[go: up one dir, main page]

CN112467058B - A ternary exciplex composite material host and its OLED device preparation - Google Patents

A ternary exciplex composite material host and its OLED device preparation Download PDF

Info

Publication number
CN112467058B
CN112467058B CN202011347543.2A CN202011347543A CN112467058B CN 112467058 B CN112467058 B CN 112467058B CN 202011347543 A CN202011347543 A CN 202011347543A CN 112467058 B CN112467058 B CN 112467058B
Authority
CN
China
Prior art keywords
electron
layer
injection layer
oled device
organic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011347543.2A
Other languages
Chinese (zh)
Other versions
CN112467058A (en
Inventor
徐汀
杨楚罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN202011347543.2A priority Critical patent/CN112467058B/en
Publication of CN112467058A publication Critical patent/CN112467058A/en
Application granted granted Critical
Publication of CN112467058B publication Critical patent/CN112467058B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The invention discloses a ternary exciplex composite material main body and preparation of an OLED device thereof, wherein the OLED device comprises: an anode, a cathode, an organic functional layer disposed between the anode and the cathode; the organic functional layer comprises a hole injection layer, an organic light-emitting layer, an electron transport layer and an electron injection layer which are sequentially arranged in the direction from the anode to the cathode; the organic light-emitting layer comprises a host composite material and a guest material, the host composite material is a ternary exciplex formed by mixing an electron donor, a first electron acceptor and a second electron acceptor, and the electron donor is
Figure DDA0002800373330000011
Figure DDA0002800373330000012
The first electron acceptor is
Figure DDA0002800373330000013
The second electron acceptor is
Figure DDA0002800373330000014
Figure DDA0002800373330000015
Figure DDA0002800373330000021
The guest material is selected from one or more of a thermal activity delayed fluorescence material, a triplet-triplet annihilation material, a fluorescence material and a phosphorescence material. The main body composite material has good electron transmission efficiency and thermal stability, is beneficial to enhancing the efficacy and the luminous efficiency of an OLED device, and is suitable for solution processing.

Description

一种三元激基复合物复合材料主体及其OLED器件制备A ternary exciplex composite material host and its OLED device preparation

技术领域technical field

本发明涉及电致发光器件技术领域,尤其涉及一种三元激基复合物复合材料主体及其OLED器件制备。The invention relates to the technical field of electroluminescence devices, in particular to a ternary exciplex composite material main body and the preparation of OLED devices thereof.

背景技术Background technique

有机发光二极管(organic light-emitting diodes,简称OLED)具有自发光、响应快、可视广、驱动电压低、节能、轻薄以及可柔性加工等优点,极大地满足了消费者对显示技术不断更新的要求。同时,OLED器件在照明领域也表现出广阔的应用前景和巨大的市场需求。Organic light-emitting diodes (OLEDs for short) have the advantages of self-illumination, fast response, wide visibility, low driving voltage, energy saving, light and thin, and flexible processing, which greatly meet consumers' demands for continuous update of display technology. Require. At the same time, OLED devices also show broad application prospects and huge market demand in the field of lighting.

热活性延迟荧光(thermally activated delayed fluorescence,TADF)材料具有分子内的电子给体(D)-电子受体(A)结构,最大理论效率可达100%,单线态激发态和三线态激发态能级接近0.5~1.0eV,作为发光层的主体材料形成OLED器件,具有发光效率高,无需Eu、Ir稀土金属元素,量产成本低的特点;因为传统单组分的主体材料(1,3-双(咔唑-9-基)苯,缩写为mCP)具有较低的玻璃化转变温度(Tg)(~60℃)恶化了OLED器件的性能,新的激基复合物体系主体替代mCP主体利于解决上述问题,用两种现有传输性质不同材料可以形成,这将增加电荷传输能力,使电子-空穴传输更加平衡,从而降低发光的驱动电压,提高器件的性能和稳定性。现有的激基复合物主体体系主要集中在二元D-A激基复合物体系的研究,三元以上的激基复合物主体体系的鲜有报道,如此,使得基于三元激基复合物体系主体的OLED新结构体系有进一步发展的空间。Thermally activated delayed fluorescence (TADF) materials have an intramolecular electron donor (D)-electron acceptor (A) structure, the maximum theoretical efficiency can reach 100%, singlet excited state and triplet excited state energy The level is close to 0.5-1.0eV. As the main material of the light-emitting layer to form an OLED device, it has the characteristics of high luminous efficiency, no need for Eu, Ir rare earth metal elements, and low mass production cost; because the traditional single-component main material (1,3- Bis(carbazol-9-yl)benzene, abbreviated as mCP) has a lower glass transition temperature (Tg) (~60°C) which deteriorates the performance of OLED devices, and the replacement of mCP host by the new exciplex system host is beneficial To solve the above problems, it can be formed by using two existing materials with different transport properties, which will increase the charge transport capacity and make the electron-hole transport more balanced, thereby reducing the driving voltage of light emission and improving the performance and stability of the device. Existing exciplex host systems mainly focus on the research of binary D-A exciplex systems, and there are few reports on exciplex host systems with more than ternary exciplexes. The new structure system of OLED has room for further development.

因此,现有技术还有待于改进和发展。Therefore, the prior art still needs to be improved and developed.

发明内容Contents of the invention

鉴于上述现有技术的不足,本发明的目的在于提供一种三元激基复合物复合材料主体及其OLED器件制备,旨在解决现有传统单主体以及基于二元激基复合物主体体系的OLED器件的限制,开辟新的技术路线。In view of the above-mentioned deficiencies in the prior art, the purpose of the present invention is to provide a ternary exciplex composite material host and its OLED device preparation, aiming to solve the problem of existing traditional single host and binary exciplex host systems. The limitations of OLED devices open up new technical routes.

本发明的技术方案如下:Technical scheme of the present invention is as follows:

一种三元激基复合物复合材料主体OLED器件,其中,所述OLED器件包括:阳极,阴极,以及设置在所述阳极与所述阴极之间的有机功能层;所述有机功能层包括按照自阳极至阴极的方向依次设置的空穴注入层,有机发光层,电子传输层和电子注入层;所述有机发光层的材料包括主体复合材料和客体材料,所述主体复合材料为由电子给体、第一电子受体和第二电子受体混合而成的三元激基复合物,所述电子给体为

Figure BDA0002800373310000021
所述第一电子受体为
Figure BDA0002800373310000022
所述第二电子受体为
Figure BDA0002800373310000023
所述客体材料选自迟热活性延迟荧光材料、三线态-三线态湮灭材料、荧光材料和磷光材料中的一种或多种。A ternary exciplex composite material host OLED device, wherein the OLED device includes: an anode, a cathode, and an organic functional layer arranged between the anode and the cathode; the organic functional layer includes an organic functional layer according to A hole injection layer, an organic light-emitting layer, an electron transport layer and an electron injection layer are arranged in sequence from the anode to the cathode; the material of the organic light-emitting layer includes a host composite material and a guest material, and the host composite material is provided by electrons A ternary exciplex formed by mixing body, first electron acceptor and second electron acceptor, the electron donor is
Figure BDA0002800373310000021
The first electron acceptor is
Figure BDA0002800373310000022
The second electron acceptor is
Figure BDA0002800373310000023
The guest material is selected from one or more of delayed thermally active delayed fluorescent materials, triplet-triplet annihilated materials, fluorescent materials and phosphorescent materials.

一种三元激基复合物复合材料主体OLED器件的制备方法,包括步骤:A method for preparing an OLED device with a ternary exciplex composite material host, comprising the steps of:

提供阳极;provide the anode;

通过溶液法在所述阳极上依次形成空穴注入层,有机发光层,电子传输层和电子注入层,所述空穴注入层,有机发光层,电子传输层和电子注入层构成有机功能层;A hole injection layer, an organic light emitting layer, an electron transport layer and an electron injection layer are sequentially formed on the anode by a solution method, and the hole injection layer, the organic light emitting layer, the electron transport layer and the electron injection layer constitute an organic functional layer;

在所述有机功能层上形成阴极,得到OLED器件;forming a cathode on the organic functional layer to obtain an OLED device;

或者,or,

提供阴极;provide the cathode;

通过溶液法在所述阴极上依次形成电子注入层,电子传输层,有机发光层和空穴注入层,所述电子注入层,电子传输层,有机发光层和空穴注入层构成有机功能层;An electron injection layer, an electron transport layer, an organic light-emitting layer and a hole injection layer are sequentially formed on the cathode by a solution method, and the electron injection layer, the electron transport layer, the organic light-emitting layer and the hole injection layer constitute an organic functional layer;

在所述有机功能层上形成阳极,得到OLED器件;forming an anode on the organic functional layer to obtain an OLED device;

所述有机发光层的材料包括主体复合材料和客体材料,所述主体复合材料为由电子给体、第一电子受体和第二电子受体混合而成的三元激基复合物,其中,所述电子给体为

Figure BDA0002800373310000031
Figure BDA0002800373310000032
所述第一电子受体为
Figure BDA0002800373310000033
所述第二电子受体为
Figure BDA0002800373310000041
Figure BDA0002800373310000042
所述客体材料选自热活性延迟荧光材料、三线态-三线态湮灭材料、荧光材料和磷光材料中的一种或多种。The material of the organic light-emitting layer includes a host composite material and a guest material, and the host composite material is a ternary exciplex composed of an electron donor, a first electron acceptor, and a second electron acceptor, wherein, The electron donor is
Figure BDA0002800373310000031
Figure BDA0002800373310000032
The first electron acceptor is
Figure BDA0002800373310000033
The second electron acceptor is
Figure BDA0002800373310000041
Figure BDA0002800373310000042
The guest material is selected from one or more of thermally active delayed fluorescent materials, triplet-triplet annihilation materials, fluorescent materials and phosphorescent materials.

有益效果:本发明采用的由具有上述化学结构的电子给体和两种电子受体混合而成的三元激基复合物具有好的电子传输效率和热稳定性,能够有效的捕获激子和平衡载流子,其为主体复合材料与选自热活性延迟荧光材料、三线态-三线态湮灭材料、荧光材料和磷光材料中的一种或多种为客体材料形成的有机发光层有利于增强OLED器件的功效效率和发光效率;同时三元激基复合物的电子给体和两种电子受体均为有机小分子,适用于溶液法加工制备OLED器件;此外,该三元激基复合物拓宽了OLED激基复合物主体体系的构成。形成了新的技术路线。上述获得的OLED器件可用作显示设备及白光照明器件等。Beneficial effects: The ternary exciplex formed by mixing the electron donor with the above chemical structure and two electron acceptors used in the present invention has good electron transport efficiency and thermal stability, and can effectively capture excitons and The balance carrier, which is the organic light-emitting layer formed by the host composite material and one or more guest materials selected from thermally active delayed fluorescent materials, triplet-triplet annihilation materials, fluorescent materials and phosphorescent materials, is conducive to enhancing The efficacy efficiency and luminous efficiency of the OLED device; at the same time, the electron donor and the two electron acceptors of the ternary exciplex are organic small molecules, which are suitable for the preparation of OLED devices by solution processing; in addition, the ternary exciplex Broaden the composition of OLED exciplex host system. Formed a new technical route. The OLED device obtained above can be used as a display device, a white light lighting device, and the like.

附图说明Description of drawings

图1为本发明实施方式中,二元激基复合物主体(a)、三元激基复合物主体(b)分别为主体与客体(如TADF材料)形成的有机发光层的能量传递的工作原理的示意图。Figure 1 shows the work of energy transfer in the organic light-emitting layer formed by the binary exciplex host (a) and the ternary exciplex host (b) respectively as the host and the guest (such as TADF material) in the embodiment of the present invention. Schematic diagram of the principle.

图2为本发明实施方式中,一种正置OLED器件的结构示意图。FIG. 2 is a schematic structural diagram of a vertical OLED device in an embodiment of the present invention.

图3为本发明实施例3中,实施例1、2及对比例1、2制备OLED器件采用的各层材料的能级对比图。Fig. 3 is a comparison diagram of energy levels of materials used in each layer of OLED devices prepared in Examples 1 and 2 and Comparative Examples 1 and 2 in Example 3 of the present invention.

具体实施方式Detailed ways

本发明提供一种三元激基复合物复合材料主体及其OLED器件制备,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。The present invention provides a ternary exciplex composite material main body and its OLED device preparation. In order to make the purpose, technical solution and effect of the present invention clearer and clearer, the present invention will be further described in detail below. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

本发明实施例提供一种三元激基复合物复合材料主体OLED器件,所述OLED器件包括:阳极,阴极,以及设置在所述阳极与所述阴极之间的有机功能层,所述有机功能层包括按照自阳极至阴极的方向依次设置的空穴注入层,有机发光层,电子传输层和电子注入层;所述有机发光层的材料包括主体复合材料和客体材料,所述主体复合材料为由电子给体、第一电子受体和第二电子受体混合而成的三元激基复合物,所述电子给体为

Figure BDA0002800373310000051
Figure BDA0002800373310000061
所述第一电子受体为
Figure BDA0002800373310000062
所述第二电子受体为
Figure BDA0002800373310000063
Figure BDA0002800373310000064
所述客体材料选自热活性延迟荧光材料、三线态-三线态湮灭材料、荧光材料和磷光材料中的一种或多种。An embodiment of the present invention provides a ternary exciplex composite material host OLED device, the OLED device includes: an anode, a cathode, and an organic functional layer arranged between the anode and the cathode, the organic functional layer The layer includes a hole injection layer, an organic light-emitting layer, an electron transport layer and an electron injection layer arranged in sequence from the anode to the cathode; the material of the organic light-emitting layer includes a host composite material and a guest material, and the host composite material is A ternary exciplex formed by mixing an electron donor, a first electron acceptor and a second electron acceptor, the electron donor being
Figure BDA0002800373310000051
Figure BDA0002800373310000061
The first electron acceptor is
Figure BDA0002800373310000062
The second electron acceptor is
Figure BDA0002800373310000063
Figure BDA0002800373310000064
The guest material is selected from one or more of thermally active delayed fluorescent materials, triplet-triplet annihilation materials, fluorescent materials and phosphorescent materials.

本实施例中,采用的由具有上述结构的电子给体和两种电子受体混合而成的三元激基复合物具有好的电子传输效率和热稳定性,能够有效的捕获激子和平衡载流子,其为主体复合材料与选自热活性延迟荧光材料、三线态-三线态湮灭材料、荧光材料和磷光材料中的一种或多种为客体材料形成的有机发光层,有利于增强OLED器件的功效效率和发光效率;同时三元激基复合物的电子给体和两种电子受体均为有机小分子,适用于溶液法加工制备OLED器件;此外,该三元激基复合物拓宽了OLED激基复合物主体体系的构成。上述获得的OLED器件可用作显示设备及白光照明器件等。In this example, the ternary exciplex formed by mixing the electron donor with the above structure and two electron acceptors has good electron transport efficiency and thermal stability, and can effectively capture excitons and balance Carriers, which are the organic light-emitting layer formed by the host composite material and one or more guest materials selected from thermally active delayed fluorescent materials, triplet-triplet annihilation materials, fluorescent materials and phosphorescent materials, which is conducive to enhancing The efficacy efficiency and luminous efficiency of the OLED device; at the same time, the electron donor and the two electron acceptors of the ternary exciplex are organic small molecules, which are suitable for the preparation of OLED devices by solution processing; in addition, the ternary exciplex Broaden the composition of OLED exciplex host system. The OLED device obtained above can be used as a display device, a white light lighting device, and the like.

参见图1,具体地,对比三元激基复合物为主体复合材料与客体材料(如TADF材料)形成的有机发光层的能量传递的工作原理(b)和二元激基复合物为主体复合材料与客体材料(如TADF材料)形成的有机发光层的能量传递的工作原理(a);可知,三元激基复合物为主体复合材料与客体材料(如TADF材料)形成的有机发光层具有双能量传递通道,使其将具有更好的电子传输效率,能够更有效的捕获激子和平衡载流子,从而使得本实施例的基于三元激基复合物的OLED器件具有更好的发光性能和功效效率。Referring to Fig. 1, specifically, compare the working principle of energy transfer of the organic light-emitting layer formed by the ternary exciplex as the host composite material and the guest material (such as TADF material) (b) and the binary exciplex as the host recombination The working principle (a) of the energy transfer of the organic light-emitting layer formed by the material and the guest material (such as TADF material); it can be seen that the organic light-emitting layer formed by the ternary exciplex has the Dual energy transfer channels make it have better electron transfer efficiency, can more effectively capture excitons and balance carriers, so that the OLED device based on the ternary exciplex in this embodiment has better luminescence performance and efficacy efficiency.

在一种实施方式中,所述电子给体、第一电子受体、第二电子受体的质量比为1~10:1:1~10。在该质量比范围内,电子给体、第一电子受体、第二电子受体混合而成的三元激基复合物具有更好的电子传输效率和热稳定性,能够更有效的捕获激子和平衡载流子,作为主体材复合料与客体材料的形成的有机发光层更有利于增强OLED器件的功效效率和发光效率。较佳的,所述客体材料为热活性延迟荧光材料。In one embodiment, the mass ratio of the electron donor, the first electron acceptor, and the second electron acceptor is 1-10:1:1-10. Within this mass ratio range, the ternary exciplex formed by the electron donor, the first electron acceptor, and the second electron acceptor has better electron transport efficiency and thermal stability, and can more effectively capture the excimer complex. Carriers and balance carriers, the organic light-emitting layer formed by the composite material of the host material and the guest material is more conducive to enhancing the efficacy efficiency and luminous efficiency of the OLED device. Preferably, the guest material is a thermally active delayed fluorescence material.

在一种实施方式中,所述热活性延迟荧光材料选自In one embodiment, the thermally active delayed fluorescent material is selected from

Figure BDA0002800373310000081
Figure BDA0002800373310000091
Figure BDA0002800373310000092
中的一种或多种。优选地,所述热活性延迟荧光材料为
Figure BDA0002800373310000093
Figure BDA0002800373310000081
Figure BDA0002800373310000091
Figure BDA0002800373310000092
one or more of. Preferably, the thermally active delayed fluorescent material is
Figure BDA0002800373310000093

在一种实施方式中,所述三线态-三线态湮灭(TTA)材料可选自但不限于

Figure BDA0002800373310000094
Figure BDA0002800373310000101
Figure BDA0002800373310000102
中的一种或多种;In one embodiment, the triplet-triplet annihilation (TTA) material may be selected from but not limited to
Figure BDA0002800373310000094
Figure BDA0002800373310000101
Figure BDA0002800373310000102
one or more of

所述荧光材料可选自但不限于

Figure BDA0002800373310000103
Figure BDA0002800373310000104
Figure BDA0002800373310000105
中的一种或多种;The fluorescent material can be selected from but not limited to
Figure BDA0002800373310000103
Figure BDA0002800373310000104
Figure BDA0002800373310000105
one or more of

所述磷光材料可选自但不限于

Figure BDA0002800373310000111
Figure BDA0002800373310000112
Figure BDA0002800373310000113
中的一种或多种。The phosphorescent material can be selected from but not limited to
Figure BDA0002800373310000111
Figure BDA0002800373310000112
Figure BDA0002800373310000113
one or more of.

在一种实施方式中,所述主体复合材料与所述客体材料的质量比为1~100:1。In one embodiment, the mass ratio of the host composite material to the guest material is 1˜100:1.

在一种实施方式中,所述有机发光层的厚度可为10~100nm,例如10nm、30nm、50nm、60nm、100nm等。In one embodiment, the thickness of the organic light-emitting layer may be 10-100 nm, such as 10 nm, 30 nm, 50 nm, 60 nm, 100 nm and so on.

在一种实施方式中,所述阳极与所述有机发光层之间还可设置有其它空穴功能层,如还可设置空穴传输层和电子阻挡层中的至少一层;当同时设置空穴注入层和空穴传输层(或电子阻挡层)时,空穴注入层靠近阳极设置,空穴传输层(或电子阻挡层)靠近有机发光层设置;当同时设置空穴注入层、空穴传输层和电子阻挡层时,空穴注入层靠近阳极设置,电子阻挡层靠近有机发光层设置,空穴传输层设置在空穴注入层和电子阻挡层之间。所述空穴注入层的厚度为50~80nm,例如,50nm、60nm、80nm等;所述空穴注入层的材料可选自但不限于2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HAT-CN)、4,4-(9-(2-乙基己基)-9H-咔唑-3,6-二基)二苯酚(MO3)、、聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)、聚(4-苯乙烯磺酸)(结构为

Figure BDA0002800373310000121
缩写为PSSA)修饰的(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(m-PEDOT:PSS)、聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4'-(N-(对丁基苯基))二苯胺)](TFB)、聚(9-乙烯基咔唑)(PVK)、聚[双(4-苯基)(4-丁基苯基)胺](Poly-TPD)、N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺(NPB)、1,1-二[4-[N,N'-二(p-甲苯基)氨基]苯基]环己烷(TAPC)、
Figure BDA0002800373310000122
Figure BDA0002800373310000131
Figure BDA0002800373310000132
中的一种或多种。所述空穴传输层的厚度为50~80nm,例如,50nm、60nm、80nm等;所述空穴传输层的材料可为本领域常用的空穴传输层材料。所述电子阻挡层的厚度为5~20nm,例如,5nm、15nm、20nm等;所述电子阻挡层的材料可为本领域常用的电子阻挡材料。In one embodiment, other hole functional layers may also be arranged between the anode and the organic light-emitting layer, such as at least one of a hole transport layer and an electron blocking layer; During the hole injection layer and the hole transport layer (or electron blocking layer), the hole injection layer is arranged close to the anode, and the hole transport layer (or electron block layer) is arranged close to the organic light-emitting layer; when the hole injection layer, the hole When the transport layer and the electron blocking layer are used, the hole injection layer is arranged close to the anode, the electron blocking layer is arranged close to the organic light-emitting layer, and the hole transport layer is arranged between the hole injection layer and the electron blocking layer. The thickness of the hole injection layer is 50-80nm, for example, 50nm, 60nm, 80nm, etc.; the material of the hole injection layer can be selected from but not limited to 2,3,6,7,10,11-hexacyano Base-1,4,5,8,9,12-hexaazatriphenylene (HAT-CN), 4,4-(9-(2-ethylhexyl)-9H-carbazole-3,6- Diyl)diphenol (MO 3 ), poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS), poly(4-styrenesulfonic acid) (structure is
Figure BDA0002800373310000121
Abbreviated as PSSA) modified (3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (m-PEDOT:PSS), poly[(9,9-dioctylfluorenyl-2,7 -diyl)-co-(4,4'-(N-(p-butylphenyl))diphenylamine)](TFB), poly(9-vinylcarbazole)(PVK), poly[bis(4 -phenyl)(4-butylphenyl)amine](Poly-TPD), N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4 ,4'-diamine (NPB), 1,1-bis[4-[N,N'-bis(p-tolyl)amino]phenyl]cyclohexane (TAPC),
Figure BDA0002800373310000122
Figure BDA0002800373310000131
Figure BDA0002800373310000132
one or more of. The thickness of the hole transport layer is 50-80 nm, for example, 50 nm, 60 nm, 80 nm, etc.; the material of the hole transport layer can be a hole transport layer material commonly used in the field. The thickness of the electron blocking layer is 5-20 nm, for example, 5 nm, 15 nm, 20 nm, etc.; the material of the electron blocking layer can be an electron blocking material commonly used in the field.

在一种实施方式中,所述阴极与所述有机发光层之间还可设置其它电子功能层,如空穴阻挡层,所述阴极与所述有机发光层之间同时设置电子注入层、电子传输层和空穴阻挡层时,电子注入层靠近阴极设置,空穴阻挡层靠近有机发光层设置,电子传输层设置在电子注入层和空穴阻挡层之间。所述电子注入层的厚度为1~10nm,例如,1nm、5nm、10nm等;所述电子注入层的材料可为但不限于8-羟基喹啉-锂(

Figure BDA0002800373310000133
Liq)或LiF。所述电子传输层的厚度为50~80nm,例如,50nm、60nm、80nm等。所述电子传输层的材料可为但不限于
Figure BDA0002800373310000134
Figure BDA0002800373310000141
Figure BDA0002800373310000142
ZnO、TiO2、BaTiO3、掺铝氧化锌、掺锂氧化锌、掺镁氧化锌、CdS、ZnS、MoS、WS和CuS中的一种或多种;所述空穴阻挡层的厚度为5~20nm,例如,5nm、15nm、20nm等;所述空穴阻挡层的材料可为但不限于
Figure BDA0002800373310000143
或双-4,6-(3,5-二-4-吡啶基苯基)-2-甲基嘧啶或4,6-双(3,5-二(3-吡啶)基苯基)-2-甲基嘧啶或其衍生物。In one embodiment, other electronic functional layers, such as a hole blocking layer, can also be arranged between the cathode and the organic light-emitting layer, and an electron injection layer, an electron injection layer, and an electron injection layer are also arranged between the cathode and the organic light-emitting layer. When the transport layer and the hole blocking layer are used, the electron injection layer is arranged close to the cathode, the hole blocking layer is arranged close to the organic light-emitting layer, and the electron transport layer is arranged between the electron injection layer and the hole blocking layer. The thickness of the electron injection layer is 1-10nm, for example, 1nm, 5nm, 10nm, etc.; the material of the electron injection layer can be but not limited to 8-hydroxyquinoline-lithium (
Figure BDA0002800373310000133
Liq) or LiF. The thickness of the electron transport layer is 50-80nm, for example, 50nm, 60nm, 80nm and so on. The material of the electron transport layer can be but not limited to
Figure BDA0002800373310000134
Figure BDA0002800373310000141
Figure BDA0002800373310000142
One or more of ZnO, TiO 2 , BaTiO 3 , aluminum-doped zinc oxide, lithium-doped zinc oxide, magnesium-doped zinc oxide, CdS, ZnS, MoS, WS and CuS; the thickness of the hole blocking layer is 5 ~20nm, for example, 5nm, 15nm, 20nm, etc.; the material of the hole blocking layer can be but not limited to
Figure BDA0002800373310000143
Or bis-4,6-(3,5-bis-4-pyridylphenyl)-2-methylpyrimidine or 4,6-bis(3,5-bis(3-pyridylphenyl)-2 - methylpyrimidine or derivatives thereof.

在一种实施方式中,所述阳极的材料可选自但不限于氧化铟锡(ITO)、铝掺杂氧化锌(AZO)、锑掺杂氧化锡(ATO)和氟掺杂氧化锡(FTO)中的一种或多种。In one embodiment, the material of the anode can be selected from but not limited to indium tin oxide (ITO), aluminum doped zinc oxide (AZO), antimony doped tin oxide (ATO) and fluorine doped tin oxide (FTO). ) in one or more.

在一种实施方式中,所述阴极的材料可选自但不限于Al、Ag、Cu和Au中的一种或多种。In one embodiment, the material of the cathode may be selected from but not limited to one or more of Al, Ag, Cu and Au.

具体地,本实施例的三元激基复合物复合材料主体OLED器件可设置成不同类型,也就是说,三元激基复合物复合材料主体OLED器件可设置成具有正置结构的OLED器件,还可设置成具有倒置结构的OLED器件。现以空穴注入层为空穴功能层,电子注入层、电子传输层和空穴阻挡层为电子功能层的正置OLED器件为例,对OLED器件的结构进行进一步说明,如图2所示,OLED器件自下而上依次包括:阳极10,空穴功能层20(即空穴注入层),有机发光层30,电子功能层40(包括空穴阻挡层41、电子传输层42和电子注入层43),阴极50;其中,有机发光层30的材料包括主体复合材料和客体材料,所述主体复合材料为由电子给体、第一电子受体和第二电子受体混合而成的三元激基复合物,其中,所述电子给体为mCP,所述第一电子受体为DTDP-TRZ,所述第二电子受体为OXD-7;所述客体材料选自热活性延迟荧光材料、三线态-三线态湮灭材、荧光材料和磷光材料中的一种或多种。Specifically, the ternary exciplex composite host OLED device of this embodiment can be configured in different types, that is, the ternary exciplex composite host OLED device can be configured as an OLED device with an upright structure, It can also be configured as an OLED device with an inverted structure. Taking the hole injection layer as the hole functional layer, the electron injection layer, the electron transport layer and the hole blocking layer as the positive OLED device as an example, the structure of the OLED device is further described, as shown in Figure 2 , the OLED device comprises from bottom to top: anode 10, hole functional layer 20 (i.e. hole injection layer), organic light-emitting layer 30, electron function layer 40 (including hole blocking layer 41, electron transport layer 42 and electron injection layer) layer 43), cathode 50; wherein, the material of the organic light-emitting layer 30 includes a host composite material and a guest material, and the host composite material is a three-component mixture formed by an electron donor, a first electron acceptor, and a second electron acceptor. An exciplex, wherein the electron donor is mCP, the first electron acceptor is DTDP-TRZ, and the second electron acceptor is OXD-7; the guest material is selected from thermally active delayed fluorescence One or more of triplet-triplet annihilation material, fluorescent material and phosphorescent material.

本发明实施例还提供一种三元激基复合物复合材料主体OLED器件的制备方法,包括步骤:包括传统正置器件制备步骤(S10、S20、S30)和倒置器件制备步骤(S10'、S20'、S30')。The embodiment of the present invention also provides a method for preparing an OLED device based on a ternary exciplex composite material, including the steps of: including traditional upright device preparation steps (S10, S20, S30) and inverted device preparation steps (S10', S20 ', S30').

S10、提供阳极;S10, providing an anode;

S20、通过溶液法在所述阳极上依次形成空穴注入层,有机发光层,电子传输层和电子注入层,所述空穴注入层,有机发光层,电子传输层和电子注入层构成有机功能层;S20, sequentially forming a hole injection layer, an organic light-emitting layer, an electron transport layer and an electron injection layer on the anode by a solution method, the hole injection layer, the organic light-emitting layer, the electron transport layer and the electron injection layer constitute an organic function layer;

S30、在所述有机功能层上形成阴极,得到所述OLED器件;S30, forming a cathode on the organic functional layer to obtain the OLED device;

或者,or,

S10'、提供阴极;S10', providing a cathode;

S20'、通过溶液法在所述阴极上依次形成电子注入层,电子传输层,有机发光层和空穴注入层,所述电子注入层,电子传输层,有机发光层和空穴注入层构成有机功能层;S20', sequentially forming an electron injection layer, an electron transport layer, an organic light-emitting layer and a hole injection layer on the cathode by a solution method, the electron injection layer, the electron transport layer, the organic light-emitting layer and the hole injection layer constitute an organic functional layer;

S30'、在所述有机功能层上形成阳极,得到所述OLED器件;S30', forming an anode on the organic functional layer to obtain the OLED device;

所述有机发光层的材料包括主体复合材料和客体材料,所述主体复合材料为由电子给体、第一电子受体和第二电子受体混合而成的三元激基复合物,其中,所述电子给体为

Figure BDA0002800373310000161
所述第一电子受体为
Figure BDA0002800373310000162
所述第二电子受体为
Figure BDA0002800373310000163
所述客体材料选自热活性延迟荧光材料、三线态-三线态湮灭材料、荧光材料和磷光材料中的一种或多种。The material of the organic light-emitting layer includes a host composite material and a guest material, and the host composite material is a ternary exciplex composed of an electron donor, a first electron acceptor, and a second electron acceptor, wherein, The electron donor is
Figure BDA0002800373310000161
The first electron acceptor is
Figure BDA0002800373310000162
The second electron acceptor is
Figure BDA0002800373310000163
The guest material is selected from one or more of thermally active delayed fluorescent materials, triplet-triplet annihilation materials, fluorescent materials and phosphorescent materials.

在一种实施方式中,步骤S20中,在形成有机发光层之前,可在依次形成空穴传输层和电子阻挡层中的至少一层;如在有机发光层之前,可通过溶液法在依次形成空穴传输层和电子阻挡层。步骤S30中,在形成电子传输层之前,还可形成空穴阻挡层;如在形成电子传输层之前,可通过物理气相沉积热蒸发法或者溶液法空穴阻挡层。步骤S20'中,在所述阴极上形成有机发光层之前,还可形成空穴阻挡层;如在所述阴极上形成有机发光层之前,可通过物理气相沉积热蒸发法或者溶液法形成空穴阻挡层。步骤S30'中,在形成空穴注入层之前,还可依次形成电子阻挡层和空穴传输层中的至少一层;如在形成空穴注入层之前,可通过物理气相沉积热蒸发法或溶液法在依次形成电子阻挡层和空穴传输层。即本实施例的OLED器件中可制备有其它功能层,OLED器件中的各层的材料选择及厚度与上述说明相同,在此不再赘述。In one embodiment, in step S20, before forming the organic light emitting layer, at least one of the hole transport layer and the electron blocking layer may be sequentially formed; hole transport layer and electron blocking layer. In step S30, before forming the electron transport layer, a hole blocking layer may also be formed; for example, before forming the electron transport layer, the hole blocking layer may be deposited by physical vapor deposition, thermal evaporation method or solution method. In step S20', before forming the organic light-emitting layer on the cathode, a hole blocking layer can also be formed; for example, before forming the organic light-emitting layer on the cathode, holes can be formed by physical vapor deposition, thermal evaporation or solution method barrier layer. In step S30', before forming the hole injection layer, at least one of the electron blocking layer and the hole transport layer can also be sequentially formed; for example, before forming the hole injection layer, physical vapor deposition, thermal evaporation or solution The electron-blocking layer and the hole-transporting layer are sequentially formed. That is, other functional layers can be prepared in the OLED device of this embodiment, and the material selection and thickness of each layer in the OLED device are the same as those described above, and will not be repeated here.

本实施例中,各层制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于溶液法(如旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法或条状涂布法等)、蒸镀法(如热蒸镀法、电子束蒸镀法、磁控溅射法或多弧离子镀膜法等)、沉积法(如物理气相沉积法、原子层沉积法、脉冲激光沉积法等)中的一种或多种。In this embodiment, the preparation method of each layer can be a chemical method or a physical method, wherein the chemical method includes but not limited to chemical vapor deposition method, continuous ion layer adsorption and reaction method, anodic oxidation method, electrolytic deposition method, and co-precipitation method. One or more; physical methods include but are not limited to solution methods (such as spin coating, printing, blade coating, dipping and pulling, soaking, spraying, roller coating, casting, slot coating method or strip coating method, etc.), evaporation method (such as thermal evaporation method, electron beam evaporation method, magnetron sputtering method or multi-arc ion coating method, etc.), deposition method (such as physical vapor deposition method, atomic layer deposition method, pulsed laser deposition method, etc.) in one or more.

在一种实施方式中,制备正置OLED器件时,为了得到高质量的空穴功能层,阳极需要经过预处理过程。其中所述预处理过程具体包括:将阳极清洗干净,然后将干净的阳极用紫外-臭氧或氧气等离子体处理,以进一步除去阳极表面附着的有机物并提高阳极的功函数。In one embodiment, when preparing a positive OLED device, in order to obtain a high-quality hole functional layer, the anode needs to undergo a pretreatment process. The pretreatment process specifically includes: cleaning the anode, and then treating the clean anode with ultraviolet-ozone or oxygen plasma to further remove organic matter attached to the surface of the anode and improve the work function of the anode.

在一种实施方式中,对得到的OLED器件进行封装处理。其中所述封装处理可采用常用的机器封装,也可以采用手动封装。优选的,所述封装处理的环境中,氧含量和水含量均低于1ppm,以保证器件的稳定性。In one embodiment, the obtained OLED device is packaged. Wherein, the encapsulation process may adopt common machine encapsulation, or manual encapsulation. Preferably, in the encapsulation environment, the oxygen content and the water content are both lower than 1ppm, so as to ensure the stability of the device.

下面通过具体的实施例对本发明进行详细的说明。The present invention will be described in detail below through specific examples.

实施例1三元激基复合物复合材料主体OLED器件的制备Example 1 Preparation of ternary exciplex composite material host OLED device

该红光OLED器件的结构为ITO(阳极)/m-PEDOT:PSS(空穴注入层,60nm)/AQb1:mCP:DTDP-TRZ:OXD-7(有机发光层,50nm,AQb1为客体材料,三元激基复合物mCP:DTDP-TRZ:OXD-7的质量比为35:35:30)/DPEPO(空穴阻挡层,15nm)/TmPyPB(电子传输层,60nm)/Liq(电子注入层,1nm)/Al(阴极,100nm);其制备包括如下步骤:The structure of the red OLED device is ITO (anode)/m-PEDOT:PSS (hole injection layer, 60nm)/AQb1:mCP:DTDP-TRZ:OXD-7 (organic light-emitting layer, 50nm, AQb1 is the guest material, The mass ratio of the ternary exciplex mCP:DTDP-TRZ:OXD-7 is 35:35:30)/DPEPO (hole blocking layer, 15nm)/TmPyPB (electron transport layer, 60nm)/Liq (electron injection layer , 1nm)/Al (cathode, 100nm); Its preparation comprises the following steps:

(1)在ITO玻璃上,以4000r/min的转速旋涂一层60nm的空穴注入层(材料为m-PEDOT:PSS),并在手套箱中于120℃进行退火10min;(1) On the ITO glass, spin-coat a layer of 60nm hole injection layer (m-PEDOT:PSS) at a speed of 4000r/min, and anneal at 120°C for 10min in a glove box;

(2)于氮气气氛中,以1000r/min的转速在空穴注入层上旋涂50nm的有机发光层(AQb1:mCP:DTDP-TRZ:OXD-7的质量比为10:35:35:30),于50℃进行退火10min;(2) In a nitrogen atmosphere, spin-coat a 50nm organic light-emitting layer on the hole injection layer at a speed of 1000r/min (the mass ratio of AQb1:mCP:DTDP-TRZ:OXD-7 is 10:35:35:30 ), annealed at 50°C for 10 minutes;

(3)于真空度为10-5mbar下,在有机发光层上沉积一层15nm的空穴阻挡层(材料为DPEPO);(3) Deposit a 15nm hole blocking layer (the material is DPEPO) on the organic light-emitting layer under a vacuum degree of 10 −5 mbar;

(4)于真空度为10-5mbar下,在空穴阻挡层上沉积一层60nm的电子传输层(材料为TmPyPB);(4) Deposit a 60nm electron transport layer (the material is TmPyPB) on the hole blocking layer at a vacuum of 10 −5 mbar;

(5)于真空度为10-5mbar下,在电子传输层上沉积一层1nm的电子注入层(材料为Liq);(5) Deposit a 1-nm electron injection layer (the material is Liq) on the electron transport layer at a vacuum of 10 −5 mbar;

(6)于真空度为10-5mbar下,在电子注入层上旋涂一层100nm的Al作为阴极,得到红光OLED器件。(6) Under a vacuum degree of 10 −5 mbar, a layer of 100 nm Al was spin-coated on the electron injection layer as a cathode to obtain a red light OLED device.

对比例1基于DTDP-TRZ的OLED器件的制备Preparation of Comparative Example 1 OLED device based on DTDP-TRZ

该红光OLED器件的结构为ITO(阳极)/m-PEDOT:PSS(空穴注入层,60nm)/AQb1(10wt%):DTDP-TRZ(有机发光层,50nm,AQb1为客体材料,DTDP-TRZ为主体材料)/DPEPO(空穴阻挡层,15nm)/TmPyPB(电子传输层,60nm)/Liq(电子注入层,1nm)/Al(阴极,100nm);其制备包括如下步骤:The structure of the red OLED device is ITO (anode)/m-PEDOT:PSS (hole injection layer, 60nm)/AQb1 (10wt%):DTDP-TRZ (organic light-emitting layer, 50nm, AQb1 is the guest material, DTDP- TRZ is the host material)/DPEPO (hole blocking layer, 15nm)/TmPyPB (electron transport layer, 60nm)/Liq (electron injection layer, 1nm)/Al (cathode, 100nm); its preparation includes the following steps:

(1)在ITO玻璃上,以4000r/min的转速旋涂一层60nm空穴注入层(材料为m-PEDOT:PSS),并在手套箱中于120℃进行退火15min;(1) On the ITO glass, spin-coat a layer of 60nm hole injection layer (material is m-PEDOT:PSS) at a speed of 4000r/min, and anneal at 120°C for 15min in a glove box;

(2)于氮气气氛中,以1000r/min的转速在空穴注入层上旋涂50nm的有机发光层,(AQb1的含量为10wt%,DTDP-TRZ的含量为90wt%),于50℃进行退火10min;(2) In a nitrogen atmosphere, spin-coat a 50nm organic light-emitting layer on the hole injection layer at a speed of 1000r/min (the content of AQb1 is 10wt%, and the content of DTDP-TRZ is 90wt%) at 50°C Annealing 10min;

(3)于真空度为10-5mbar下,在有机发光层上沉积一层15nm的空穴阻挡层(材料为DPEPO);(3) Deposit a 15nm hole blocking layer (the material is DPEPO) on the organic light-emitting layer under a vacuum degree of 10 −5 mbar;

(4)于真空度为10-5mbar下,在空穴阻挡层上沉积一层60nm的电子传输层(材料为TmPyPB);(4) Deposit a 60nm electron transport layer (the material is TmPyPB) on the hole blocking layer at a vacuum of 10 −5 mbar;

(5)于真空度为10-5mbar下,在电子传输层上沉积一层1nm的电子注入层(材料为Liq);(5) Deposit a 1-nm electron injection layer (the material is Liq) on the electron transport layer at a vacuum of 10 −5 mbar;

(6)于真空度为10-5mbar下,在电子注入层上沉积一层100nm的Al作为阴极,得到红光OLED器件。(6) Under a vacuum of 10 −5 mbar, a layer of 100 nm Al was deposited on the electron injection layer as a cathode to obtain a red light OLED device.

实施例2基于三元非激基复合物的OLED器件的制备Example 2 Preparation of OLED devices based on ternary non-exciplexes

该红光OLED器件的结构为ITO(阳极)/m-PEDOT:PSS(空穴注入层,60nm)/AQb1:mCP:TDP-TRZ(TDP-TRZ结构为

Figure BDA0002800373310000191
):OXD-7(有机发光层,50nm,AQb1为客体材料,三元非激基复合物mCP:TDP-TRZ:OXD-7的质量比为35:35:30)/DPEPO(空穴阻挡层,15nm)/TmPyPB(电子传输层,60nm)/Liq(电子注入层,1nm)/Al(阴极,100nm);该红光OLED器件制备包括如下步骤:The structure of the red OLED device is ITO (anode)/m-PEDOT:PSS (hole injection layer, 60nm)/AQb1:mCP:TDP-TRZ (TDP-TRZ structure is
Figure BDA0002800373310000191
):OXD-7 (organic light-emitting layer, 50nm, AQb1 as the guest material, the mass ratio of the ternary non-excimer complex mCP:TDP-TRZ:OXD-7 is 35:35:30)/DPEPO (hole blocking layer , 15nm)/TmPyPB (electron transport layer, 60nm)/Liq (electron injection layer, 1nm)/Al (cathode, 100nm); This red light OLED device preparation comprises the following steps:

(1)在ITO玻璃上,以4000r/min的转速旋涂一层60nm空穴注入层(材料为m-PEDOT:PSS),并在手套箱中120℃进行退火10min;(1) On the ITO glass, spin-coat a layer of 60nm hole injection layer (m-PEDOT:PSS) at a speed of 4000r/min, and anneal at 120°C for 10min in a glove box;

(2)于氮气气氛中,在空穴注入层上旋涂50nm的有机发光层(AQb1:mCP:TDP-TRZ:OXD-7的质量比为10:35:35:30),于50℃进行退火10min;(2) In a nitrogen atmosphere, spin-coat a 50nm organic light-emitting layer (the mass ratio of AQb1:mCP:TDP-TRZ:OXD-7 is 10:35:35:30) on the hole injection layer at 50°C Annealing 10min;

(3)于真空度为10-5mbar下,在有机发光层上沉积一层15nm的空穴阻挡层(材料为DPEPO);(3) Deposit a 15nm hole blocking layer (the material is DPEPO) on the organic light-emitting layer under a vacuum degree of 10 −5 mbar;

(4)于真空度为10-5mbar下,在空穴阻挡层上沉积一层60nm的电子传输层(材料为TmPyPB);(4) Deposit a 60nm electron transport layer (the material is TmPyPB) on the hole blocking layer at a vacuum of 10 −5 mbar;

(5)于真空度为10-5mbar下,在电子传输层上沉积一层1nm的电子注入层(材料为Liq);(5) Deposit a 1-nm electron injection layer (the material is Liq) on the electron transport layer at a vacuum of 10 −5 mbar;

(6)于真空度为10-5mbar下,在电子注入层上沉积一层100nm的Al作为阴极,得到红光OLED器件。(6) Under a vacuum of 10 −5 mbar, a layer of 100 nm Al was deposited on the electron injection layer as a cathode to obtain a red light OLED device.

对比例2基于TDP-TRZ的OLED器件的制备Comparative example 2 Preparation of OLED device based on TDP-TRZ

该红光OLED器件的结构为ITO(阳极)/m-PEDOT:PSS(空穴注入层,60nm)/AQb1(10wt%):TDP-TRZ(有机发光层,50nm,AQb1为客体材料,TDP-TRZ为主体材料)/DPEPO(空穴阻挡层,15nm)/TmPyPB(电子传输层,60nm)/Liq(电子注入层,1nm)/Al(阴极,100nm);该红光OLED器件制备包括如下步骤:The structure of the red OLED device is ITO (anode)/m-PEDOT:PSS (hole injection layer, 60nm)/AQb1 (10wt%):TDP-TRZ (organic light-emitting layer, 50nm, AQb1 is the guest material, TDP- TRZ is the host material)/DPEPO (hole blocking layer, 15nm)/TmPyPB (electron transport layer, 60nm)/Liq (electron injection layer, 1nm)/Al (cathode, 100nm); the preparation of the red OLED device includes the following steps :

(1)在ITO玻璃上,旋涂一层60nm的空穴注入层(材料为m-PEDOT:PSS),并在空气中140℃进行退火15min;(1) On the ITO glass, spin-coat a layer of 60nm hole injection layer (material is m-PEDOT:PSS), and anneal in air at 140°C for 15min;

(2)于氮气气氛中,在空穴注入层上旋涂50nm的有机发光层(AQb1的含量为10wt%,的含量为90wt%),于50℃进行退火10min;(2) In a nitrogen atmosphere, spin-coat a 50nm organic light-emitting layer (the content of AQb1 is 10wt%, and the content of AQb1 is 90wt%) on the hole injection layer, and anneal at 50°C for 10min;

(3)于真空度为10-5mbar下,在有机发光层上沉积一层15nm的空穴阻挡层(材料为DPEPO);(3) Deposit a 15nm hole blocking layer (the material is DPEPO) on the organic light-emitting layer under a vacuum degree of 10 −5 mbar;

(4)于真空度为10-5mbar下,在空穴阻挡层上沉积一层60nm的电子传输层(材料为TmPyPB);(4) Deposit a 60nm electron transport layer (the material is TmPyPB) on the hole blocking layer at a vacuum of 10 −5 mbar;

(5)于真空度为10-5mbar下,在电子传输层上沉积一层1nm的电子注入层(材料为Liq);(5) Deposit a 1-nm electron injection layer (the material is Liq) on the electron transport layer at a vacuum of 10 −5 mbar;

(6)于真空度为10-5mbar下,在电子注入层上沉积一层100nm的Al作为阴极,得到红光OLED器件。(6) Under a vacuum of 10 −5 mbar, a layer of 100 nm Al was deposited on the electron injection layer as a cathode to obtain a red light OLED device.

实施例3OLED器件的性能测试分析Performance test analysis of embodiment 3 OLED device

实施例1、2及对比例1、2制备OLED器件采用的各层材料的能级如图3所示,可知,具有相似结构的TDP-TRZ与DTDP-TRZ的能级略有差别。The energy levels of the materials used in the preparation of OLED devices in Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Figure 3. It can be seen that the energy levels of TDP-TRZ and DTDP-TRZ with similar structures are slightly different.

对实施例1、2及对比例1、2制备得到的OLED器件的发光性能(亮度在10cd·m-2时的开启电压(Von),特征发射峰(ELpeak/nm),亮度在10~1000cd·m-2范围内的最大电流效率(CEmax/cd·A-1)、最大功率效率(PEmax/lm·W-1)和最大外量子效率(EQEmax,(%)),以及亮度在100cd·m-2时的国际照明委员会坐标(CIE,(x,y)))的进行测试,测试结果见表1。可知,相对于DTDP-TRZ,三元激基复合物(mCP、TDP-TRZ和OXD-7)作为主体复合材料与TADF材料作为客体材料形成的发光体具有更好的发光性能。The luminous properties of the OLED devices prepared in Examples 1, 2 and Comparative Examples 1, 2 (the turn-on voltage (V on ) when the brightness is 10 cd m -2 , the characteristic emission peak (EL peak /nm), and the brightness at 10 Maximum current efficiency (CE max /cd·A -1 ), maximum power efficiency (PE max /lm·W -1 ) and maximum external quantum efficiency (EQE max , (%)) in the range of ~1000cd·m -2 , And the coordinates of the International Commission on Illumination (CIE, (x, y))) when the brightness is 100cd·m -2 are tested, and the test results are shown in Table 1. It can be seen that, compared with DTDP-TRZ, ternary exciplexes (mCP, TDP-TRZ and OXD-7) as host composite materials and TADF materials as guest materials have better luminescent properties.

表1Table 1

Figure BDA0002800373310000211
Figure BDA0002800373310000211

将表1中的实施例制备得到的OLED器件的性能参数与对应的对比例制备得到的OLED器件的性能参数的比值作为实施例制备得到的OLED器件的性能参数的增益,换算得到实施例1、2制备得到的OLED器件的部分性能参数(CEmax、PEmax和EQEmax)的增益见表2,实施例1制备得到的OLED器件的EQE的增益为实施例2制备得到的OLED器件的EQE增益的1.3倍;表明:相对于三元非激基复合物,三元激基复合物作为主体复合材料具有更好的应用前景。The ratio of the performance parameter of the OLED device prepared by the embodiment in Table 1 to the performance parameter of the OLED device prepared by the corresponding comparative example is used as the gain of the performance parameter of the OLED device prepared by the embodiment, and converted to obtain embodiment 1, 2 The gain of some performance parameters (CE max , PE max and EQE max ) of the prepared OLED device is shown in Table 2, and the gain of EQE of the OLED device prepared in Example 1 is the EQE gain of the OLED device prepared in Example 2 1.3 times of that; it shows that compared with ternary non-exciplexes, ternary exciplexes have better application prospects as host composite materials.

表2Table 2

Figure BDA0002800373310000221
Figure BDA0002800373310000221

综上所述,本发明提供一种三元激基复合物复合材料主体及其OLED器件制备,本发明采用的由具有上述结构的电子给体和两种电子受体混合而成的三元激基复合物具有好的电子传输效率和热稳定性,能够有效的捕获激子和平衡载流子,其为主体复合材料,选自热活性延迟荧光材料、三线态-三线态湮灭材料、荧光材料和磷光材料中的一种或多种为客体材料形成的有机发光层;有利于增强OLED器件的功效效率和发光效率;同时三元激基复合物的电子给体和两种电子受体均为有机小分子,适用于溶液法加工制备OLED器件;此外,该三元激基复合物拓宽了OLED激基复合物主体体系的构成。上述获得的OLED器件可用作显示设备及白光照明器件等。In summary, the present invention provides a ternary exciplex composite material body and its OLED device preparation. The base complex has good electron transport efficiency and thermal stability, and can effectively capture excitons and balance carriers. It is a host composite material selected from thermally active delayed fluorescent materials, triplet-triplet annihilation materials, fluorescent materials One or more of the phosphorescent materials are the organic light-emitting layer formed by the guest material; it is beneficial to enhance the efficiency and luminous efficiency of the OLED device; at the same time, the electron donor and the two electron acceptors of the ternary exciplex are both The organic small molecule is suitable for processing and preparing OLED devices by a solution method; in addition, the ternary exciplex broadens the composition of the main system of the OLED exciplex. The OLED device obtained above can be used as a display device, a white light lighting device, and the like.

应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that the application of the present invention is not limited to the above examples, and those skilled in the art can make improvements or transformations according to the above descriptions, and all these improvements and transformations should belong to the protection scope of the appended claims of the present invention.

Claims (2)

1.一种三元激基复合物复合材料主体OLED器件,其特征在于,所述OLED器件包括:阳极,阴极,以及设置在所述阳极与所述阴极之间的有机功能层;所述有机功能层包括按照自阳极至阴极的方向依次设置的空穴注入层,有机发光层,电子传输层和电子注入层;所述有机发光层包括主体复合材料和客体材料,所述主体复合材料为由电子给体、第一电子受体和第二电子受体混合而成的三元激基复合物,所述电子给体为
Figure 294839DEST_PATH_IMAGE001
Figure 672731DEST_PATH_IMAGE002
所述第一电子受体为
Figure 945580DEST_PATH_IMAGE003
所述第二电子受体为
Figure 104861DEST_PATH_IMAGE004
Figure 855779DEST_PATH_IMAGE005
Figure 291439DEST_PATH_IMAGE006
所述客体材料选自热活性延迟荧光材料、三线态-三线态湮灭材料、荧光材料和磷光材料中的一种或多种;所述电子给体、第一电子受体、第二电子受体的质量比为1~10:1:1~10;
1. A ternary exciplex composite material host OLED device, characterized in that, the OLED device comprises: an anode, a cathode, and an organic functional layer arranged between the anode and the cathode; the organic The functional layer includes a hole injection layer arranged in sequence from the anode to the cathode, an organic light-emitting layer, an electron transport layer and an electron injection layer; the organic light-emitting layer includes a host composite material and a guest material, and the host composite material is made of A ternary exciplex formed by mixing an electron donor, a first electron acceptor and a second electron acceptor, the electron donor being
Figure 294839DEST_PATH_IMAGE001
or
Figure 672731DEST_PATH_IMAGE002
The first electron acceptor is
Figure 945580DEST_PATH_IMAGE003
The second electron acceptor is
Figure 104861DEST_PATH_IMAGE004
Figure 855779DEST_PATH_IMAGE005
or
Figure 291439DEST_PATH_IMAGE006
The guest material is selected from one or more of thermally active delayed fluorescent materials, triplet-triplet annihilation materials, fluorescent materials and phosphorescent materials; the electron donor, the first electron acceptor, and the second electron acceptor The mass ratio is 1~10:1:1~10;
所述热活性延迟荧光材料选自
Figure 797507DEST_PATH_IMAGE007
Figure 685829DEST_PATH_IMAGE008
Figure 738973DEST_PATH_IMAGE009
Figure 29140DEST_PATH_IMAGE010
Figure 706109DEST_PATH_IMAGE011
Figure 81727DEST_PATH_IMAGE012
中的一种或多种;
The thermally active delayed fluorescent material is selected from
Figure 797507DEST_PATH_IMAGE007
Figure 685829DEST_PATH_IMAGE008
,
Figure 738973DEST_PATH_IMAGE009
Figure 29140DEST_PATH_IMAGE010
Figure 706109DEST_PATH_IMAGE011
Figure 81727DEST_PATH_IMAGE012
one or more of
所述三线态-三线态湮灭材料选自
Figure 938562DEST_PATH_IMAGE013
Figure 83236DEST_PATH_IMAGE014
Figure 134368DEST_PATH_IMAGE015
中的一种或多种;
The triplet-triplet annihilation material is selected from
Figure 938562DEST_PATH_IMAGE013
Figure 83236DEST_PATH_IMAGE014
Figure 134368DEST_PATH_IMAGE015
one or more of
所述荧光材料选自
Figure 528441DEST_PATH_IMAGE016
Figure 690432DEST_PATH_IMAGE017
Figure 984884DEST_PATH_IMAGE018
中的一种或多种;
The fluorescent material is selected from
Figure 528441DEST_PATH_IMAGE016
Figure 690432DEST_PATH_IMAGE017
and
Figure 984884DEST_PATH_IMAGE018
one or more of
所述磷光材料选自
Figure 206918DEST_PATH_IMAGE019
Figure 291549DEST_PATH_IMAGE020
Figure 53969DEST_PATH_IMAGE021
Figure 173234DEST_PATH_IMAGE022
中的一种或多种;
The phosphorescent material is selected from
Figure 206918DEST_PATH_IMAGE019
Figure 291549DEST_PATH_IMAGE020
Figure 53969DEST_PATH_IMAGE021
Figure 173234DEST_PATH_IMAGE022
one or more of
所述主体复合材料与所述客体材料的质量比为1~100:1;The mass ratio of the host composite material to the guest material is 1-100:1; 所述空穴注入层的材料为2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲、4,4-(9-(2-乙基己基)-9H-咔唑-3,6-二基)二苯酚、聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)、聚(4-苯乙烯磺酸)修饰的(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)、聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4'-(N-(对丁基苯基))二苯胺)]、聚(9-乙烯基咔唑)、聚[双(4-苯基)(4-丁基苯基)胺]、N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺、1,1-二[4-[N,N'-二(p-甲苯基)氨基]苯基]环己烷、
Figure 539406DEST_PATH_IMAGE023
Figure 376912DEST_PATH_IMAGE024
Figure 677443DEST_PATH_IMAGE025
中的一种或多种;
The material of the hole injection layer is 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene, 4,4-(9 -(2-Ethylhexyl)-9H-carbazole-3,6-diyl)diphenol, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid), poly(4- Styrenesulfonic acid) modified (3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid), poly[(9,9-dioctylfluorenyl-2,7-diyl)-co -(4,4'-(N-(p-butylphenyl))diphenylamine)], poly(9-vinylcarbazole), poly[bis(4-phenyl)(4-butylphenyl) amine], N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine, 1,1-di[4-[N , N'-bis(p-tolyl)amino]phenyl]cyclohexane,
Figure 539406DEST_PATH_IMAGE023
Figure 376912DEST_PATH_IMAGE024
and
Figure 677443DEST_PATH_IMAGE025
one or more of
所述电子传输层的材料为
Figure 916794DEST_PATH_IMAGE026
Figure 448008DEST_PATH_IMAGE027
Figure 569547DEST_PATH_IMAGE028
ZnO、TiO2、BaTiO3、掺铝氧化锌、掺锂氧化锌、掺镁氧化锌、CdS、ZnS、MoS、WS和CuS中的一种或多种;
The material of the electron transport layer is
Figure 916794DEST_PATH_IMAGE026
Figure 448008DEST_PATH_IMAGE027
Figure 569547DEST_PATH_IMAGE028
One or more of ZnO, TiO 2 , BaTiO 3 , aluminum-doped zinc oxide, lithium-doped zinc oxide, magnesium-doped zinc oxide, CdS, ZnS, MoS, WS and CuS;
所述电子注入层的材料为8-羟基喹啉-锂或LiF;The material of the electron injection layer is 8-hydroxyquinoline-lithium or LiF; 所述阳极的材料选自氧化铟锡、铝掺杂氧化锌、锑掺杂氧化锡和氟掺杂氧化锡中的一种或多种;The material of the anode is selected from one or more of indium tin oxide, aluminum-doped zinc oxide, antimony-doped tin oxide and fluorine-doped tin oxide; 所述阴极的材料选自Al、Ag、Cu和Au中的一种或多种。The material of the cathode is selected from one or more of Al, Ag, Cu and Au.
2.一种如权利要求1所述的三元激基复合物复合材料主体OLED器件的制备方法,其特征在于,包括步骤:2. a kind of preparation method of ternary exciplex composite material host OLED device as claimed in claim 1, is characterized in that, comprises the step: 提供阳极;provide the anode; 通过溶液法在所述阳极上依次形成空穴注入层,有机发光层,电子传输层和电子注入层,所述空穴注入层,有机发光层,电子传输层和电子注入层构成有机功能层;A hole injection layer, an organic light emitting layer, an electron transport layer and an electron injection layer are sequentially formed on the anode by a solution method, and the hole injection layer, the organic light emitting layer, the electron transport layer and the electron injection layer constitute an organic functional layer; 在所述有机功能层上形成阴极,得到所述OLED器件;forming a cathode on the organic functional layer to obtain the OLED device; 或者,or, 提供阴极;provide the cathode; 通过溶液法在所述阴极上依次形成电子注入层,电子传输层,有机发光层和空穴注入层,所述电子注入层,电子传输层,有机发光层和空穴注入层构成有机功能层;An electron injection layer, an electron transport layer, an organic light-emitting layer and a hole injection layer are sequentially formed on the cathode by a solution method, and the electron injection layer, the electron transport layer, the organic light-emitting layer and the hole injection layer constitute an organic functional layer; 在所述有机功能层上形成阳极,得到所述OLED器件;forming an anode on the organic functional layer to obtain the OLED device; 所述有机发光层的材料包括主体复合材料和客体材料,所述主体复合材料为由电子给体、第一电子受体和第二电子受体混合而成的三元激基复合物,其中,所述电子给体为
Figure 877032DEST_PATH_IMAGE029
所述第一电子受体为
Figure 439732DEST_PATH_IMAGE030
所述第二电子受体为
Figure 971207DEST_PATH_IMAGE031
所述客体材料选自热激活延迟荧光材料、三线态-三线态湮灭材、荧光材料和磷光材料中的一种或多种。
The material of the organic light-emitting layer includes a host composite material and a guest material, and the host composite material is a ternary exciplex composed of an electron donor, a first electron acceptor, and a second electron acceptor, wherein, The electron donor is
Figure 877032DEST_PATH_IMAGE029
The first electron acceptor is
Figure 439732DEST_PATH_IMAGE030
The second electron acceptor is
Figure 971207DEST_PATH_IMAGE031
The guest material is selected from one or more of thermally activated delayed fluorescent materials, triplet-triplet annihilation materials, fluorescent materials and phosphorescent materials.
CN202011347543.2A 2020-11-26 2020-11-26 A ternary exciplex composite material host and its OLED device preparation Active CN112467058B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011347543.2A CN112467058B (en) 2020-11-26 2020-11-26 A ternary exciplex composite material host and its OLED device preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011347543.2A CN112467058B (en) 2020-11-26 2020-11-26 A ternary exciplex composite material host and its OLED device preparation

Publications (2)

Publication Number Publication Date
CN112467058A CN112467058A (en) 2021-03-09
CN112467058B true CN112467058B (en) 2023-03-07

Family

ID=74808597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011347543.2A Active CN112467058B (en) 2020-11-26 2020-11-26 A ternary exciplex composite material host and its OLED device preparation

Country Status (1)

Country Link
CN (1) CN112467058B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377306B (en) * 2021-09-28 2024-12-17 广东聚华印刷显示技术有限公司 Organic light emitting diode, manufacturing method thereof and display device
GB2624715A (en) * 2022-11-28 2024-05-29 Sumitomo Chemical Co Composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817818A (en) * 2019-01-31 2019-05-28 云谷(固安)科技有限公司 A kind of organic electroluminescence device and display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340470B2 (en) * 2016-02-23 2019-07-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting apparatus
CN109994626B (en) * 2017-12-29 2021-04-02 中节能万润股份有限公司 Organic light-emitting composite material and organic light-emitting device comprising the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817818A (en) * 2019-01-31 2019-05-28 云谷(固安)科技有限公司 A kind of organic electroluminescence device and display device

Also Published As

Publication number Publication date
CN112467058A (en) 2021-03-09

Similar Documents

Publication Publication Date Title
CN105870349B (en) Light emitting diode and preparation method thereof, luminescent device
CN103715360B (en) Organic electroluminescent device and display device
CN113410405B (en) Organic electroluminescent device and display device
CN105206715B (en) A kind of QLED and preparation method thereof of exciton confinement structure
JP2019504471A (en) Phosphorescent organic electroluminescent device
CN102931355B (en) OLED device
CN110335954B (en) Efficient and stable white light organic electroluminescent device and preparation method thereof
CN111416049B (en) Application of double-exciplex host material in preparation of phosphorescent OLED device
US7919771B2 (en) Composition for electron transport layer, electron transport layer manufactured thereof, and organic electroluminescent device including the electron transport layer
CN106803542A (en) A kind of blue organic electroluminescent device and preparation method thereof
CN107452886A (en) A kind of laminated film and Organic Light Emitting Diode and preparation method thereof
CN101800290A (en) Organic LED by adopting doped metallic oxide as hole injection structure
CN104934542A (en) Organic electroluminescent light emitting device and preparation method thereof
CN112349857B (en) Low-roll-off fluorescent organic electroluminescent device and preparation method thereof
CN112467058B (en) A ternary exciplex composite material host and its OLED device preparation
CN103730590A (en) Organic electroluminescence device and manufacturing method of organic electroluminescence device
CN101079471A (en) An organic EL part
US20150028311A1 (en) Doped organic electroluminescent device and method for preparing same
WO2013078595A1 (en) Organic electroluminescent device having ternary doped hole transportation layer and preparation method therefor
CN108682748A (en) A kind of series connection white light organic electroluminescent device
US20140332788A1 (en) Polymeric electroluminescent device and method for preparing same
WO2015192591A1 (en) Organic electroluminescence device and organic electroluminescence display apparatus
CN104183718A (en) Organic light emission diode and preparation method thereof
CN100470874C (en) Red Organic Electroluminescent Devices
CN113328045A (en) Light emitting device and light emitting apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant