CN112461152A - Large-scale industrial structure deformation monitoring and analyzing method - Google Patents
Large-scale industrial structure deformation monitoring and analyzing method Download PDFInfo
- Publication number
- CN112461152A CN112461152A CN202011338217.5A CN202011338217A CN112461152A CN 112461152 A CN112461152 A CN 112461152A CN 202011338217 A CN202011338217 A CN 202011338217A CN 112461152 A CN112461152 A CN 112461152A
- Authority
- CN
- China
- Prior art keywords
- camera
- platform
- measuring
- establish
- scale industrial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000012544 monitoring process Methods 0.000 title claims abstract description 32
- 238000005259 measurement Methods 0.000 claims abstract description 61
- 238000012546 transfer Methods 0.000 claims abstract description 22
- 238000004458 analytical method Methods 0.000 claims abstract description 16
- 230000008859 change Effects 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims description 11
- 238000013519 translation Methods 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 235000015842 Hesperis Nutrition 0.000 description 2
- 235000012633 Iberis amara Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012854 evaluation process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
一种大型工业结构形变监测与分析方法,属于大型工业结构形变监测领域,其特征在于:搭建测量平台并建立所搭建的测量平台的空间直角坐标系;所述测量平台内设置有运动平台;所述运动平台上设置有像机;所述像机包括测量像机和传递像机;求解测量平台的运动变化参数;求解测量像机的外参数;求解待测点坐标的及确定大型工业结构的形变大小;最后对大型工业结构进行安全性评估。本方法能够以较少的测量像机实现较低的测量费用;同时基于证据推理的安全性评估方法可以实现评估过程的透明化,并能确保评估结果具有可解释性。
A large-scale industrial structure deformation monitoring and analysis method belongs to the field of large-scale industrial structure deformation monitoring, and is characterized in that: a measuring platform is built and a space rectangular coordinate system of the built measuring platform is established; The moving platform is provided with a camera; the camera includes a measuring camera and a transfer camera; solving the motion change parameters of the measuring platform; solving the external parameters of the measuring camera; solving the coordinates of the point to be measured and determining the large-scale industrial structure Deformation size; finally, safety assessment of large industrial structures. The method can achieve lower measurement costs with fewer measurement cameras; meanwhile, the safety assessment method based on evidence-based reasoning can realize the transparency of the assessment process and ensure the interpretability of the assessment results.
Description
技术领域technical field
本发明属于大型工业结构形变监测领域,尤其涉及一种大型工业结构形变 监测与分析方法。The invention belongs to the field of large-scale industrial structure deformation monitoring, and in particular relates to a large-scale industrial structure deformation monitoring and analysis method.
背景技术Background technique
当前,各国加快了对外太空的探索步伐,运载火箭、航天飞机、太空站、 人造卫星等大型工业结构不断涌现。例如,作为深空探测的重要载体,大型液体 运载火箭越来越受到关注,各国发射火箭的频次也逐年提高。然而,在新兴技术 发展的同时,航空航天领域发生的事故也有所增加。缺乏可靠的安全监测是引发 事故的重要原因之一。作为安全监测的重要指标之一,结构形变频发于大型工业 结构,其主要来源于结构内部材料的挤压作用和外界环境的振动。At present, countries have accelerated the pace of exploration in outer space, and large-scale industrial structures such as launch vehicles, space shuttles, space stations, and artificial satellites are constantly emerging. For example, as an important carrier for deep space exploration, large liquid carrier rockets have attracted more and more attention, and the frequency of launching rockets by countries has also increased year by year. However, in parallel with the development of emerging technologies, accidents in the aerospace sector have also increased. Lack of reliable safety monitoring is one of the important reasons for accidents. As one of the important indicators of safety monitoring, structural deformation frequently occurs in large industrial structures, which mainly comes from the extrusion of the internal materials of the structure and the vibration of the external environment.
从大型工业结构形变监测技术的研究现状来看,目前的主要方法有:基于 声发射的方法、基于超声图像处理的方法、基于光纤光栅传感的方法和基于摄像 /景象测量的方法。其中,基于声发射的方法可以有效地定位形变,却无法识别 其大小和程度;基于超声图像处理的方法可以有效识别形变大小和程度,但也存 在定位形变时效率偏低等不足;基于光纤光栅传感的方法可以有效获取形变的位 置和程度,但是预埋传感器会对结构体的力学特性等产生影响;基于光学摄像/ 景象测量的方法具有非接触式、高精度在线测量和操作方便等优势。Judging from the research status of large-scale industrial structural deformation monitoring technology, the current main methods are: methods based on acoustic emission, methods based on ultrasonic image processing, methods based on fiber grating sensing, and methods based on camera/scene measurement. Among them, the method based on acoustic emission can effectively locate the deformation, but cannot identify its size and degree; the method based on ultrasonic image processing can effectively identify the size and degree of deformation, but there are also shortcomings such as low efficiency in locating the deformation; based on fiber grating The sensing method can effectively obtain the position and degree of deformation, but the embedded sensor will have an impact on the mechanical properties of the structure; the method based on optical camera/scene measurement has the advantages of non-contact, high-precision online measurement and convenient operation. .
在获取形变量之后,需要进一步地对大型工业结构进行安全性评估。然而, 由于大型工业结构的复杂性和内部仪器设备的多样性,同时不同设备之间存在一 定的电磁干扰和耦合作用,基于解析模型的安全性评估方法难以实现准确的机理 分析,无法满足精确建模的要求。此外,传统的基于数据驱动的神经网络方法虽 然可以避免建模带来的复杂问题,但其评估过程不具有可解释性和可追溯性,失 去了机理分析和部分监测参数的物理意义,结果难以令人信服。After obtaining the deformation variables, further safety assessment of large-scale industrial structures is required. However, due to the complexity of large-scale industrial structures, the diversity of internal instruments and equipment, and the existence of certain electromagnetic interference and coupling between different equipment, the analytical model-based safety assessment method is difficult to achieve accurate mechanism analysis and cannot meet the requirements of accurate construction. mold requirements. In addition, although the traditional data-driven neural network method can avoid the complex problems caused by modeling, its evaluation process is not interpretable and traceable, losing the physical meaning of mechanism analysis and some monitoring parameters, and the results are difficult to Convincing.
发明内容SUMMARY OF THE INVENTION
本发明旨在解决上述问题,提供一种实现对大型工业结构的形变准确定位 和识别,可满足对结构形变监测的高可靠和高精度要求,同时可满足对安全性评 估有效且可解释的大型工业结构形变监测与分析方法。The present invention aims to solve the above-mentioned problems, and provides a method for realizing accurate positioning and identification of the deformation of large-scale industrial structures, which can meet the high reliability and high-precision requirements for structural deformation monitoring, and can meet the requirements of effective and interpretable large-scale industrial structure deformation monitoring. Industrial structural deformation monitoring and analysis methods.
本发明所述大型工业结构形变监测与分析方法,搭建测量平台并建立所搭 建的测量平台的空间直角坐标系;所述测量平台内设置有运动平台;所述运动平 台上设置有像机;所述像机包括测量像机和传递像机;求解测量平台的运动变化 参数;求解测量像机的外参数;求解待测点坐标的及确定大型工业结构的形变大 小;最后对大型工业结构进行安全性评估。The large-scale industrial structure deformation monitoring and analysis method of the present invention builds a measuring platform and establishes a space rectangular coordinate system of the built measuring platform; a moving platform is arranged in the measuring platform; a camera is arranged on the moving platform; The camera includes a measuring camera and a transfer camera; solve the motion change parameters of the measuring platform; solve the external parameters of the measuring camera; solve the coordinates of the point to be measured and determine the deformation size of the large industrial structure; Sexual assessment.
优选地,本发明所述大型工业结构形变监测与分析方法,所述搭建测量平 台并建立所搭建的测量平台的空间直角坐标系,包括:Preferably, the large-scale industrial structure deformation monitoring and analysis method of the present invention, the described building a measuring platform and establishing the space rectangular coordinate system of the built measuring platform, including:
选取一运动平台,依次将测量像机和传递像机固定在选定的运行平台上,同时使 运动平台绕被监测的大型工业结构表面运动;Select a moving platform, fix the measuring camera and the transfer camera on the selected running platform in turn, and at the same time make the moving platform move around the surface of the large industrial structure to be monitored;
选取空间原点,建立世界坐标系O-XYZ,同时根据测量像机在不同时刻ti和ti+1的位置,建立两组运动的测量像机坐标系OD,i-XD,iYD,iZD,i与 OD,i+1-XD,i+1YD,i+1ZD,i+1,并建立传递像机坐标系OT-XTYTZT与运动平台坐标系 OP-XPYPZP。Select the space origin, establish the world coordinate system O-XYZ, and at the same time establish two sets of moving measuring camera coordinate systems O D,i -X D,i Y according to the positions of the measuring cameras at different times t i and t i+1 D,i Z D,i and O D,i+1 -X D,i+1 Y D,i+1 Z D,i+1 , and establish the transfer camera coordinate system O T -X T Y T Z T with the motion platform coordinate system OP -X P Y P Z P .
优选地,本发明所述大型工业结构形变监测与分析方法,所述求解测量平 台的运动变化参数,包括:Preferably, the large-scale industrial structure deformation monitoring and analysis method of the present invention, the motion variation parameters of the solution measurement platform, including:
选取测量点S(X,Y,Z)及对应的像点坐标si(xi,yi)、si+1(xi+1,yi+1),建立测量点S与 像点si、si+1对应的齐次坐标关系;Select the measurement point S (X, Y, Z) and the corresponding image point coordinates s i (x i , y i ), s i+1 (x i+1 , y i+1 ) to establish the measurement point S and the image point Homogeneous coordinate relationship corresponding to s i and s i+1 ;
分别建立P在O-XYZ系与OP-XPYPZP系之间的关系,及其在OP-XPYPZP系与 OT-XTYTZT系之间的关系,进一步建立S在O-XYZ系与OT-XTYTZT系之间的 关系;Establish the relationship between P in O-XYZ system and O P -X P Y P Z P system, and between O P -X P Y P Z P system and O T- X T Y T Z T system , and further establish the relationship between S in the O-XYZ system and the O T -X T Y T Z T system;
采用传递像机实时拍摄人工标识点,根据标识点及对应像点的关系,求得 O-XYZ系转换到OT-XTYTZT系下的旋转矩阵与平移向量;Using the transfer camera to shoot the artificial marking points in real time, according to the relationship between the marking points and the corresponding image points, the rotation matrix and translation vector of the O-XYZ system converted to the O T -X T Y T Z T system are obtained;
建立ti和ti+1时刻O-XYZ系与OT-XTYTZT系的转换关系,进而求解平台在ti和 ti+1时刻之间的运动变化参数。Establish the conversion relationship between the O-XYZ system and the O T -X T Y T Z T system at the time t i and
优选地,本发明所述大型工业结构形变监测与分析方法,所述求解测量像 机的外参数,包括:分别建立ti和ti+1时刻OP-XPYPZP系与OD,i-XD,iYD,iZD,i系、OD,i+1-XD,i+1YD,i+1ZD,i+1系的齐次坐标关系;Preferably, in the method for monitoring and analyzing the deformation of large industrial structures according to the present invention, the solving of the external parameters of the measuring camera includes: respectively establishing the O P - X P Y P Z P system and O at t i and t i+1 times Homogeneous coordinate relationship of D,i -X D,i Y D,i Z D,i system, O D,i+1 -X D,i+1 Y D,i+1 Z D,i+1 system;
建立不同时刻O-XYZ系与OD,i-XD,iYD,iZD,i系之间的关系;Establish the relationship between the O-XYZ system and the O D,i -X D,i Y D,i Z D,i system at different times;
选定初始时刻测量像机坐标系OD,0-XD,0YD,0ZD,0,通过迭代得到任意时刻 OD,i-XD,iYD, iZD,i系相对于O-XYZ系的位置及姿态关系,即测量像机的外参数。Select the initial moment to measure the camera coordinate system O D, 0 -X D, 0 Y D, 0 Z D, 0 , and obtain any moment O D, i -X D, i Y D, i Z D, i system through iteration The relationship between the position and attitude relative to the O-XYZ system, that is, the external parameters of the camera are measured.
优选地,本发明所述大型工业结构形变监测与分析方法,所述求解待测点 坐标的及确定大型工业结构的形变大小,包括:建立测量点S在ti时刻的位置方 程;建立初始时刻测量像机的位置方程,进而求得测量点S的世界坐标;重复上 述测量步骤,得到在不同时刻下的不同位置处监测点的世界坐标;根据监测点的 测量位置和标识点的实际位置,求解对应的形变量。Preferably, in the method for monitoring and analyzing the deformation of a large-scale industrial structure according to the present invention, the solving of the coordinates of the point to be measured and the determination of the deformation of the large-scale industrial structure include: establishing a position equation of the measurement point S at time t i ; establishing an initial time Measure the position equation of the camera, and then obtain the world coordinates of the measurement point S; repeat the above measurement steps to obtain the world coordinates of the monitoring points at different positions at different times; Solve for the corresponding deformation variable.
优选地,本发明所述大型工业结构形变监测与分析方法,所述对大型工业 结构进行安全性评估,包括:基于变异系数法确定形变权重;基于距离的形变计 算可靠度;基于证据推理评估大型工业结构的安全性。Preferably, in the method for monitoring and analyzing the deformation of large industrial structures of the present invention, the safety assessment for large industrial structures includes: determining deformation weights based on the coefficient of variation method; calculating reliability based on distances; Security of industrial structures.
本发明所述大型工业结构形变监测与分析方法,可实现对大型工业结构形 变的非接触式和高精度测量;移动式摄像测量过程只需在初始时刻对传递像机的 外参数进行一次标定,且能将所有测量结果转换到同一坐标系下。本发明所述方 法适合大型工业结构表面大面积区域的形变监测,能够以较少的测量像机实现较 低的测量费用;同时基于证据推理的安全性评估方法可以实现评估过程的透明化, 并能确保评估结果具有可解释性。The large-scale industrial structure deformation monitoring and analysis method of the invention can realize the non-contact and high-precision measurement of the large-scale industrial structure deformation; the mobile camera measurement process only needs to calibrate the external parameters of the transfer camera once at the initial moment, And can convert all measurement results to the same coordinate system. The method of the invention is suitable for deformation monitoring of large-scale industrial structure surface area, and can achieve lower measurement costs with fewer measurement cameras; at the same time, the safety evaluation method based on evidence reasoning can realize the transparency of the evaluation process, and It ensures that the evaluation results are interpretable.
附图说明Description of drawings
图1为本发明所述移动像机测量示意图;1 is a schematic diagram of the measurement of a mobile camera according to the present invention;
图2为本发明所述传递像机下的移动式摄像测量示意图;2 is a schematic diagram of the mobile camera measurement under the transfer camera according to the present invention;
图3为本发明所述大型工业结构安全性评估框架图。FIG. 3 is a frame diagram of the safety assessment of the large-scale industrial structure according to the present invention.
图4为本发明所述移动摄像测量实验图。FIG. 4 is an experimental diagram of the mobile camera measurement according to the present invention.
图5为本发明所述移动摄像测量标识点位置图。FIG. 5 is a position diagram of the mobile camera measurement identification point according to the present invention.
图6为本发明所述测量误差示意图。FIG. 6 is a schematic diagram of the measurement error according to the present invention.
图7为本发明所述大型工业结构形变测量结果图。FIG. 7 is a graph showing the deformation measurement result of the large-scale industrial structure according to the present invention.
图8为本发明所述大型工业结构安全性置信分布图。FIG. 8 is a graph of the safety confidence distribution of the large industrial structure according to the present invention.
图9为本发明所述大型工业结构安全等级效用图;Fig. 9 is the utility diagram of the safety level of the large-scale industrial structure according to the present invention;
其中1-测量像机、2-传递像机、3-轨道、4-标志物。Among them, 1-measurement camera, 2-transmission camera, 3-track, 4-marker.
具体实施方式Detailed ways
下面结合附图及实施例对本发明所述大型工业结构形变监测与分析方法 进行详细说明。The following describes the deformation monitoring and analysis method of the large-scale industrial structure of the present invention in detail with reference to the accompanying drawings and embodiments.
在本公开实施例中以某大型工业结构为对象,图1是移动像机测量示意图, 左右分别为移动像机在ti和ti+1时刻的位置,对应的两组像机坐标系分别为 OD,i-XD,iYD,iZD,i与OD,i+1-XD,i+1YD,i+1ZD,i+1,传递像机2坐标系为OT-XTYTZT,运 动平台坐标系为OP-XPYPZP,世界坐标系为O-XYZ。In the embodiment of the present disclosure, a large-scale industrial structure is taken as the object. FIG. 1 is a schematic diagram of the measurement of the moving camera. The left and right are the positions of the moving camera at time t i and t i+1 , respectively. For O D,i -X D,i Y D,i Z D,i and O D,i+1 -X D,i+1 Y D,i+1 Z D,i+1 ,
像机坐标系相对于世界坐标系的旋转矩阵和平移向量分别为Mi,Vi和 Mi+1,Vi+1;相邻两时刻像机坐标系之间的旋转矩阵和平移向量分别表示为 Mi,i+1,Vi,i+1。像机采集的目标点即大型工业结构形变监测点为S(X,Y,Z),对应 时刻的图像坐标点分别为si(xi,yi)、si+1(xi+1,yi+1),三个点对应的齐次坐标关系分 别表示为S、和 The rotation matrix and translation vector of the camera coordinate system relative to the world coordinate system are M i , V i and M i+1 , V i+1 respectively; the rotation matrix and translation vector between the camera coordinate system at two adjacent moments are respectively Denoted as M i,i+1 ,V i,i+1 . The target point collected by the camera, that is, the deformation monitoring point of the large industrial structure, is S(X,Y,Z), and the image coordinate points at the corresponding moment are s i (x i , y i ), s i+1 (x i+1 , y i+1 ), the homogeneous coordinate relationship corresponding to the three points is expressed as S, and
根据像机成像几何关系,测量点S与像点si、si+1的关系在齐次坐标系下 可表示为:According to the geometric relationship of camera imaging, the relationship between the measurement point S and the image points si and si+1 can be expressed as:
在式(1)中,γi与γi+1为比例系数,Q为像机内参数矩阵。相邻时刻像机处于 不同的位置可以等价于双目摄像测量系统。In formula (1), γ i and γ i+1 are proportional coefficients, and Q is the parameter matrix in the camera. The different positions of the cameras at adjacent moments can be equivalent to a binocular camera measurement system.
如图2所示为传递像机2下的移动式摄像测量示意图,图中包含测量像机 1、传递像机2、轨道3和标志物4平面。整个测量过程包含以下五个步骤:Figure 2 is a schematic diagram of the mobile camera measurement under the
步骤1:将测量像机1和传递像机2分别固定连接在平台上,平台围绕结构表面 进行运动。Step 1: Fix the
步骤2:利用传递像机2实时拍摄粘贴在地面上的坐标精确已知的人工合 作标识点,根据标识点以及对应像点的关系得到传递像机2的实时外参数。Step 2: Use the
步骤3:利用传递像机2、运动平台、测量像机1之间的相对固定位置关 系,根据传递像机2的外参数计算运动平台的相邻时刻之间状态转换关系。Step 3: Using the relative fixed positional relationship between the
假设ST与SP分别表示测量点S(X,Y,Z)在OT-XTYTZT与OP-XPYPZP坐标 系下的齐次坐标,则S在O-XYZ与OP-XPYPZP坐标系的关系以及OP-XPYPZP与 OT-XTYTZT坐标系的关系可表示为:Assuming that S T and S P represent the homogeneous coordinates of the measurement point S (X, Y, Z) in the O T -X T Y T Z T and O P -X P Y P Z P coordinate systems respectively, then S is in O The relationship between -XYZ and O P -X P Y P Z P coordinate system and the relationship between O P -X P Y P Z P and O T -X T Y T Z T coordinate system can be expressed as:
其中,MWP,VWP分别表示O-XYZ坐标系转换到OP-XPYPZP坐标系下的旋转矩 阵与平移向量;MPT,VPT分别表示OP-XPYPZP坐标系转换到OT-XTYTZT坐标系 下的旋转矩阵与平移向量,可由步骤2求得。O-XYZ坐标系与OT-XTYTZT坐 标系之间的关系即可表示为:Among them, M WP , V WP respectively represent the rotation matrix and translation vector of the O-XYZ coordinate system converted to the OP-X P Y P Z P coordinate system ; M PT , V PT represent the OP-X P Y P Z respectively The rotation matrix and translation vector for converting the P coordinate system to the O T -X T Y T Z T coordinate system can be obtained from
ST=MWTS+VWT (3)S T =M WT S+V WT (3)
其中:in:
在式(4)中,MWT,VWT分别表示O-XYZ坐标系转换到OT-XTYTZT坐标系下的 旋转矩阵与平移向量,可借助人工标识点求解得到。In formula (4), M WT , V WT respectively represent the rotation matrix and translation vector transformed from the O-XYZ coordinate system to the O T -X T Y T Z T coordinate system, which can be obtained by means of manual identification points.
假设测量点S在ti和tj时刻的运动平台坐标系下的齐次坐标分别为SPi和 SPj,则二者满足关系式:Assuming that the homogeneous coordinates of the measurement point S in the motion platform coordinate system at times t i and t j are S Pi and S Pj , respectively, the two satisfy the relation:
SPj=MijSPi+Vij (5)S Pj =M ij S Pi +V ij (5)
在式(5)中,Mij与Vij分别表示由ti时刻的的OP-XPYPZP坐标系转换到tj时刻 的OP-XPYPZP坐标系的旋转矩阵与平移向量。假设S在ti和tj时刻的 OT-XTYTZT坐标系下的齐次坐标分别为STi和STj,则有:In formula (5), M ij and V ij respectively represent the rotation from the O P - X P Y P Z P coordinate system at time t i to the O P - X P Y P Z P coordinate system at time t j Matrix and translation vector. Assuming that the homogeneous coordinates of S in the O T -X T Y T ZT coordinate system at times t i and t j are S Ti and S Tj respectively, there are:
在式(6)中,MWTi、VWTi与MWTj、VWTj分别表示O-XYZ坐标系转换到ti与tj时 刻的OP-XPYPZP坐标系下的旋转矩阵与平移向量。In formula ( 6 ), M WTi , V WTi and M WTj , V WTj respectively represent the rotation matrix and Translation vector.
根据式(2)和式(6),可以得到:According to formula (2) and formula (6), we can get:
那么,ti和tj时刻的OP-XPYPZP坐标系之间相对外参数如下式所示:Then, the relative external parameters between the O P -X P Y P Z P coordinate system at time t i and t j are as follows:
步骤4:求解测量像机的外参数。Step 4: Solve the external parameters of the measuring camera.
在建立测量像机1坐标系OC-XCYCZC的情况下,运动平台坐标系与测量 像机1坐标系的齐次坐标关系分别为:In the case of establishing the measuring
SC=MPCSP+VPC (9)S C =M PC S P +V PC (9)
在式(9)中,MPC,VPC分别表示OP-XPYPZP坐标系转换到OT-XTYTZT坐标系 下的旋转矩阵与平移向量,可通过标定获取。同样地,运动平台坐标系与测量像 机1坐标系在ti和tj时刻存在关系式:In formula (9), M PC , V PC respectively represent the rotation matrix and translation vector of the O P -X P Y P Z P coordinate system converted to the O T -X T Y T Z T coordinate system, which can be obtained by calibration . Similarly, there is a relationship between the coordinate system of the motion platform and the coordinate system of the measuring
根据式(5)与式(10),不同时刻的世界坐标系与测量像机1坐标系满足如下关 系:According to equations (5) and (10), the world coordinate system and the coordinate system of the surveying
通过迭代式(11),即可得到测量像机1的外参数。Through the iterative formula (11), the external parameters of the
步骤5:根据运动平台的相邻时刻之间状态转换关系和测量像机1的外参 数,实时求解测量点的位置坐标。Step 5: According to the state transition relationship between the adjacent moments of the motion platform and the external parameters of the measuring
根据式(1),点S在ti时刻满足:According to formula (1), point S at time t i satisfies:
其中,初始像机位置满足:Among them, the initial camera position satisfies:
重复上述步骤可得到不同监测时刻下测量点Si的世界坐标。将测量点与标识点的 位置进行对比,求取每个测量点沿x,y,z方向上的形变量Δxi,Δyi,Δzi,通过简单 加权得到每个测量结果对应的综合形变量,如式(14)所示:By repeating the above steps, the world coordinates of the measurement point Si at different monitoring moments can be obtained. Compare the position of the measurement point and the identification point, obtain the deformation variables Δx i , Δy i , Δzi i of each measurement point along the x, y, z directions, and obtain the comprehensive deformation corresponding to each measurement result through simple weighting , as shown in formula (14):
如图3所示为大型工业结构安全性评估框架图,整个评估过程主要包含以下三个 步骤:Figure 3 shows the framework for the safety assessment of large-scale industrial structures. The entire assessment process mainly includes the following three steps:
步骤1:采用上述摄像测量方法进行重复L轮测量,每轮测量周期为T个时间点, 根据式(14)获取形变量数据δ1,…,δL,采用变异系数法求取各组测量数据对应 的权重。假设第i轮测量的形变量数据可表示为:Step 1: Use the above camera measurement method to perform repeated L rounds of measurement, each round of measurement period is T time points, obtain the deformation variable data δ 1 ,...,δ L according to formula (14), and use the coefficient of variation method to obtain each group of measurements. The weights corresponding to the data. Suppose the deformation variable data measured in the i-th round can be expressed as:
δi(t)=[δi(t-T),δi(t-T+1),…,δi(t-1)]δ i (t)=[δ i (tT),δ i (t-T+1),…,δ i (t-1)]
相应的均值和均方差分别可表示为:the corresponding mean and the mean square error can be expressed as:
第i轮测量的结果对应的权重为:The weight corresponding to the result of the i-th round of measurement is:
其中,是一个归一化因子,可以表征第i轮测量结果的相对 变化,进而反映该轮测试的形变量数据的波动性。因此,越大,wi(T)就 越大。in, is a normalization factor, which can characterize the relative change of the i-th round of measurement results, thereby reflecting the volatility of the deformation data of this round of testing. therefore, The larger the value, the larger the wi (T).
步骤2:根据形变量测试数据,采用基于距离的方法求取各组测量数据对 应的可靠度。δi(t)与的距离可表示为:Step 2: According to the deformation variable test data, a distance-based method is used to obtain the reliability corresponding to each group of measurement data. δ i (t) and The distance can be expressed as:
第i轮测量的形变量数据在T个时间点内的平均距离为:The average distance of the deformation variable data measured in the i-th round in T time points is:
则第i轮测量的结果对应的可靠度为:Then the reliability corresponding to the result of the i-th round of measurement is:
步骤3:根据形变量测试数据,采用基于效用的输入信息转换方法,将形变量转 换为置信分布形式,即初始证据。假设形变量可划分为N个安全性评估等级, 即{H1,…,Hn,…,HN},对应的参考值为{h1,…,hn,…,hN}。若等级Hn+1优于等级 Hn当且仅当hn+1>hn,其中n,n+1∈[1,N]。令hN和h1分别是最大和最小的参考 值,形变量δi可转换为如下所示的置信分布:Step 3: According to the test data of deformation variables, the input information conversion method based on utility is used to convert the deformation variables into the form of confidence distribution, that is, the initial evidence. Assuming that the deformation variables can be divided into N safety evaluation levels, namely {H 1 ,...,H n ,...,H N }, the corresponding reference values are {h 1 ,...,h n ,...,h N }. If rank H n+1 is better than rank H n if and only if h n+1 > h n , where n,n+1∈[1,N]. Let h N and h 1 be the maximum and minimum reference values, respectively, the deformation variable δ i can be transformed into a confidence distribution as shown below:
S(δi)={(Hn,βn,i),n=1,2,…,N,i=1,2,…,L} (21)S(δ i )={(H n ,β n,i ),n=1,2,...,N,i=1,2,...,L} (21)
其中in
采用证据推理方法融合上述信息,其解析表达式如下所示:The above information is fused by the method of evidence reasoning, and its analytical expression is as follows:
wi=wi/(1+wi-ri) (25)w i = wi /(1+ wi -r i ) (25)
其中,βn表示分配给评估等级Hn的置信度,wi和ri分别由式(17)和式(20) 给出。此时,结构的安全性评估结果G(T)可表示为:where β n represents the confidence assigned to the evaluation level H n , and wi and ri are given by equations (17) and (20), respectively. At this time, the safety assessment result G(T) of the structure can be expressed as:
G(T)={(Hn,βn(t)),n=1,2,…,N} (26)G(T)={(H n , β n (t)), n=1,2,...,N} (26)
根据式(26)给出的安全性评估结果,即可有效判断大型工业结构的安全状态, 进而采取合理的维护措施。According to the safety evaluation result given by formula (26), the safety status of large industrial structures can be effectively judged, and then reasonable maintenance measures can be taken.
本发明设计了如图4所示的移动摄像测量实验,以说明本发明的有效性。 在测量实验中,传递像机2和测量像机1分别固定在平台轨道3上,在某大型工 业结构模型表面粘贴15个点作为待测点,平行轨道3一侧附有一些坐标已知的 人工标识点。实验中传递像机2和测量像机1分辨率均为1536pixel×1024pixel, 且帧频均为3frame/s,平台轨道3的运动速度为20mm/s。按照测量流程,得到 15个待测点的位置,结果如图5所示,该结果能够直观反映出结构表面的预设 标识点位置。显然,本实验在传递像机2的辅助下,移动相机能够完成动态测量, 实时获取结构表面的标识点位置,弥补了移动相机无法获取外参数的缺陷。经过 距离计算,得到15个待测点与其实际位置的误差,如图6所示。对图6的数据 求解均方根误差,结果为0.0432mm,说明本发明能够达到结构形变的动态测量 要求。The present invention designs a mobile camera measurement experiment as shown in FIG. 4 to illustrate the effectiveness of the present invention. In the measurement experiment, the
按照同样的方法,分别对结构的底部、中部和顶部的20个标识点进行摄 像测量,并将这三个部位作为三个指标,得到形变测量结果如图7所示。将结构 形变大小划分为“小”、“中”和“大”三个等级,相应的参考值如表1所示:According to the same method, the 20 identification points at the bottom, middle and top of the structure were measured by camera respectively, and these three parts were used as three indicators, and the deformation measurement results were obtained as shown in Figure 7. The structural deformation size is divided into three grades: "small", "medium" and "large", and the corresponding reference values are shown in Table 1:
表1测量点形变参考值(单位:mm)
将结构的安全性划分为“高”、“中”和“低”三个等级,相应的量化效用值如表 2所示:The security of the structure is divided into three levels of "high", "medium" and "low", and the corresponding quantitative utility values are shown in Table 2:
表2结构安全性参考值
根据前述的变异系数法和基于距离的方法分别求解三个指标的权重与可靠度,结 果为w1=0.7764,w2=0.7824,w3=0.8993,r1=0.4088,r2=0.4604,r3=0.5588。According to the aforementioned coefficient of variation method and the method based on distance, the weights and reliability of the three indicators are calculated respectively, and the results are w 1 =0.7764, w 2 =0.7824, w 3 =0.8993, r 1 =0.4088, r 2 =0.4604, r 3 = 0.5588.
采用证据推理方法,对结构的安全性进行评估,评估得到的安全性置信分布形式 如图8所示。再将置信分布转化为安全效用,结果如图9所示。Evidence reasoning method is used to evaluate the safety of the structure, and the safety confidence distribution form obtained from the evaluation is shown in Figure 8. The confidence distribution is then converted into safety utility, and the results are shown in Figure 9.
根据图9,结构的安全性随着测量次数的增加逐渐降低,这与大型工业结 构工作过程中表面的磨损程度不断增大、形变逐渐增大的趋势相符。因此,本发 明是行之有效的。According to Fig. 9, the safety of the structure gradually decreases with the increase of the number of measurements, which is consistent with the trend of increasing wear degree and deformation of the surface during the working process of large industrial structures. Therefore, the present invention is effective.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011338217.5A CN112461152B (en) | 2020-11-25 | 2020-11-25 | Large-scale industrial structure deformation monitoring and analyzing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011338217.5A CN112461152B (en) | 2020-11-25 | 2020-11-25 | Large-scale industrial structure deformation monitoring and analyzing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112461152A true CN112461152A (en) | 2021-03-09 |
CN112461152B CN112461152B (en) | 2022-06-28 |
Family
ID=74798998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011338217.5A Active CN112461152B (en) | 2020-11-25 | 2020-11-25 | Large-scale industrial structure deformation monitoring and analyzing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112461152B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6144443A (en) * | 1998-08-25 | 2000-11-07 | Nec Corporation | Apparatus and method for measuring crystal lattice strain |
CN101504272A (en) * | 2009-03-11 | 2009-08-12 | 中国人民解放军国防科学技术大学 | Video recorder network shooting measurement method and apparatus for large structure attitude and displacement deformation |
CN103430210A (en) * | 2011-03-31 | 2013-12-04 | 索尼电脑娱乐公司 | Information processing system, information processing device, imaging device, and information processing method |
CN110260790A (en) * | 2019-07-20 | 2019-09-20 | 龚烨飞 | A kind of detection device and its detection method of the punching angle steel based on 3D vision |
CN110595374A (en) * | 2019-09-17 | 2019-12-20 | 中国人民解放军火箭军工程大学 | Real-time deformation monitoring method of large structural parts based on transfer camera |
-
2020
- 2020-11-25 CN CN202011338217.5A patent/CN112461152B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6144443A (en) * | 1998-08-25 | 2000-11-07 | Nec Corporation | Apparatus and method for measuring crystal lattice strain |
CN101504272A (en) * | 2009-03-11 | 2009-08-12 | 中国人民解放军国防科学技术大学 | Video recorder network shooting measurement method and apparatus for large structure attitude and displacement deformation |
CN103430210A (en) * | 2011-03-31 | 2013-12-04 | 索尼电脑娱乐公司 | Information processing system, information processing device, imaging device, and information processing method |
CN110260790A (en) * | 2019-07-20 | 2019-09-20 | 龚烨飞 | A kind of detection device and its detection method of the punching angle steel based on 3D vision |
CN110595374A (en) * | 2019-09-17 | 2019-12-20 | 中国人民解放军火箭军工程大学 | Real-time deformation monitoring method of large structural parts based on transfer camera |
Also Published As
Publication number | Publication date |
---|---|
CN112461152B (en) | 2022-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113155880B (en) | Detection method for heavy metal pollution of soil by adopting unmanned aerial vehicle and XRF technology | |
CN101387501B (en) | Apparatus and method for measuring circular cross-sectional shape and orientation of ultra-large workpiece | |
CN110031829B (en) | An accurate ranging method for targets based on monocular vision | |
CN114011608B (en) | Spraying process optimization system based on digital twinning and spraying optimization method thereof | |
CN115993096A (en) | High-rise building deformation measuring method | |
CN104330083A (en) | Multi-robot cooperative positioning algorithm based on square root unscented kalman filter | |
CN114812983B (en) | A bridge crack measurement method, device and equipment based on laser array | |
CN116665125A (en) | Intelligent recognition system for bridge tunnel diseases | |
CN117688313A (en) | Method for cooperatively processing mapping data by network | |
CN112949466B (en) | Video AI smoke pollution source identification and positioning method | |
CN114030008A (en) | A data-driven energy consumption measurement method for industrial robot training | |
CN110988872A (en) | Method for rapidly identifying health state of wall body detected by unmanned aerial vehicle-mounted through-wall radar | |
CN104778331A (en) | Spatial interpolation method for long-span bridge monitoring data | |
CN117067226A (en) | Steel bridge rust detection robot and rust detection method | |
Song et al. | Pixel‐Level Crack Identification for Bridge Concrete Structures Using Unmanned Aerial Vehicle Photography and Deep Learning | |
CN114943904B (en) | An operation monitoring method based on drone inspection | |
CN108801221A (en) | The quick fine obtaining value method of open mine side slope ROCK MASS JOINT scale based on digital photogrammetry | |
Han et al. | Research progress on intelligent operation and maintenance of bridges | |
CN112461152B (en) | Large-scale industrial structure deformation monitoring and analyzing method | |
CN115046488A (en) | Space measuring method for grid structure building nodes | |
CN101793954B (en) | All link-road radiation transmission process simulating and imaging method of universal optical remote sensor | |
CN115225136B (en) | Reconstruction method of satellite-ground link propagation attenuation region | |
CN117268291A (en) | Intelligent detection robot system and method for building flatness | |
CN110031803B (en) | Fusion localization method of dual infrared sensors with random measurement noise | |
CN119290300B (en) | Bridge regional distributed stiffness identification method, system and storage medium based on distributed long-gauge strain envelope sensing concept considering support constraints |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |