧量小于第二金属氧化物层142a的含氧量的方法包括:在沉积第一金属氧化物层141a时,进入镀膜室的氧氩流量比为x:y,其中x的范围是0~3,y的范围是5~20;在沉积第二金属氧化物层142a时,进入镀膜室的氧氩流量比为a:b,其中a的范围是3~10,b的范围是5~20;且x:y小于a:b,即在沉积第二金属氧化物层141a时的氧氩流量比相较沉积第一金属氧化物层141a时更高。The method for forming the first metal oxide layer 141a with an oxygen content less than that of the second metal oxide layer 142a includes: when depositing the first metal oxide layer 141a, the oxygen-argon flow ratio entering the coating chamber is x:y, wherein x ranges from 0 to 3, and y ranges from 5 to 20; when depositing the second metal oxide layer 142a, the oxygen-argon flow ratio entering the coating chamber is a:b, wherein a ranges from 3 to 10, and b ranges from 5 to 20; and x:y is less than a:b, that is, the oxygen-argon flow ratio when depositing the second metal oxide layer 141a is higher than that when depositing the first metal oxide layer 141a.
以x:y=0:10为例,具体例如在沉积第一金属氧化物层141a时进入镀膜室的氧气流量为0标准状态毫升/分(SCCM)、氩气流量为10标准状态毫升/分(SCCM)。以a:b=2:10为例,具体例如在沉积第二金属氧化物层141a时进入镀膜室的氧气流量为2标准状态毫升/分(SCCM)、氩气流量为10标准状态毫升/分(SCCM)。Taking x:y=0:10 as an example, for example, when depositing the first metal oxide layer 141a, the oxygen flow rate entering the coating chamber is 0 standard state milliliters per minute (SCCM), and the argon flow rate is 10 standard state milliliters per minute (SCCM). Taking a:b=2:10 as an example, for example, when depositing the second metal oxide layer 141a, the oxygen flow rate entering the coating chamber is 2 standard state milliliters per minute (SCCM), and the argon flow rate is 10 standard state milliliters per minute (SCCM).
本发明使用磁控溅射法制备氧化物半导体层140,氧化物半导体层140的材料使用铟镓锌氧化物,低于350℃的生长以及后处理温度使得铟镓锌氧化物可以用磁控溅射的方法大规模生长在玻璃衬底上面。因此,使用本发明的氧化物半导体薄膜晶体管的结构能制备大尺寸的显示面板。The present invention uses magnetron sputtering to prepare the oxide semiconductor layer 140. The material of the oxide semiconductor layer 140 is indium gallium zinc oxide. The growth and post-processing temperature below 350°C allows indium gallium zinc oxide to be grown on a glass substrate on a large scale by magnetron sputtering. Therefore, the structure of the oxide semiconductor thin film transistor of the present invention can be used to prepare a large-sized display panel.
如图4C所示,在第二金属氧化物层142a上涂布一层光阻材料,利用光罩制程对光阻材料进行图案化形成光阻层200,该光阻层200包括第一光阻区域201和第二光阻区域202,其中,第二光阻区域202对应后期形成第二氧化物层142的区域,该第一光阻区域201对应后期形成第一氧化物层141区域去除掉第二氧化物层142位置的区域,也即是第二氧化物层142从第一氧化物层141两侧露出的区域。其中,第二光阻区域202的高度T1大于第一光阻区域201的高度T2。其它区域的光阻材料则全部去除。As shown in FIG4C , a layer of photoresist material is coated on the second metal oxide layer 142a, and the photoresist material is patterned by a photomask process to form a photoresist layer 200, wherein the photoresist layer 200 includes a first photoresist region 201 and a second photoresist region 202, wherein the second photoresist region 202 corresponds to a region where the second oxide layer 142 is formed later, and the first photoresist region 201 corresponds to a region where the first oxide layer 141 is formed later, except for the region where the second oxide layer 142 is removed, that is, the region where the second oxide layer 142 is exposed from both sides of the first oxide layer 141. The height T1 of the second photoresist region 202 is greater than the height T2 of the first photoresist region 201. The photoresist material in other regions is completely removed.
具体地,利用半色调光罩(half-tone mask)或灰色调光罩(gray-tone mask)对第一光阻区域201的进行半曝光,其中半色调光罩在第一光阻区域201位置上设置半透射薄膜,通过半透射薄膜减小对第一光阻区域201上的光阻的曝光能量;灰色调光罩则在第一光阻区域201的位置上设置间隔紧密排布的多个狭缝(slit),通过这些狭缝的光衍射减小对后第一光阻区域201的曝光能量。以采用正性光阻为例,在曝光时,对第二光阻区域202的光阻采取不曝光,对第一光阻区域201的光阻采取半曝光,对其他区域的光阻采取完全曝光,这样在曝光后进行显影,使得在显影后留下的光阻层200中,第一光阻区域201的光阻厚度T2小于第二光阻区域202的光阻厚度T1。Specifically, a half-tone mask or a gray-tone mask is used to half-expose the first photoresist region 201, wherein the half-tone mask is provided with a semi-transmissive film at the position of the first photoresist region 201, and the exposure energy of the photoresist on the first photoresist region 201 is reduced by the semi-transmissive film; the gray-tone mask is provided with a plurality of closely spaced slits at the position of the first photoresist region 201, and the light diffraction of the slits reduces the exposure energy of the first photoresist region 201. Taking positive photoresist as an example, during exposure, the photoresist of the second photoresist region 202 is not exposed, the photoresist of the first photoresist region 201 is half-exposed, and the photoresist of other regions is fully exposed, so that development is performed after exposure, so that in the photoresist layer 200 left after development, the photoresist thickness T2 of the first photoresist region 201 is less than the photoresist thickness T1 of the second photoresist region 202.
如图4D所示,蚀刻去除掉未覆盖光阻层200的第二金属氧化物层142a和第一金属氧化物层141a。也就是说,以光阻层200为遮罩对二金属氧化物层142a和第一金属氧化物层141a进行蚀刻,依次蚀刻去除没有被光阻层200覆盖的第二金属氧化物层142a和第一金属氧化物层141a,而被光阻层200覆盖的第二金属氧化物层142a和第一金属氧化物层141a在蚀刻后仍保留,其中保留下来的第一金属氧化物层141a即是第一氧化物层141。此步骤使用湿法蚀刻或干法蚀刻均可。As shown in FIG4D , the second metal oxide layer 142a and the first metal oxide layer 141a that are not covered by the photoresist layer 200 are etched away. That is, the second metal oxide layer 142a and the first metal oxide layer 141a are etched with the photoresist layer 200 as a mask, and the second metal oxide layer 142a and the first metal oxide layer 141a that are not covered by the photoresist layer 200 are etched away in sequence, while the second metal oxide layer 142a and the first metal oxide layer 141a covered by the photoresist layer 200 are still retained after etching, wherein the retained first metal oxide layer 141a is the first oxide layer 141. This step can be performed by wet etching or dry etching.
如图4E所示,对光阻层200进行减薄处理,使第一光阻区域201的光阻材料完全去除。As shown in FIG. 4E , the photoresist layer 200 is thinned to completely remove the photoresist material in the first photoresist region 201 .
具体地,完全去除半曝光之后留在第一光阻区域201的光阻材料,以露出位于第一光阻区域201的部分第二金属氧化物层142a。第二光阻区域202的光阻材料虽然在本步骤中光阻厚度也会减小,但由于第二光阻区域202的光阻厚度T1远大于第一光阻区域201的光阻厚度T2,因此第一光阻区域201上仍会残留一定厚度的光阻材料。在此需要指出的是,对光阻层200进行减薄处理的方法,包括湿式去光阻法(SPM制程)、干式去光阻法及有机溶剂清洗法等。Specifically, the photoresist material remaining in the first photoresist region 201 after the half exposure is completely removed to expose a portion of the second metal oxide layer 142a located in the first photoresist region 201. Although the photoresist thickness of the photoresist material in the second photoresist region 202 is also reduced in this step, since the photoresist thickness T1 of the second photoresist region 202 is much greater than the photoresist thickness T2 of the first photoresist region 201, a certain thickness of photoresist material will still remain on the first photoresist region 201. It should be pointed out here that the method for thinning the photoresist layer 200 includes a wet photoresist removal method (SPM process), a dry photoresist removal method, and an organic solvent cleaning method.
如图4F所示,在第二光阻区域202的光阻材料的覆盖保护下,蚀刻去除掉位于第一光阻区域201的第二金属氧化物层142a,以形成第二氧化物层142并使部分第一氧化物层141从第二氧化物层142的两侧露出。此步骤为半刻蚀(仅去除第一光阻区域201的第二金属氧化物层142a),需要精确控制刻蚀时间,因此采用干法刻蚀为佳。未被蚀刻去除的第二金属氧化物层142a即是第二氧化物层142。As shown in FIG4F , under the protection of the photoresist material in the second photoresist region 202, the second metal oxide layer 142a in the first photoresist region 201 is removed by etching to form the second oxide layer 142 and expose part of the first oxide layer 141 from both sides of the second oxide layer 142. This step is half etching (only the second metal oxide layer 142a in the first photoresist region 201 is removed), and the etching time needs to be precisely controlled, so dry etching is preferably used. The second metal oxide layer 142a that is not removed by etching is the second oxide layer 142.
如图4G所示,完全去除第二光阻区域202的光阻材料,此步骤可采取与前述去光阻材料相同的方法。As shown in FIG. 4G , the photoresist material of the second photoresist region 202 is completely removed. This step may be performed using the same method as the above-mentioned method for removing the photoresist material.
如图3、图4H和图5所示,形成源极151和漏极152。具体地,源极151和漏极152图案化形成在氧化物半导体层140上,源极151和漏极152相互间隔;源极151覆盖从第二氧化物层142的其中一侧露出的第一氧化物层141并向第二氧化物层142方向延伸覆盖部分的第二氧化物层142,漏极152覆盖从第二氧化物层142的另一侧露出的第一氧化物层141并向第二氧化物层142方向延伸覆盖部分的第二氧化物层142,还有部分第二氧化物层142第二氧化物层142从源极151和漏极152的中间显露出来。As shown in FIG3 , FIG4H and FIG5 , a source electrode 151 and a drain electrode 152 are formed. Specifically, the source electrode 151 and the drain electrode 152 are patterned and formed on the oxide semiconductor layer 140, and the source electrode 151 and the drain electrode 152 are spaced from each other; the source electrode 151 covers the first oxide layer 141 exposed from one side of the second oxide layer 142 and extends toward the second oxide layer 142 to cover part of the second oxide layer 142, and the drain electrode 152 covers the first oxide layer 141 exposed from the other side of the second oxide layer 142 and extends toward the second oxide layer 142 to cover part of the second oxide layer 142, and part of the second oxide layer 142 is exposed from the middle of the source electrode 151 and the drain electrode 152.
本发明提供的氧化物半导体薄膜晶体管,将具有双层通道的氧化物半导体层140中位于下层的第一氧化物层141从位于上层的第二氧化物层142的两侧露出分别与源极151、漏极152直接接触连接,而第一氧化物层141的含氧量低于第二氧化物层142,使得源极151、漏极152与氧化物半导体层140形成了较好的欧姆接触,有效地提高了薄膜晶体管的开态电流,优化了薄膜晶体管的综合性能。The oxide semiconductor thin film transistor provided by the present invention exposes the first oxide layer 141 located at the lower layer of the oxide semiconductor layer 140 with a double-layer channel from both sides of the second oxide layer 142 located at the upper layer to directly contact and connect with the source 151 and the drain 152 respectively, and the oxygen content of the first oxide layer 141 is lower than that of the second oxide layer 142, so that the source 151, the drain 152 and the oxide semiconductor layer 140 form a good ohmic contact, which effectively improves the on-state current of the thin film transistor and optimizes the comprehensive performance of the thin film transistor.
以上所述,仅是本发明的氧化物半导体薄膜晶体管及制作方法的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above is only a preferred embodiment of the oxide semiconductor thin film transistor and the manufacturing method of the present invention, and does not limit the present invention in any form. Although the present invention has been disclosed as a preferred embodiment as above, it is not used to limit the present invention. Any technician familiar with this profession can make some changes or modify the technical content disclosed above into an equivalent embodiment with equivalent changes without departing from the scope of the technical solution of the present invention. However, any simple modification, equivalent change and modification made to the above embodiments based on the technical essence of the present invention without departing from the content of the technical solution of the present invention are still within the scope of the technical solution of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011084344.7A CN112259611B (en) | 2020-10-12 | 2020-10-12 | Oxide semiconductor thin film transistor and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011084344.7A CN112259611B (en) | 2020-10-12 | 2020-10-12 | Oxide semiconductor thin film transistor and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112259611A CN112259611A (en) | 2021-01-22 |
CN112259611B true CN112259611B (en) | 2024-09-24 |
Family
ID=74242281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011084344.7A Active CN112259611B (en) | 2020-10-12 | 2020-10-12 | Oxide semiconductor thin film transistor and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112259611B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI862313B (en) * | 2023-11-30 | 2024-11-11 | 友達光電股份有限公司 | Semiconductor device and manufacturing method thtereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105655291A (en) * | 2016-01-07 | 2016-06-08 | 京东方科技集团股份有限公司 | Method for manufacturing array substrate, array substrate and display panel |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007250804A (en) * | 2006-03-15 | 2007-09-27 | Samsung Electronics Co Ltd | Thin-film transistor substrate and its manufacturing method |
KR100858088B1 (en) * | 2007-02-28 | 2008-09-10 | 삼성전자주식회사 | Thin film transistor and method of manufacturing the same |
KR101334182B1 (en) * | 2007-05-28 | 2013-11-28 | 삼성전자주식회사 | Fabrication method of ZnO family Thin film transistor |
US8193045B2 (en) * | 2007-05-31 | 2012-06-05 | Canon Kabushiki Kaisha | Manufacturing method of thin film transistor using oxide semiconductor |
KR101489652B1 (en) * | 2008-09-02 | 2015-02-06 | 삼성디스플레이 주식회사 | Thin film transistor substrate and manufacturing method thereof |
KR101652790B1 (en) * | 2009-11-09 | 2016-08-31 | 삼성전자주식회사 | Transistor, method of manufacturing the same and electronic device comprising transistor |
KR101920709B1 (en) * | 2010-07-30 | 2018-11-22 | 삼성전자주식회사 | Transistor, method of manufacturing the same and electronic device comprising transistor |
KR101694876B1 (en) * | 2010-11-19 | 2017-01-23 | 삼성전자주식회사 | Transistor, method of manufacturing the same and electronic device comprising transistor |
US8679905B2 (en) * | 2011-06-08 | 2014-03-25 | Cbrite Inc. | Metal oxide TFT with improved source/drain contacts |
KR102211215B1 (en) * | 2012-09-14 | 2021-02-02 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device and method for fabricating the same |
WO2014104296A1 (en) * | 2012-12-28 | 2014-07-03 | 株式会社神戸製鋼所 | Thin-film transistor and manufacturing method therefor |
CN103887345A (en) * | 2014-03-28 | 2014-06-25 | 南京中电熊猫液晶显示科技有限公司 | Oxide thin-film transistor and manufacturing method thereof |
KR20180013369A (en) * | 2016-07-29 | 2018-02-07 | 엘지디스플레이 주식회사 | Organic light emitting display device comprising multi-type thin film transistor |
CN109103113B (en) * | 2018-08-17 | 2022-05-31 | 京东方科技集团股份有限公司 | Thin film transistor manufacturing method, thin film transistor, display substrate and display panel |
-
2020
- 2020-10-12 CN CN202011084344.7A patent/CN112259611B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105655291A (en) * | 2016-01-07 | 2016-06-08 | 京东方科技集团股份有限公司 | Method for manufacturing array substrate, array substrate and display panel |
Also Published As
Publication number | Publication date |
---|---|
CN112259611A (en) | 2021-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10707236B2 (en) | Array substrate, manufacturing method therefor and display device | |
US9570483B2 (en) | Flat panel display device with oxide thin film transistor and method of fabricating the same | |
KR20120110040A (en) | Amorphous oxide thin film transistor, forming method thereof and display panel including the same | |
CN102437059B (en) | Preparation method for top-gate self-aligned zinc oxide thin film transistor | |
CN103346089B (en) | A kind of autoregistration bilayer channel metal-oxide thin film transistor (TFT) and preparation method thereof | |
CN103227147B (en) | TFT-LCD array substrate and manufacture method, liquid crystal display | |
CN102569412B (en) | Thin film transistor device and manufacturing method thereof | |
CN105304500B (en) | N-type TFT preparation method | |
TW201519416A (en) | Thin film transistor driving back plate and manufacturing method thereof | |
CN103311128A (en) | Self-aligning metal oxide thin film transistor and manufacturing method thereof | |
CN103489921B (en) | A kind of thin-film transistor and manufacture method, array base palte and display unit | |
CN103346093A (en) | Top grid self-alignment thin-film transistor with source/drain areas raised and manufacturing method thereof | |
WO2016165185A1 (en) | Manufacturing method for dual-gate oxide semiconductor tft substrate, and structure of dual-gate oxide semiconductor tft substrate | |
WO2020244313A1 (en) | Array substrate and preparation method thereof, display panel, and display device | |
WO2017219412A1 (en) | Method for manufacturing top gate thin-film transistor | |
CN105140239B (en) | A kind of thin film transistor (TFT), its preparation method, array base palte and preparation method thereof | |
KR20170119294A (en) | Method for fabricating fully self-aligned dual-gate thin film transistors | |
US20230352496A1 (en) | Array substrate and display panel | |
CN105576017A (en) | Thin-film transistor based on zinc oxide thin film | |
CN101533858A (en) | Film transistor, manufacturing method thereof and image display device | |
CN112259611B (en) | Oxide semiconductor thin film transistor and method for manufacturing the same | |
CN103367456B (en) | Thin-film transistor and manufacture method thereof | |
CN102593008B (en) | A kind of preparation method of bottom gate self alignment zino oxide film transistor | |
CN111710609A (en) | Doping method of indium gallium zinc oxide thin film transistor | |
CN107946195B (en) | Method for preparing double gate oxide semiconductor thin film transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |