CN110335954B - Efficient and stable white light organic electroluminescent device and preparation method thereof - Google Patents
Efficient and stable white light organic electroluminescent device and preparation method thereof Download PDFInfo
- Publication number
- CN110335954B CN110335954B CN201910634139.4A CN201910634139A CN110335954B CN 110335954 B CN110335954 B CN 110335954B CN 201910634139 A CN201910634139 A CN 201910634139A CN 110335954 B CN110335954 B CN 110335954B
- Authority
- CN
- China
- Prior art keywords
- layer
- white light
- yellow
- light
- yellow phosphorescent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 67
- 125000006850 spacer group Chemical group 0.000 claims abstract description 24
- 230000003111 delayed effect Effects 0.000 claims abstract description 12
- 238000002347 injection Methods 0.000 claims abstract description 12
- 239000007924 injection Substances 0.000 claims abstract description 12
- 238000005401 electroluminescence Methods 0.000 claims abstract description 11
- 230000005525 hole transport Effects 0.000 claims abstract description 7
- 230000000903 blocking effect Effects 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims abstract description 5
- HRQXKKFGTIWTCA-UHFFFAOYSA-L beryllium;2-pyridin-2-ylphenolate Chemical compound [Be+2].[O-]C1=CC=CC=C1C1=CC=CC=N1.[O-]C1=CC=CC=C1C1=CC=CC=N1 HRQXKKFGTIWTCA-UHFFFAOYSA-L 0.000 claims description 5
- YWKKLBATUCJUHI-UHFFFAOYSA-N 4-methyl-n-(4-methylphenyl)-n-phenylaniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(C)=CC=1)C1=CC=CC=C1 YWKKLBATUCJUHI-UHFFFAOYSA-N 0.000 claims description 4
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 4
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims 1
- 230000000295 complement effect Effects 0.000 abstract description 6
- -1 anode Substances 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 68
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 33
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical group [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 15
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- DKHNGUNXLDCATP-UHFFFAOYSA-N dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile Chemical group C12=NC(C#N)=C(C#N)N=C2C2=NC(C#N)=C(C#N)N=C2C2=C1N=C(C#N)C(C#N)=N2 DKHNGUNXLDCATP-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- MILUBEOXRNEUHS-UHFFFAOYSA-N iridium(3+) Chemical compound [Ir+3] MILUBEOXRNEUHS-UHFFFAOYSA-N 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/12—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/622—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/624—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
一种高效稳定的白光有机电致发光器件及其制备方法,属于有机半导体发光器件技术领域。由下至上依次为透明基底、阳极、空穴注入层、空穴传输层、激子阻挡层、发光层、电子传输层、电子注入层和阴极,其中,发光层为三层结构,由下至上依次是黄色磷光层、间隔层和非掺杂蓝色荧光层;所述的黄色磷光层由绿色热活化延迟荧光主体材料掺杂黄色磷光客体材料构成。本发明采用热活化延迟荧光材料作为母体敏化黄色磷光客体,该材料具有优良的载流子传输能力,可以作为双极性传输的主体;而且三线态能级大于黄色磷光客体材料的三线态能级,可以阻止客体到主体的能量回传。黄光与蓝光发射互补形成白光,从而提高激子利用率,提高器件性能。
An efficient and stable white light organic electroluminescence device and a preparation method thereof belong to the technical field of organic semiconductor light-emitting devices. From bottom to top are the transparent substrate, anode, hole injection layer, hole transport layer, exciton blocking layer, light-emitting layer, electron transport layer, electron injection layer and cathode, wherein the light-emitting layer is a three-layer structure, from bottom to top The sequence is a yellow phosphorescent layer, a spacer layer and an undoped blue fluorescent layer; the yellow phosphorescent layer is composed of a green thermally activated delayed fluorescent host material doped with a yellow phosphorescent guest material. In the present invention, a thermally activated delayed fluorescent material is used as a parent to sensitize a yellow phosphorescent guest. The material has excellent carrier transport capability and can be used as a host for bipolar transport; and the triplet energy level is greater than that of the yellow phosphorescent guest material. level, which can prevent the return of energy from the object to the subject. Yellow light and blue light emission complement each other to form white light, thereby improving exciton utilization and improving device performance.
Description
技术领域technical field
本发明属于有机半导体发光器件技术领域,具体涉及一种高效稳定的白光有机电致发光器件及其制备方法。The invention belongs to the technical field of organic semiconductor light-emitting devices, in particular to an efficient and stable white light organic electroluminescent device and a preparation method thereof.
背景技术Background technique
白光有机电致发光二极管(OLED)是平面光源,具有柔性、可弯曲、广视角、节能、响应速度快等优点,可以互补无机OLED照明技术的短板,是下一代照明技术的主力军。此外,在显示领域,WOLED可以作为液晶显示技术的背光源,或作为子像素制备高规格的RGBW-TV,即红/绿/蓝/白像素电视。White light organic electroluminescent diodes (OLEDs) are flat light sources with the advantages of flexibility, bendability, wide viewing angle, energy saving, and fast response speed. They can complement the shortcomings of inorganic OLED lighting technology and are the main force of next-generation lighting technology. In addition, in the display field, WOLED can be used as a backlight source for liquid crystal display technology, or as a sub-pixel to prepare high-standard RGBW-TV, that is, red/green/blue/white pixel TV.
根据发光层中发光材料种类的不同,可以将OLED分为全荧光、全磷光以及荧光/磷光杂化WOLED。对全荧光WOLED而言,采用了常规的荧光材料,虽然具有很长的寿命,但是效率普遍偏低,不足20lm/W。全磷光WOLED可以同时利用单线态和三线态激子,因此器件的效率较高。但是局限于重金属资源的稀缺,而且蓝光磷光材料的稳定性差,不利于商业的发展。因此采用蓝色荧光材料和互补色的绿、黄、红等颜色的磷光材料混合产生的杂化WOLED,借助于合理的器件结构和材料体系,可以有效的结合全荧光和全磷光WOLED各自的优点,是非常有希望实现商业化产品的高效稳定性白光器件。According to the different types of light-emitting materials in the light-emitting layer, OLEDs can be divided into full-fluorescence, full-phosphorescence, and fluorescence/phosphorescence hybrid WOLEDs. For all-fluorescent WOLEDs, conventional fluorescent materials are used. Although they have a long life, the efficiency is generally low, less than 20lm/W. All-phosphorescent WOLEDs can utilize both singlet and triplet excitons simultaneously, resulting in high device efficiency. However, it is limited to the scarcity of heavy metal resources and the poor stability of blue phosphorescent materials, which is not conducive to commercial development. Therefore, the hybrid WOLED produced by mixing blue fluorescent material and complementary color phosphorescent materials such as green, yellow, and red can effectively combine the advantages of all-fluorescent and all-phosphorescent WOLEDs with the help of a reasonable device structure and material system. , is a very promising high-efficiency and stable white light device for commercial products.
在杂化WOLED中,单线态激子和三线态激子可以相互淬灭,使器件的效率大大降低。借助于设计恰当的器件结构和合适的材料体系,来调节单线态激子和三线态激子,使单线态激子被蓝色荧光材料所利用产生蓝光,三线态激子被磷光材料所利用,每个组分都能够显示出各自的发光,进行了多色光谱的互补,得到白光发射。目前,虽然陆续有很多杂化WOLED的报道,但是器件的稳定性不好,效率偏低。此外,这些器件的结构一般比较复杂,制备工艺难度很高,重复性差,不利于商业应用。In hybrid WOLEDs, singlet excitons and triplet excitons can be mutually quenched, which greatly reduces the efficiency of the device. With the help of designing appropriate device structures and suitable material systems, singlet excitons and triplet excitons can be adjusted, so that singlet excitons are utilized by blue fluorescent materials to generate blue light, and triplet excitons are utilized by phosphorescent materials. Each component was able to exhibit its own luminescence, and the complementary polychromatic spectra were performed to obtain white light emission. At present, although there are many reports of hybrid WOLED, the stability of the device is not good and the efficiency is low. In addition, the structures of these devices are generally complex, the fabrication process is very difficult, and the repeatability is poor, which is not conducive to commercial applications.
因此,开发一种工艺简单、成本低且具有高效稳定的白光WOLED,对推动白光OLED的商业化进展具有重要意义。Therefore, developing a white light WOLED with simple process, low cost, high efficiency and stability is of great significance for promoting the commercialization of white light OLED.
发明内容SUMMARY OF THE INVENTION
为解决上述问题,本发明的目的是提供一种高效稳定的白光有机电致发光器件及其制备方法,通过利用常规的性能优良的聚集诱导发光材料作为蓝光层,高效率的热活化延迟荧光材料作为主体来敏化磷光客体材料,使单线态激子被蓝色荧光材料所利用产生蓝光,三线态激子被磷光材料所利用,从而提高激子利用率,提高器件性能。制备出器件结构和制作工艺简单、低成本、高效稳定的白光有机电致发光器件,利于商业化的应用。In order to solve the above problems, the purpose of the present invention is to provide a high-efficiency and stable white light organic electroluminescent device and a preparation method thereof. As the host to sensitize the phosphorescent guest material, the singlet excitons are utilized by the blue fluorescent material to generate blue light, and the triplet excitons are utilized by the phosphorescent material, thereby improving the exciton utilization rate and improving the device performance. A white light organic electroluminescence device with simple device structure and fabrication process, low cost, high efficiency and stability is prepared, which is beneficial to commercial application.
本发明所述的一种高效稳定的白光有机电致发光器件,由下至上依次为透明基底、阳极、空穴注入层、空穴传输层、激子阻挡层、发光层、电子传输层、电子注入层和阴极,其中,发光层为三层结构,由下至上依次是黄色磷光层、间隔层和非掺杂蓝色荧光层;所述的黄色磷光层由绿色热活化延迟荧光主体材料掺杂黄色磷光客体材料构成。The high-efficiency and stable white light organic electroluminescent device described in the present invention includes, from bottom to top, a transparent substrate, an anode, a hole injection layer, a hole transport layer, an exciton blocking layer, a light-emitting layer, an electron transport layer, and an electron transport layer. The injection layer and the cathode, wherein the light-emitting layer has a three-layer structure, and from bottom to top are a yellow phosphorescent layer, a spacer layer and an undoped blue fluorescent layer; the yellow phosphorescent layer is doped with a green thermally activated delayed fluorescent host material Yellow phosphorescent guest material.
在上述白光有机电致发光器件中,热活化延迟荧光主体材料具有很小的单线态和三线态能级差,在室温下就可以发生三线态激子到单线态的反向系间穿越,减少三线态激子的浓度,减缓TTA过程,减小效率滚降。在此白光器件中,单线态激子被蓝色荧光材料所利用产生蓝光,三线态激子被黄色磷光材料所利用产生黄光,黄光与蓝光发射互补形成白光,从而实现白光发射。In the above white light organic electroluminescence device, the thermally activated delayed fluorescence host material has a small energy level difference between the singlet state and the triplet state, and the reverse intersystem crossing of the triplet excitons to the singlet state can occur at room temperature, reducing the triplet state. The concentration of state excitons slows down the TTA process and reduces the efficiency roll-off. In this white light device, singlet excitons are utilized by blue fluorescent materials to generate blue light, triplet excitons are utilized by yellow phosphorescent materials to generate yellow light, and yellow light and blue light emission complement each other to form white light, thereby realizing white light emission.
进一步地,所述的黄色磷光层的厚度为0.1~30nm,间隔层的厚度为1~10nm,非掺杂蓝色荧光材料层的厚度为0.1~40nm,其余层的厚度范围≤40nm。Further, the thickness of the yellow phosphorescent layer is 0.1-30 nm, the thickness of the spacer layer is 1-10 nm, the thickness of the undoped blue fluorescent material layer is 0.1-40 nm, and the thickness of the remaining layers is ≤40 nm.
进一步地,所述的非掺杂蓝色荧光材料为N,N-二苯基-4-(10-(4-(1、2、2-三苯乙烯)苯基)蒽-9-基)苯胺(TPAATPE,CN109608403A),是优异的聚集诱导发光材料,具有很高的发光效率和良好的稳定性。Further, the non-doped blue fluorescent material is N,N-diphenyl-4-(10-(4-(1,2,2-triphenylene)phenyl)anthracene-9-yl) Aniline (TPAATPE, CN109608403A) is an excellent aggregation-induced luminescent material with high luminous efficiency and good stability.
进一步地,所述的间隔层材料是由空穴型4,4'-环己基二[N,N-二(4-甲基苯基)苯胺](TAPC)和电子型的双(2-(2-羟苯基)-吡啶)铍(Bepp2)中的至少一种组成。间隔层材料的三线态能级大于绿色热活化延迟荧光主体材料和黄色磷光客体材料,能够更好的阻止荧光材料和磷光材料之间的能量转移,有效的利用器件所产生的三线态激子和单线态激子,从而保证器件的高效率。Further, the spacer layer material is composed of hole-type 4,4'-cyclohexylbis[N,N-bis(4-methylphenyl)aniline] (TAPC) and electron-type bis(2-( At least one of 2-hydroxyphenyl)-pyridine) beryllium (Bepp 2 ). The triplet energy level of the spacer layer material is larger than that of the green thermally activated delayed fluorescence host material and the yellow phosphorescent guest material, which can better prevent the energy transfer between the fluorescent material and the phosphorescent material, and effectively utilize the triplet state excitons generated by the device. singlet excitons, thus ensuring high device efficiency.
进一步地,所述的间隔层材料可以是空穴型的TAPC或电子型的Bepp2,或两者任意比例的组合;本发明充分尝试了单独的TAPC、Bepp2和TAPC:Bepp2的质量用量比是3:7、5:5、7:3不同成分的间隔层对器件效果的影响。Further, the spacer layer material can be hole-type TAPC or electron-type Bepp 2 , or a combination of the two in any ratio; the present invention has fully tried the mass dosage of TAPC, Bepp 2 and TAPC: Bepp 2 alone The ratio is 3:7, 5:5, 7:3 the effect of different composition of the spacer layer on the device effect.
进一步地,所述的绿色热活化延迟荧光主体材料为10-(4-(二苯基硼)苯基)-10H-吩噻嗪(PTZMes2B,Front.Chem.2019,7,373,与传统母体材料相比,热活化延迟荧光材料具有很小的单线态和三线态能级差,在室温下就可以发生三线态激子到单线态的反向系间穿越,减少三线态激子的浓度,减缓TTA过程,减小效率滚降。另外,该材料具有优良的载流子传输能力,可以作为双极性传输的主体来敏化磷光材料;而且三线态能级大于红/黄色磷光客体材料的三线态能级,可以阻止客体到主体的能量回传。Further, the green thermally activated delayed fluorescence host material is 10-(4-(diphenylboron)phenyl)-10H-phenothiazine (PTZMes 2 B, Front.Chem.2019,7,373, which is the same as the traditional parent Compared with other materials, thermally activated delayed fluorescent materials have a small energy level difference between the singlet state and the triplet state, and the inverse intersystem crossing of triplet excitons to singlet states can occur at room temperature, reducing the concentration of triplet excitons and slowing down The TTA process reduces the efficiency roll-off. In addition, the material has excellent carrier transport capability and can be used as a host for ambipolar transport to sensitize phosphorescent materials; and the triplet energy level is larger than that of red/yellow phosphorescent guest materials. The state energy level, which can prevent the return of energy from the object to the host.
进一步地,所述的黄色磷光客体材料为(乙酰丙酮)二[2-(噻吩并[3,2-c]吡啶-4-基)苯基]铱(III)(PO-01),具有低的三线态级,可以更好的俘获器件中的三线态激子,从而提高器件效率;通过主客体掺杂技术制备出发光层,该发光层优选为主体不发光,电子和空穴在热活化延迟荧光母体材料复合产生激子被黄色磷光材料所利用产生黄光,黄光与蓝光发射互补形成白光,从而实现双色白光发射。Further, the yellow phosphorescent guest material is (acetylacetone)bis[2-(thieno[3,2-c]pyridin-4-yl)phenyl]iridium(III)(PO-01), which has low The triplet level can better capture the triplet excitons in the device, thereby improving the device efficiency; the light-emitting layer is prepared by the host-guest doping technology. The excitons generated by the composite of the delayed fluorescent matrix material are utilized by the yellow phosphorescent material to generate yellow light, and the yellow light and the blue light emission complement each other to form white light, thereby realizing dual-color white light emission.
进一步地,所述的黄色磷光客体材料的掺杂量为主体材料和客体材料质量和的0.1~30%,优选为1~20%。Further, the doping amount of the yellow phosphorescent guest material is 0.1-30% of the mass sum of the host material and the guest material, preferably 1-20%.
进一步地,所述的基底为透明的导电玻璃,阳极为铟锡氧化物(ITO),空穴注入层为2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂三亚苯(HATCN),空穴传输层为TAPC,激子阻挡层为三羟甲基氨基甲烷(4-咔唑-9-苯基)胺(TCTA)。Further, the substrate is transparent conductive glass, the anode is indium tin oxide (ITO), and the hole injection layer is 2,3,6,7,10,11-hexacyano-1,4,5, 8,9,12-hexaazatriphenylene (HATCN), the hole transport layer is TAPC, and the exciton blocking layer is tris(4-carbazole-9-phenyl)amine (TCTA).
进一步地,所述的阴极为Al薄膜,电子注入层为氟化锂(LiF),电子传输层为3,3”,5,5”-4(3-吡啶基)-1,1':3',1”-三联苯(BmPyPB)。Further, the cathode is an Al thin film, the electron injection layer is lithium fluoride (LiF), and the electron transport layer is 3,3",5,5"-4(3-pyridyl)-1,1':3 ',1"-terphenyl (BmPyPB).
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明的一种高效稳定的白光有机电致发光器件,选择性能优良的聚集诱导发光材料作为蓝光层,高效率的热活化延迟荧光材料作为主体,可以同时俘获单线态和三线态激子,来杂化磷光客体材料,使单线态激子被蓝色荧光材料所利用产生蓝光,三线态激子被磷光材料所利用,从而提高激子利用率,提高器件性能。制备出器件结构和制作工艺简单、低成本、高效稳定的白光有机电致发光器件,利于商业化的应用。In the high-efficiency and stable white light organic electroluminescent device of the present invention, an aggregation-induced luminescent material with excellent performance is selected as the blue light layer, and a high-efficiency thermally activated delayed fluorescent material is used as the main body, which can simultaneously capture singlet and triplet excitons to generate Hybridizing the phosphorescent guest material enables singlet excitons to be utilized by blue fluorescent materials to generate blue light, and triplet excitons to be utilized by phosphorescent materials, thereby improving exciton utilization and improving device performance. A white light organic electroluminescence device with simple device structure and fabrication process, low cost, high efficiency and stability is prepared, which is beneficial to commercial application.
此外,还对该白光有机电致发光器件进行了结构和材料的优化,制备出器件结构和制作工艺简单,低成本,高效稳定的白光有机电致发光器件。In addition, the structure and material of the white light organic electroluminescence device are also optimized, and a white light organic electroluminescence device with simple device structure and fabrication process, low cost, high efficiency and stability is prepared.
本发明所提及原料的均为市售或者按照已知文献或专利进行制备,分子结构式如下所示:The raw materials mentioned in the present invention are all commercially available or prepared according to known documents or patents, and the molecular structural formula is as follows:
附图说明Description of drawings
图1为实施例1~5的白光有机电致发光器件的结构示意图;1 is a schematic structural diagram of the white light organic electroluminescent devices of Examples 1 to 5;
图2为实施例1的白光有机电致发光器件的性能曲线图;Fig. 2 is the performance curve diagram of the white light organic electroluminescent device of embodiment 1;
图3为实施例1的白光有机电致发光器件的不同亮度下的性能曲线图;Fig. 3 is the performance curve diagram of the white light organic electroluminescent device of embodiment 1 under different brightness;
图4为实施例2的白光有机电致发光器件的性能曲线图;Fig. 4 is the performance curve diagram of the white light organic electroluminescent device of embodiment 2;
图5为实施例3的白光有机电致发光器件的性能曲线图;Fig. 5 is the performance curve diagram of the white light organic electroluminescent device of embodiment 3;
图6为实施例4的黄-白光有机电致发光器件的性能曲线图;Fig. 6 is the performance curve diagram of the yellow-white light organic electroluminescent device of embodiment 4;
图7为实施例5的黄光有机电致发光器件的性能曲线图;7 is a performance curve diagram of the yellow light organic electroluminescent device of Example 5;
具体实施方式Detailed ways
下面结合附图对本发明作进一步描述,以便于所属技术领域的人员对本实用新型的理解。显然,所描述的实施例仅仅是本实验的一部分,并不是全部的实施例,所属领域的技术熟练人员,根据上述发明内容对本发明做出的非本质性修改、等同替换和改进等,均应包含在本发明的保护范围之内。下述所提及的原料均为市售或者按照已知文献或专利进行制备,未提及的工艺步骤和制备方法均为本领域技术人员所熟知的工艺步骤和制备方法。The present invention will be further described below with reference to the accompanying drawings, so as to facilitate the understanding of the present invention by those skilled in the art. Obviously, the described embodiments are only a part of this experiment, not all of the embodiments. Those skilled in the art, based on the above-mentioned content of the invention, make non-essential modifications, equivalent replacements and improvements to the present invention, etc., should be Included in the protection scope of the present invention. The raw materials mentioned below are all commercially available or prepared according to known documents or patents, and the unmentioned process steps and preparation methods are those well known to those skilled in the art.
实施例1Example 1
一种白光有机电致发光器件W1,该器件W1的结构为:ITO/HATCN(5nm)/TAPC(35nm)/TCTA(5nm)/PTZMes2B:PO-01(12nm,10%)/TAPC:Bepp2(4nm,5:5)/TPAATPE(8nm)/BmPyPB(40nm)/LiF(1nm)/Al。A white light organic electroluminescence device W1, the structure of the device W1 is: ITO/HATCN(5nm)/TAPC(35nm)/TCTA(5nm)/PTZMes 2 B:PO-01(12nm, 10%)/TAPC: Bepp 2 (4 nm, 5:5)/TPAATPE (8 nm)/BmPyPB (40 nm)/LiF (1 nm)/Al.
首先,选择了间隔层TAPC:Bepp2的质量掺杂浓度比为5:5,即间隔层中空穴型的TAPC和电子型的Bepp2各为50%。如图1所示,该器件W1的结构自下而上移次由以下功能层叠加:基底、阳极、空穴注入层、空穴传输层、激子阻挡层、黄色磷光层、间隔层、蓝色荧光层、电子传输层、电子注入层和阴极。制备方法如下:First, the mass doping concentration ratio of TAPC:Bepp 2 in the spacer layer is selected to be 5:5, that is, the hole-type TAPC and the electron-type Bepp 2 in the spacer layer are each 50%. As shown in Figure 1, the structure of the device W1 is stacked from bottom to top by the following functional layers: substrate, anode, hole injection layer, hole transport layer, exciton blocking layer, yellow phosphorescent layer, spacer layer, blue Color phosphor layer, electron transport layer, electron injection layer and cathode. The preparation method is as follows:
在基底导电玻璃上以溅射方式制备ITO薄板作为阳极;依次将ITO导电玻璃用去离子水,异丙醇,丙酮,甲苯,丙酮,异丙醇在超声浴中各自清洗20分钟,并于烘箱中烘干备用。在紫外臭氧清洗机中对ITO玻璃表面处理40分钟后,将其移入真空蒸镀设备中;在阳极ITO导电玻璃上,真空蒸镀空穴注入层HATCN,厚度为5nm;在HATCN上,真空蒸镀空穴传输层TAPC,厚度为35nm;在TAPC上,蒸镀激子阻挡层TCTA,厚度为5nm;在TCTA之上,蒸镀发光层:发光层为黄色磷光层PTZMes2B:PO-01(12nm,PTZMes2B是主体荧光材料,PO-01为客体磷光材料,所述的客体材料所占的质量掺杂浓度为10%)、间隔层TAPC:Bepp2(4nm,初步的选择TAPC:Bepp2的质量掺杂浓度比为5:5)、非掺杂的蓝光荧光层TPAATPE(8nm);在发光层之上,蒸镀电子传输层BmPyPB,厚度为40nm;在BmPyPB之上,蒸镀电子注入层LiF,厚度为1nm;在LiF之上,蒸镀阴极Al,厚度为100nm。ITO sheets were prepared by sputtering on the base conductive glass as the anode; the ITO conductive glass was successively cleaned with deionized water, isopropanol, acetone, toluene, acetone, and isopropanol in an ultrasonic bath for 20 minutes, and placed in an oven. Dry in medium. After 40 minutes of surface treatment on the ITO glass in a UV-ozone cleaning machine, it was moved into a vacuum evaporation device; on the anode ITO conductive glass, a hole injection layer HATCN was vacuum-evaporated with a thickness of 5 nm; on the HATCN, vacuum evaporation A hole transport layer TAPC was deposited with a thickness of 35nm; on TAPC, an exciton blocking layer TCTA was deposited with a thickness of 5nm; on TCTA, a luminescent layer was deposited: the luminescent layer was a yellow phosphorescent layer PTZMes 2 B: PO-01 (12nm, PTZMes 2 B is a host fluorescent material, PO-01 is a guest phosphorescent material, and the mass doping concentration of the guest material is 10%), spacer layer TAPC: Bepp 2 (4nm, preliminary selection TAPC: The mass doping concentration ratio of Bepp 2 is 5:5), the undoped blue fluorescent layer TPAATPE (8nm); on the light-emitting layer, the electron transport layer BmPyPB is vapor-deposited with a thickness of 40 nm; on the BmPyPB, vapor-deposited The electron injection layer LiF has a thickness of 1 nm; on the LiF, the cathode Al is vapor-deposited with a thickness of 100 nm.
对上述制备得到的器件W1的性能进行检测,图2为本实施例白光有机电致发光器件W1的性能图。从图中可以看出,当间隔层TAPC:Bepp2的质量比为5:5时,器件的效率很高,最大的外量子效率(EQE)高到25.2%,CIE坐标为(0.44,0.44),这相对于目前报道的白光电致发光器件来说,是非常高效的。而且,器件的稳定性很好,当亮度增加到1000cd/m2时,器件的效率仅仅下降了10%。此外如图3所示,当亮度从384cd/m2增加到5211cd/m2时,CIE坐标仅仅从(0.44,0.44)变到(0.43,0.43),说明器件具有很高的稳定性。The performance of the device W1 prepared above is tested, and FIG. 2 is a performance diagram of the white light organic electroluminescence device W1 of this embodiment. It can be seen from the figure that when the mass ratio of the spacer layer TAPC:Bepp 2 is 5:5, the efficiency of the device is very high, the maximum external quantum efficiency (EQE) is as high as 25.2%, and the CIE coordinates are (0.44, 0.44) , which is very efficient compared to the white light electroluminescent devices reported so far. Moreover, the stability of the device is very good, when the brightness is increased to 1000cd/ m2 , the efficiency of the device only drops by 10%. In addition, as shown in Figure 3, when the brightness increases from 384cd/m 2 to 5211cd/m 2 , the CIE coordinates only change from (0.44, 0.44) to (0.43, 0.43), indicating that the device has high stability.
实施例2Example 2
保持白光器件W1的器件结构和制备材料不变,改变间隔层TAPC:Bepp2的质量比,制备了白光器件W2,该器件的结构为:ITO/HATCN(5nm)/TAPC(35nm)/TCTA(5nm)/PTZMes2B:PO-01(12nm,10%)/TAPC:Bepp2(4nm,7:3)/TPAATPE(8nm)/BmPyPB(40nm)/LiF(1nm)/Al。Keeping the device structure and preparation materials of the white light device W1 unchanged, and changing the mass ratio of the spacer layer TAPC:Bepp 2 , the white light device W2 was prepared. The structure of the device is: ITO/HATCN(5nm)/TAPC(35nm)/TCTA( 5nm)/ PTZMes2B :PO-01(12nm, 10%)/TAPC: Bepp2 (4nm, 7:3)/TPAATPE(8nm)/BmPyPB(40nm)/LiF(1nm)/Al.
图4为本实施例白光有机电致发光器件W2的性能图。相比于器件W1,本器件保证PO-01所占PTZMes2B+PO-01的质量掺杂浓度为10%不变,减少了电子传输层Bepp2的质量,当TAPC:Bepp2的质量比为7:3时,间隔层的电子迁移能力下降,使激子的复合区域由黄光层移向蓝光层,使三线态激子淬灭,器件的效率有所下降,最大的EQE达到24.1%,CIE坐标为(0.43,0.43)。FIG. 4 is a performance diagram of the white light organic electroluminescent device W2 of this embodiment. Compared with device W1, this device ensures that the mass doping concentration of PTZMes 2 B+PO-01 occupied by PO-01 remains unchanged at 10%, which reduces the mass of the electron transport layer Bepp 2. When the mass ratio of TAPC: Bepp 2 When the ratio is 7:3, the electron migration ability of the spacer layer decreases, so that the recombination region of excitons moves from the yellow light layer to the blue light layer, quenching the triplet excitons, and the efficiency of the device decreases, and the maximum EQE reaches 24.1% , the CIE coordinates are (0.43, 0.43).
实施例3Example 3
保持白光器件W1的器件结构和制备材料不变,继续改变间隔层TAPC:Bepp2的质量掺杂浓度比,制备了白光器件W3,该器件的结构为:ITO/HATCN(5nm)/TAPC(35nm)/TCTA(5nm)/PTZMes2B:PO-01(12nm,10%)/TAPC:Bepp2(4nm,1:0)/TPAATPE(8nm)/BmPyPB(40nm)/LiF(1nm)/Al。Keeping the device structure and preparation materials of the white light device W1 unchanged, and continuing to change the mass doping concentration ratio of the spacer layer TAPC:Bepp 2 , the white light device W3 was prepared. The structure of the device is: ITO/HATCN(5nm)/TAPC(35nm) )/TCTA(5nm)/ PTZMes2B :PO-01(12nm,10%)/TAPC: Bepp2 (4nm,1:0)/TPAATPE(8nm)/BmPyPB(40nm)/LiF(1nm)/Al.
图5为本实施例白光有机电致发光器件W3的性能图。相比于器件W1,本器件保证PO-01所占PTZMes2B+PO-01的质量掺杂浓度为10%不变,继续减少了电子传输层Bepp2的质量,当TAPC:Bepp2的质量比为1:0时,即间隔层全是由空穴型的TAPC组成。间隔层的电子迁移能力很弱,使激子的复合区域由黄光层继续移向蓝光层,使三线态激子淬灭严重,器件的效率有所下降,最大的EQE仅有17.1%,CIE坐标为(0.41,0.41)。但是在照明相关亮度1000cd m-2下,器件的EQE仍然保持在16.8%,几乎没有衰减,说明器件仍然具有很高的稳定性。FIG. 5 is a performance diagram of the white light organic electroluminescent device W3 of this embodiment. Compared with device W1, this device ensures that the mass doping concentration of PTZMes 2 B+PO-01 occupied by PO-01 remains unchanged at 10%, which continues to reduce the mass of the electron transport layer Bepp 2. When TAPC: the mass of Bepp 2 When the ratio is 1:0, that is, the spacer layer is all composed of hole-type TAPC. The electron migration ability of the spacer layer is very weak, so that the recombination area of the excitons continues to move from the yellow light layer to the blue light layer, which seriously quenches the triplet excitons and reduces the efficiency of the device. The maximum EQE is only 17.1%, and the CIE The coordinates are (0.41, 0.41). However, under the illumination-related luminance of 1000cd m -2 , the EQE of the device remains at 16.8% with almost no attenuation, indicating that the device still has high stability.
实施例4Example 4
保持白光器件W1的器件结构和制备材料不变,继续改变间隔层TAPC:Bepp2的质量掺杂浓度比,制备了黄-白光器件W4,该器件的结构为:ITO/HATCN(5nm)/TAPC(35nm)/TCTA(5nm)/PTZMes2B:PO-01(12nm,10%)/TAPC:Bepp2(4nm,3:7)/TPAATPE(8nm)/BmPyPB(40nm)/LiF(1nm)/Al。Keeping the device structure and preparation materials of the white light device W1 unchanged, and continuing to change the mass doping concentration ratio of the spacer layer TAPC:Bepp 2 , the yellow-white light device W4 was prepared. The structure of the device is: ITO/HATCN(5nm)/TAPC (35nm)/TCTA(5nm)/PTZMes 2 B:PO-01(12nm,10%)/TAPC:Bepp 2 (4nm,3:7)/TPAATPE(8nm)/BmPyPB(40nm)/LiF(1nm)/ Al.
如图6所示,当TAPC:Bepp2的质量掺杂浓度比为3:7时,由于TAPC的减少,间隔层的空穴传输能力减弱,使得电子更容易到达黄光层,可以实现激子的充分利用,使得器件的效率提升,最大的EQE达到25.8%,但是器件的CIE坐标在(0.48,0.47),已经在黄-白光区域了。As shown in Fig. 6, when the mass doping concentration ratio of TAPC:Bepp 2 is 3:7, due to the reduction of TAPC, the hole transport ability of the spacer layer is weakened, making it easier for electrons to reach the yellow light layer, and excitons can be realized. The full utilization of the device improves the efficiency of the device, and the maximum EQE reaches 25.8%, but the CIE coordinates of the device are at (0.48, 0.47), which is already in the yellow-white light region.
实施例5Example 5
保持白光器件W1的器件结构和制备材料不变,继续改变间隔层TAPC:Bepp2的质量比,制备了黄光器件W5,该器件的结构为:ITO/HATCN(5nm)/TAPC(35nm)/TCTA(5nm)/PTZMes2B:PO-01(12nm,10%)/TAPC:Bepp2(4nm,0:1)/TPAATPE(8nm)/BmPyPB(40nm)/LiF(1nm)/Al。Keeping the device structure and preparation materials of the white light device W1 unchanged, and continuing to change the mass ratio of the spacer layer TAPC:Bepp 2 , the yellow light device W5 was prepared. The structure of the device is: ITO/HATCN(5nm)/TAPC(35nm)/ TCTA(5nm)/ PTZMes2B :PO-01(12nm,10%)/TAPC: Bepp2 (4nm,0:1)/TPAATPE(8nm)/BmPyPB(40nm)/LiF(1nm)/Al.
如图7所示,由于间隔层中全是Bepp2,使得三线态激子全部到达了黄光层,造成蓝光成分几乎没有,CIE坐标为(0.49,0.49),已经偏离了白光区域,但是器件的效率达到最高,EQE为27.1%。As shown in Figure 7, since the spacer layer is full of Bepp 2 , all triplet excitons reach the yellow light layer, resulting in almost no blue light component. The CIE coordinates are (0.49, 0.49), which has deviated from the white light region, but the device The efficiency reached the highest with an EQE of 27.1%.
实施例4和实施例5制备得到的器件,几乎只有黄光产生,没有蓝光产生,因而器件不属于白光器件。综上,TAPC占TAPC和Bepp2质量和的50~100%时能够制备得到本发明所述器件。For the devices prepared in Examples 4 and 5, almost only yellow light is produced, and no blue light is produced, so the devices do not belong to white light devices. In conclusion, when TAPC accounts for 50-100% of the mass sum of TAPC and Bepp 2 , the device of the present invention can be prepared.
本发明的所有实施例的器件详细电致发光性能数据列于表1中。Detailed electroluminescence performance data for the devices of all examples of the present invention are listed in Table 1.
表1:器5件W1~W6的电致发光性能数据Table 1: Electroluminescence performance data of 5 devices W1~W6
上述实施例为本发明的优选实施例,所属领域的技术熟练人员,在不脱离本发明技术原理的前提下,做出的非本质性修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, and those skilled in the art, without departing from the technical principles of the present invention, make non-essential modifications, equivalent replacements and improvements, etc., should be included in the present invention. within the scope of protection.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910634139.4A CN110335954B (en) | 2019-07-15 | 2019-07-15 | Efficient and stable white light organic electroluminescent device and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910634139.4A CN110335954B (en) | 2019-07-15 | 2019-07-15 | Efficient and stable white light organic electroluminescent device and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110335954A CN110335954A (en) | 2019-10-15 |
CN110335954B true CN110335954B (en) | 2020-10-27 |
Family
ID=68145129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910634139.4A Active CN110335954B (en) | 2019-07-15 | 2019-07-15 | Efficient and stable white light organic electroluminescent device and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110335954B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113013342A (en) * | 2019-12-20 | 2021-06-22 | 吉林师范大学 | Double-fluorescence-doped single-luminescent-layer efficient white-light organic electroluminescent device |
CN111129331B (en) * | 2019-12-30 | 2022-07-26 | Tcl华星光电技术有限公司 | Light-emitting device structure, light-emitting device structure manufacturing method and display panel |
CN113480493B (en) * | 2021-05-20 | 2024-01-02 | 南京邮电大学 | Organic yellow fluorescence excited proton transfer material and OLED device thereof |
CN113451523B (en) * | 2021-07-05 | 2023-04-18 | 太原理工大学 | White light organic light emitting diode with full fluorescence emission |
CN115802780B (en) * | 2022-11-23 | 2024-09-27 | 华南理工大学 | AIE blue fluorescent organic light emitting diode and its light emitting layer |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102097600A (en) * | 2010-12-21 | 2011-06-15 | 上海纳米技术及应用国家工程研究中心有限公司 | Preparation method of color-tunable mixed white organic luminescent device |
CN102136550B (en) * | 2011-01-27 | 2013-04-24 | 电子科技大学 | White light organic electroluminescent device and preparation method thereof |
CN102751449B (en) * | 2012-07-23 | 2015-04-15 | 中国科学院长春应用化学研究所 | Organic light emitting diode |
CN105895810B (en) * | 2015-01-26 | 2018-11-30 | 北京维信诺科技有限公司 | A kind of thermal activation sensitized phosphorescence organic electroluminescence device |
CN106920883B (en) * | 2015-12-25 | 2019-01-08 | 昆山工研院新型平板显示技术中心有限公司 | A kind of organic electroluminescence device |
CN105449109B (en) * | 2015-12-28 | 2017-07-11 | 工业和信息化部电子第五研究所 | Organic electroluminescence device of simulated solar irradiation and preparation method thereof |
CN106410053B (en) * | 2016-10-31 | 2019-01-18 | 昆山工研院新型平板显示技术中心有限公司 | A kind of white light organic electroluminescent device |
CN107068882B (en) * | 2017-03-03 | 2019-11-08 | 广东工业大学 | A white organic electroluminescent device |
CN107256927B (en) * | 2017-06-13 | 2020-01-24 | 上海天马有机发光显示技术有限公司 | Organic Light Emitting Devices and Display Devices |
-
2019
- 2019-07-15 CN CN201910634139.4A patent/CN110335954B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110335954A (en) | 2019-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110335954B (en) | Efficient and stable white light organic electroluminescent device and preparation method thereof | |
TWI673894B (en) | Organic electroluminescent device | |
CN110190200B (en) | Efficient pure white light organic electroluminescent device with high color rendering index and preparation method thereof | |
CN109378392B (en) | Organic electroluminescent device and display device | |
CN107221603A (en) | A kind of efficient undoped white organic light emitting device and preparation method thereof | |
CN108832008B (en) | Application of exciplex in organic light-emitting diode | |
CN109817818A (en) | A kind of organic electroluminescence device and display device | |
CN106848084A (en) | A kind of OLED display panel, preparation method and the electronic equipment containing it | |
CN105322099B (en) | A kind of full fluorescence white organic LED and preparation method thereof | |
CN106803542A (en) | A kind of blue organic electroluminescent device and preparation method thereof | |
CN112467058B (en) | A ternary exciplex composite material host and its OLED device preparation | |
US10069096B1 (en) | WOLED device | |
CN111416049A (en) | The application of dual exciplex host materials in the preparation of phosphorescent OLED devices | |
CN104518121B (en) | An organic electroluminescent device | |
KR20150077587A (en) | Organic electro luminescence device | |
CN103730590A (en) | Organic electroluminescence device and manufacturing method of organic electroluminescence device | |
CN101452999B (en) | A white light organic electroluminescent devices | |
CN101651184B (en) | Organic electroluminescence device and preparation method thereof | |
CN106531897A (en) | Exciplex-based organic light-emitting device and preparation method thereof | |
CN111416047B (en) | Fluorescence/phosphorescence mixed white light organic light emitting diode and preparation method thereof | |
CN108807710A (en) | Undoped organic electroluminescence device and the preparation method of connecting with the complementary white light of doping | |
CN105870350B (en) | Organic luminescent device | |
WO2021238448A1 (en) | Organic electroluminescent device and array substrate | |
CN103730588B (en) | A kind of laminated organic electroluminescent device based on monolayer luminescence unit | |
CN101170852A (en) | An organic electroluminescent device with ultra-thin layer structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |