CN112456499B - Method for preparing high-purity silicon by using silicon cutting waste - Google Patents
Method for preparing high-purity silicon by using silicon cutting waste Download PDFInfo
- Publication number
- CN112456499B CN112456499B CN202011458320.3A CN202011458320A CN112456499B CN 112456499 B CN112456499 B CN 112456499B CN 202011458320 A CN202011458320 A CN 202011458320A CN 112456499 B CN112456499 B CN 112456499B
- Authority
- CN
- China
- Prior art keywords
- silicon
- free
- slag
- fluorine
- chlorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 117
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 117
- 239000010703 silicon Substances 0.000 title claims abstract description 117
- 238000005520 cutting process Methods 0.000 title claims abstract description 42
- 239000002699 waste material Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 39
- 239000012535 impurity Substances 0.000 claims abstract description 35
- 239000002893 slag Substances 0.000 claims abstract description 35
- 238000007670 refining Methods 0.000 claims abstract description 32
- 229910014458 Ca-Si Inorganic materials 0.000 claims abstract description 21
- 230000005496 eutectics Effects 0.000 claims abstract description 21
- 238000007711 solidification Methods 0.000 claims abstract description 21
- 230000008023 solidification Effects 0.000 claims abstract description 21
- 229910019064 Mg-Si Inorganic materials 0.000 claims abstract description 20
- 229910019406 Mg—Si Inorganic materials 0.000 claims abstract description 20
- 229910018125 Al-Si Inorganic materials 0.000 claims abstract description 19
- 229910018520 Al—Si Inorganic materials 0.000 claims abstract description 19
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 15
- 239000000956 alloy Substances 0.000 claims abstract description 15
- 238000002109 crystal growth method Methods 0.000 claims abstract description 7
- 230000008018 melting Effects 0.000 claims abstract description 7
- 238000002844 melting Methods 0.000 claims abstract description 7
- 238000004857 zone melting Methods 0.000 claims abstract description 4
- 229910003460 diamond Inorganic materials 0.000 claims description 9
- 239000010432 diamond Substances 0.000 claims description 9
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 5
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- 239000004570 mortar (masonry) Substances 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 abstract description 14
- 229910052749 magnesium Inorganic materials 0.000 abstract description 7
- 238000004064 recycling Methods 0.000 abstract description 6
- 238000002360 preparation method Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 239000002910 solid waste Substances 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 229910000676 Si alloy Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000003723 Smelting Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 230000026058 directional locomotion Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/037—Purification
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种利用硅切割废料制备高纯硅的方法,属于固废资源利用和材料制备技术领域。The invention relates to a method for preparing high-purity silicon by utilizing silicon cutting waste, and belongs to the technical field of solid waste resource utilization and material preparation.
背景技术Background technique
由于传统能源(如石油、天然气和煤炭等)的大量开采和消耗,使其储量已接近枯竭,能源短缺已成为当前制约世界各国经济社会发展的主要问题。目前我国已连续多年成为世界上最大的能源消耗国,每年能源消耗量占到全球总量的1/5。因此,未来我国所面临的能源问题尤其严重,寻找新的替代能源迫在眉睫。太阳能是一种清洁有好的新能源,其分布广泛,储量巨大,被普遍认为在未来的能源使用中具有光明的前景。太阳能电池便是基于光伏效应将太阳能转化为电能的器件。Due to the massive exploitation and consumption of traditional energy (such as oil, natural gas and coal, etc.), its reserves are nearly exhausted, and energy shortage has become the main problem that restricts the economic and social development of all countries in the world. At present, my country has been the largest energy-consuming country in the world for many years, and the annual energy consumption accounts for 1/5 of the global total. Therefore, the energy problem faced by our country in the future is particularly serious, and it is imminent to find new alternative energy sources. Solar energy is a kind of clean and good new energy. It is widely distributed and has huge reserves. It is generally considered to have bright prospects in future energy use. Solar cells are devices that convert solar energy into electrical energy based on the photovoltaic effect.
我国光伏产业的太阳能电池的装机容量持续位居全球第一,高纯硅(99.999%)是制作太阳能电池的原料,是整个光伏产业的基础。高纯硅太阳能电池的制备首先需要将多晶硅锭或单晶硅棒切割成0.18-0.19mm厚的硅片,目前晶体硅切割方法主要线切割技术和砂浆切割技术,由于硅片的厚度大约等于硅锭中的切片间隙,因此切割过程将近35%-40%的晶体硅以硅粉的形式进入切割废料浆损失掉,造成了极大的资源浪费和严重的环境污染,仅每年硅切割废料就达到了24万吨。由于硅晶体在切割过程中会带入大量杂质,如:冷却液中会带入的碳、氧元素,硅锭的固定底座被切割会带入铝元素等,使得硅切割废料中硅的含量为60-90%,这些混入的杂质总量达到了10%以上且难以去除。The installed capacity of solar cells in my country's photovoltaic industry continues to rank first in the world. High-purity silicon (99.999%) is the raw material for making solar cells and the foundation of the entire photovoltaic industry. The preparation of high-purity silicon solar cells first requires cutting polycrystalline silicon ingots or monocrystalline silicon rods into silicon wafers with a thickness of 0.18-0.19mm. At present, crystalline silicon cutting methods mainly use wire cutting technology and mortar cutting technology. Since the thickness of silicon wafers is approximately equal to that of silicon wafers Due to the slicing gap in the ingot, nearly 35%-40% of the crystalline silicon in the cutting process enters the cutting waste slurry in the form of silicon powder and is lost, causing great waste of resources and serious environmental pollution. 240,000 tons. Since a large amount of impurities will be introduced into the silicon crystal during the cutting process, such as carbon and oxygen elements that will be introduced in the cooling liquid, and aluminum elements will be introduced into the fixed base of the silicon ingot when it is cut, so that the content of silicon in the silicon cutting waste is 60-90%, the total amount of these mixed impurities reaches more than 10% and is difficult to remove.
因此,如何高效地回收晶体硅切割硅废料是目前所面临的难题。目前,回收利用硅废料有以下几种主要方法包括相转移、电泳和重力沉降、湿法酸洗、真空碳热还原;制备高纯碳化硅、碳化硅陶瓷、碳化硅基复合材料及其他含硅材料等,但这些方法因不同缺陷而使硅废料的回收利用受到阻碍,所以,开发更多切实可行的硅废料回收处理方案具有更大的意义。Therefore, how to efficiently recycle crystalline silicon cut silicon waste is a difficult problem at present. At present, there are several main methods for recycling silicon waste, including phase transfer, electrophoresis and gravity sedimentation, wet pickling, vacuum carbothermic reduction; preparation of high-purity silicon carbide, silicon carbide ceramics, silicon carbide-based composite materials and other silicon-containing materials However, the recycling of silicon waste is hindered by these methods due to different defects. Therefore, it is of greater significance to develop more practical solutions for the recycling of silicon waste.
发明内容SUMMARY OF THE INVENTION
本发明针对现有技术中电池回收的问题,提供一种利用硅切割废料制备高纯硅的方法,本发明采用共晶Al-Si、Ca-Si或Mg-Si合金作为精炼剂进行硅精炼得到超冶金级硅,并将得到的超冶金硅通过真空定向凝固法去除Al、Mg或Ca等杂质,得到高纯硅(99.999%);不仅能回收利用硅切割废料这种工业固废,还能同时得到符合太阳能级高纯度的硅材料。具有明显的经济效益和产业化前景。Aiming at the problem of battery recycling in the prior art, the present invention provides a method for preparing high-purity silicon by using silicon cutting waste. Ultra-metallurgical grade silicon, and remove impurities such as Al, Mg or Ca through the vacuum directional solidification method to obtain high-purity silicon (99.999%); it can not only recycle industrial solid waste such as silicon cutting waste, but also At the same time, high-purity silicon material that meets solar energy level is obtained. It has obvious economic benefits and industrialization prospects.
一种利用硅切割废料制备高纯硅的方法,具体步骤如下:A method for preparing high-purity silicon by utilizing silicon cutting waste, the specific steps are as follows:
(1)将硅切割废料、造渣剂和无氟无氯渣混合,在惰性气氛中进行造渣精炼,经渣硅分离后得到块状硅和无氟无氯残渣;无氟无氯残渣通过添加造渣剂重新调整成分后可作为原料中的无氟无氯渣循环使用;(1) Mix the silicon cutting waste, the slag-forming agent and the fluorine-free and chlorine-free residue, carry out slag-forming refining in an inert atmosphere, and obtain bulk silicon and fluorine-free and chlorine-free residue after the slag-silicon separation; the fluorine-free and chlorine-free residue passes through After adding a slag-forming agent to adjust the composition, it can be recycled as a fluorine-free and chlorine-free slag in the raw material;
(2)以共晶Al-Si、Ca-Si或Mg-Si合金为精炼剂,将步骤(1)块状硅与精炼剂混合后熔化形成过共晶的Al-Si、Ca-Si或Mg-Si熔体,经定向凝固、区域熔炼或晶体生长法对过共晶Al-Si、Ca-Si或Mg-Si熔体中的硅进行分离和提纯得到超冶金级硅和含微量杂质的共晶Al-Si、Ca-Si或Mg-Si合金;含微量杂质的共晶Al-Si、Ca-Si或Mg-Si合金可作为精炼剂循环使用;(2) Using eutectic Al-Si, Ca-Si or Mg-Si alloy as refining agent, the bulk silicon in step (1) is mixed with refining agent and melted to form hypereutectic Al-Si, Ca-Si or Mg -Si melt, by directional solidification, zone smelting or crystal growth method to separate and purify silicon in hypereutectic Al-Si, Ca-Si or Mg-Si melt to obtain supermetallurgical grade silicon and cobalt containing trace impurities Crystalline Al-Si, Ca-Si or Mg-Si alloys; eutectic Al-Si, Ca-Si or Mg-Si alloys containing trace impurities can be recycled as refining agents;
(3)将步骤(2)超冶金级硅经真空定向凝固去除Al、Mg或Ca等杂质得到纯度大于99.999%的高纯硅;(3) removing impurities such as Al, Mg or Ca through the vacuum directional solidification of the supermetallurgical grade silicon in step (2) to obtain high-purity silicon with a purity greater than 99.999%;
所述步骤(1)硅切割废料为金刚石线切割硅废料、碳化硅线切割硅废料、砂浆切割硅废料的一种或多种;优选的,硅切割废料为金刚石线切割硅废料;The step (1) silicon cutting waste is one or more of diamond wire cutting silicon waste, silicon carbide wire cutting silicon waste, and mortar cutting silicon waste; preferably, the silicon cutting waste is diamond wire cutting silicon waste;
所述步骤(1)造渣精炼的温度不低于1773K,时间为0.5-10h;The temperature of described step (1) slagging refining is not lower than 1773K, and the time is 0.5-10h;
所述步骤(1)造渣剂为CaO、SiO2、MgO、Al2O3中的一种或多种,无氟无氯渣为不含氯化物、氟化物和钠元素的氧化物渣;优选的,无氟无氯渣为以CaO-SiO2为主要成分的氧化物渣;In the step (1), the slag-forming agent is one or more of CaO, SiO 2 , MgO, and Al 2 O 3 , and the fluorine-free and chlorine-free slag is an oxide slag that does not contain chloride, fluoride and sodium; Preferably, the fluorine-free and chlorine-free slag is oxide slag with CaO - SiO as the main component;
所述步骤(2)定向凝固、区域熔炼或晶体生长法的加热温度不低于相应过共晶的Al-Si、Ca-Si或Mg-Si合金的熔点;定向凝固或区域熔炼中加热器或样品的移动速度为1-10μm/s,晶体生长法的籽晶的晶面取向不限,晶体生长法的籽晶杆的移动速率1-5mm/min;The heating temperature of the directional solidification, zone melting or crystal growth method in the step (2) is not lower than the melting point of the corresponding hypereutectic Al-Si, Ca-Si or Mg-Si alloy; The moving speed of the sample is 1-10μm/s, the crystal plane orientation of the seed crystal in the crystal growth method is not limited, and the moving speed of the seed rod in the crystal growth method is 1-5mm/min;
所述步骤(3)真空定向凝固温度不低于1723K,移动速度为1-10μm/s,真空度小于10-3Pa。In the step (3), the vacuum directional solidification temperature is not lower than 1723K, the moving speed is 1-10 μm/s, and the vacuum degree is less than 10 -3 Pa.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)本发明对硅切割废料中的C、O、Al等杂质具有明显的去除效果,通过造渣精炼后,得到纯度较高的块状硅;(1) The present invention has obvious removal effect on impurities such as C, O, and Al in the silicon cutting waste, and after refining by slagging, bulk silicon with higher purity is obtained;
(2)本发明能够对造渣精炼后产生的无氟无氯残渣可以回收再利用,往无氟无氯残渣中加入适量的造渣剂重新调整成分后继续对硅切割废料进行造渣精炼;无氟无氯渣不包括对环境有影响的氟化物、氯化物和钠元素,具有很好的环保效应;(2) the present invention can recycle and reuse the fluorine-free and chlorine-free residue produced after the slag refining, and add an appropriate amount of slag-forming agent to the fluorine-free and chlorine-free residue to readjust the composition and continue to carry out slag refining on the silicon cutting waste; Fluorine-free and chlorine-free slag does not include fluoride, chloride and sodium elements that have an impact on the environment, and has a good environmental protection effect;
(3)本发明采用定向凝固、区域熔炼或晶体生长的方法对块状硅进行精炼得到超冶金级硅,其中精炼剂(共晶Al-Si、Ca-Si或Mg-Si合金)可循环使用,虽然硅精炼后硅中的杂质进入到精炼剂中,但由于精炼剂中的杂质含量非常低,所以得到的含少量杂质的共晶Al-Si、Ca-Si或Mg-Si合金可以重新作为精炼剂循环使用;(3) The present invention adopts the method of directional solidification, zone smelting or crystal growth to refine bulk silicon to obtain supermetallurgical grade silicon, wherein the refining agent (eutectic Al-Si, Ca-Si or Mg-Si alloy) can be recycled , Although the impurities in silicon enter into the refining agent after silicon refining, but because the impurity content in the refining agent is very low, the obtained eutectic Al-Si, Ca-Si or Mg-Si alloy containing a small amount of impurities can be re-used as Refining agent recycling;
(4)本发明无废气产生、无碳排放、低成本、环境友好,并且具有高效率。(4) The present invention has no waste gas generation, no carbon emission, low cost, environmental friendliness, and high efficiency.
附图说明Description of drawings
图1为本发明流程示意图。Fig. 1 is a schematic flow chart of the present invention.
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。The present invention will be further described in detail below with reference to the specific embodiments, but the protection scope of the present invention is not limited to the content.
实施例1:一种利用硅切割废料制备高纯硅的方法(见图1),包括以下步骤:Embodiment 1: a method for preparing high-purity silicon using silicon cutting waste (see Figure 1 ), comprising the following steps:
(1)将金刚石线切割硅废料(Si的含量为86.9wt%,其中C、O、Al杂质的含量分别为0.83wt%、3.85wt%和0.87wt%)、造渣剂(CaO)和无氟无氯渣(34wt%CaO和65wt%的SiO2)混合,在惰性气氛、温度为1773K中进行造渣精炼1h去除C、O和Al杂质,经渣硅分离后得到纯度为99.8%的块状硅和无氟无氯残渣;无氟无氯残渣通过添加造渣剂重新调整成分后可作为原料中的无氟无氯渣循环使用;其中造渣剂CaO的用量占无氟无氯渣质量的8.3wt%,造渣剂和无氟无氯渣的总渣量与金刚石线切割硅废料的用量比例为1.67:1;无氟无氯残渣中含有27.5wt%CaO、67.3wt%SiO2和0.68wt%Al2O3;(1) The diamond wire was cut into silicon waste (the content of Si was 86.9wt%, and the contents of C, O, Al impurities were 0.83wt%, 3.85wt% and 0.87wt%, respectively), slag-forming agent (CaO) and no Fluorine and chlorine-free slag (34wt% CaO and 65wt% SiO 2 ) was mixed, slag refining was carried out in an inert atmosphere at a temperature of 1773K for 1 hour to remove C, O and Al impurities, and the slag and silicon were separated to obtain a block with a purity of 99.8% Silicon and fluorine-free and chlorine-free residues; the fluorine-free and chlorine-free residues can be recycled as fluorine-free and chlorine-free residues in the raw materials after readjusting the composition by adding a slag-forming agent; the amount of the slag-forming agent CaO accounts for the quality of the fluorine-free and chlorine-free residues 8.3wt%, the ratio of the total slag amount of slag-forming agent and fluorine-free and chlorine-free slag to the amount of diamond wire cutting silicon waste is 1.67:1; the fluorine-free and chlorine-free residue contains 27.5wt% CaO, 67.3wt% SiO2 and 0.68wt% Al 2 O 3 ;
(2)以共晶Al-12.6wt%Si合金为精炼剂,将步骤(1)块状硅与精炼剂共晶Al-12.6wt%Si合金混合后加热熔化形成过共晶Al-Si熔体,在熔炼温度为1273K的条件下保温0.5h,采用电磁感应加热的定向凝固的方法对过共晶Al-Si熔体中的硅进行分离和提纯得到纯度为99.98%的超冶金级硅和含微量(0.2wt%)杂质的共晶Al-Si合金;含微量(0.2wt%)杂质的共晶Al-Si合金可作为精炼剂循环使用;其中定向凝固过程中样品的移动速度为10μm/s;(2) Using the eutectic Al-12.6wt%Si alloy as the refining agent, the bulk silicon in step (1) is mixed with the refining agent eutectic Al-12.6wt%Si alloy, and then heated and melted to form a hypereutectic Al-Si melt , at a smelting temperature of 1273K for 0.5h, and the directional solidification method of electromagnetic induction heating was used to separate and purify the silicon in the hypereutectic Al-Si melt to obtain supermetallurgical grade silicon with a purity of 99.98%. Eutectic Al-Si alloy with trace (0.2wt%) impurities; eutectic Al-Si alloy containing trace (0.2wt%) impurities can be recycled as refining agent; the moving speed of the sample during directional solidification is 10μm/s ;
(3)将步骤(2)纯度为99.98%的超冶金级硅(其中Al杂质为150ppmw)经真空定向凝固去除Al等杂质得到纯度为99.999%的高纯硅;其中真空定向凝固的温度为1773K,真空度为10-3Pa,熔炼时间为1h,样品的定向移动速度为1μm/s;(3) The supermetallurgical grade silicon with a purity of 99.98% in step (2) (wherein the Al impurity is 150ppmw) is subjected to vacuum directional solidification to remove impurities such as Al to obtain high-purity silicon with a purity of 99.999%; wherein the temperature of the vacuum directional solidification is 1773K , the vacuum degree is 10 -3 Pa, the melting time is 1h, and the directional movement speed of the sample is 1μm/s;
经检测,本实施例高纯硅中Al、Fe、Ti、Ca、Mg杂质含量分别为8ppmw、0.3ppmw、0.1ppmw、1ppmw、0.02ppmw。After testing, the impurity contents of Al, Fe, Ti, Ca, and Mg in the high-purity silicon of this embodiment are 8 ppmw, 0.3 ppmw, 0.1 ppmw, 1 ppmw, and 0.02 ppmw, respectively.
实施例2:一种利用硅切割废料制备高纯硅的方法(见图1),包括以下步骤:Embodiment 2: a method for preparing high-purity silicon using silicon cutting waste (see Figure 1), comprising the following steps:
(1)将金刚石线切割硅废料(Si的含量为86.9wt%,其中C、O、Al杂质的含量分别为0.83wt%、3.85wt%和0.87wt%)、造渣剂(CaO和Al2O3)和无氟无氯渣(38wt%CaO和61wt%的SiO2)混合,在惰性气氛、温度为1873K中进行造渣精炼1.5h去除C、O和Al杂质,经渣硅分离后得到纯度为99.7%的块状硅和无氟无氯残渣;无氟无氯残渣通过添加造渣剂重新调整成分后可作为原料中的无氟无氯渣循环使用;其中造渣剂CaO和Al2O3的用量分别占无氟无氯渣质量的3.3wt%和1wt%,造渣剂和无氟无氯渣的总渣量与金刚石线切割硅废料的用量比例为1.8:1;无氟无氯残渣中含有26.5wt%CaO、68.2wt%SiO2和1.64wt%Al2O3;(1) The diamond wire was used to cut silicon waste (the content of Si was 86.9 wt %, and the contents of C, O and Al impurities were 0.83 wt %, 3.85 wt % and 0.87 wt %, respectively), slag-forming agents (CaO and Al 2 O 3 ) and fluorine-free and chlorine-free slag (38wt% CaO and 61wt% SiO 2 ) were mixed, and slag refining was carried out for 1.5h in an inert atmosphere at a temperature of 1873K to remove C, O and Al impurities, and obtained after separation of slag and silicon. Bulk silicon with a purity of 99.7% and fluorine-free and chlorine-free residues; fluorine-free and chlorine-free residues can be recycled as fluorine-free and chlorine-free residues in the raw materials after readjusting the composition by adding a slag-forming agent; among which the slag-forming agents CaO and Al 2 The amount of O3 accounted for 3.3wt% and 1wt% of the quality of the fluorine-free and chlorine-free slag, respectively, and the ratio of the total slag amount of the slag-forming agent and the fluorine-free and chlorine-free slag to the amount of diamond wire cutting silicon waste was 1.8:1; The chlorine residue contains 26.5wt% CaO, 68.2wt% SiO 2 and 1.64wt% Al 2 O 3 ;
(2)以共晶Ca-61.4wt%Si合金为精炼剂,将步骤(1)块状硅与精炼剂共晶Ca-61.4wt%Si合金混合后加热熔化形成过共晶Ca-Si熔体,在熔炼温度为1573K的条件下保温0.5h,采用区域熔炼法对过共晶Ca-Si熔体中的硅进行分离和提纯得到纯度为99.98%的超冶金级硅和含微量(0.6wt%)杂质的共晶Ca-Si合金;含微量(0.6wt%)杂质的共晶Ca-Si合金可作为精炼剂循环使用;其中定向凝固过程中样品的移动速度为1μm/s;(2) Using the eutectic Ca-61.4wt%Si alloy as the refining agent, the bulk silicon in step (1) is mixed with the refining agent eutectic Ca-61.4wt%Si alloy, and then heated and melted to form a hypereutectic Ca-Si melt , at a smelting temperature of 1573K for 0.5h, the zone smelting method was used to separate and purify the silicon in the hypereutectic Ca-Si melt to obtain supermetallurgical grade silicon with a purity of 99.98% and a trace amount (0.6wt% of silicon) ) eutectic Ca-Si alloy with impurities; eutectic Ca-Si alloy containing trace (0.6 wt%) impurities can be recycled as a refining agent; the moving speed of the sample during directional solidification is 1 μm/s;
(3)将步骤(2)纯度为99.99%的超冶金级硅(其中Ca杂质为180ppmw)经真空定向凝固去除Ca等杂质得到纯度为99.9991%的高纯硅;其中真空定向凝固的温度为1873K,真空度为10-4Pa,熔炼时间为1.5h,样品的定向移动速度为10μm/s;(3) supermetallurgical grade silicon with a purity of 99.99% in step (2) (wherein the Ca impurity is 180ppmw) is subjected to vacuum directional solidification to remove impurities such as Ca to obtain high-purity silicon with a purity of 99.9991%; wherein the temperature of vacuum directional solidification is 1873K , the vacuum degree is 10 -4 Pa, the melting time is 1.5h, and the directional movement speed of the sample is 10μm/s;
经检测,本实施例高纯硅中Al、Fe、Ti、Ca、Mg杂质含量分别为0.3ppmw、0.4ppmw、0.06ppmw、8ppmw、0.05ppmw。After testing, the impurity contents of Al, Fe, Ti, Ca, and Mg in the high-purity silicon of this embodiment are 0.3 ppmw, 0.4 ppmw, 0.06 ppmw, 8 ppmw, and 0.05 ppmw, respectively.
实施例3:一种利用硅切割废料制备高纯硅的方法(见图1),包括以下步骤:Embodiment 3: a method for preparing high-purity silicon using silicon cutting waste (see Figure 1 ), comprising the following steps:
(1)将金刚石线切割硅废料(Si的含量为86.9wt%,其中C、O、Al杂质的含量分别为0.83wt%、3.85wt%和0.87wt%)、造渣剂(CaO和MgO)和无氟无氯渣(34wt%CaO和65wt%的SiO2)混合,在惰性气氛、温度为1873K中进行造渣精2h去除C、O和Al杂质,经渣硅分离后得到纯度为99.6%的块状硅和无氟无氯残渣;无氟无氯残渣通过添加造渣剂重新调整成分后可作为原料中的无氟无氯渣循环使用;其中造渣剂CaO和MgO的用量分别占无氟无氯渣质量的8.3wt%和1.2wt%,造渣剂和无氟无氯渣的总渣量与金刚石线切割硅废料的用量比例为2:1;无氟无氯残渣中含有28.4wt%CaO、67.3wt%SiO2、0.63wt%Al2O3和1.1wt%MgO;(1) Cutting silicon waste with diamond wire (the content of Si is 86.9wt%, and the content of C, O, Al impurities are 0.83wt%, 3.85wt% and 0.87wt%, respectively), slag-forming agents (CaO and MgO) Mixed with fluorine-free and chlorine-free slag (34wt% CaO and 65wt% SiO 2 ), in an inert atmosphere at a temperature of 1873K, slag refining was carried out for 2 hours to remove C, O and Al impurities, and the purity was 99.6% after separation of slag and silicon The bulk silicon and fluorine-free and chlorine-free residues; the fluorine-free and chlorine-free residues can be recycled as the fluorine-free and chlorine-free residues in the raw materials after readjusting the composition by adding a slag-forming agent; the consumption of the slag-forming agents CaO and MgO respectively accounts for no 8.3wt% and 1.2wt% of the mass of fluorine-free and chlorine-free slag, the ratio of the total slag amount of slag-forming agent and fluorine-free and chlorine-free slag to the amount of diamond wire cutting silicon waste is 2:1; the fluorine-free and chlorine-free residue contains 28.4wt% %CaO, 67.3 wt% SiO 2 , 0.63 wt % Al 2 O 3 and 1.1 wt % MgO;
(2)以共晶Mg-60.7wt%Si合金为精炼剂,将步骤(1)块状硅与精炼剂共晶Mg-60.7wt%Si合金混合后加热熔化形成过共晶Mg-Si熔体,在熔炼温度为1373K的条件下保温1h,采用提拉法生长单晶硅的方法对过共晶Mg-Si熔体中的硅进行分离和提纯得到纯度为99.99%的超冶金级硅和含微量(0.4wt%)杂质的共晶Mg-Si合金;含微量(0.4wt%)杂质的共晶Mg-Si合金可作为精炼剂循环使用;其中籽晶杆的提拉速度为1mm/min;(2) Using the eutectic Mg-60.7wt%Si alloy as the refining agent, the bulk silicon in step (1) is mixed with the refining agent eutectic Mg-60.7wt%Si alloy, and then heated and melted to form a hypereutectic Mg-Si melt , and kept for 1 h at a melting temperature of 1373K, using the pulling method to grow single crystal silicon to separate and purify the silicon in the hypereutectic Mg-Si melt to obtain supermetallurgical grade silicon with a purity of 99.99% and containing The eutectic Mg-Si alloy with trace (0.4wt%) impurities; the eutectic Mg-Si alloy containing trace (0.4wt%) impurities can be recycled as a refining agent; the pulling speed of the seed rod is 1mm/min;
(3)将步骤(2)纯度为99.99%的超冶金级硅(其中Mg杂质为60ppmw)经真空定向凝固去除Mg等杂质得到纯度为99.9993%的高纯硅;其中真空定向凝固的温度为1773K,真空度为10-4Pa,熔炼时间为1h,样品的定向移动速度为2μm/s;(3) supermetallurgical grade silicon with a purity of 99.99% in step (2) (wherein the Mg impurity is 60ppmw) is subjected to vacuum directional solidification to remove impurities such as Mg to obtain high-purity silicon with a purity of 99.9993%; wherein the temperature of vacuum directional solidification is 1773K , the vacuum degree is 10 -4 Pa, the melting time is 1h, and the directional movement speed of the sample is 2μm/s;
经检测,本实施例高纯硅中Al、Fe、Ti、Ca、Mg杂质含量分别为0.1ppmw、0.05ppmw、0.02ppmw、1.2ppmw、5ppmw。After testing, the impurity contents of Al, Fe, Ti, Ca, and Mg in the high-purity silicon of this embodiment are 0.1 ppmw, 0.05 ppmw, 0.02 ppmw, 1.2 ppmw, and 5 ppmw, respectively.
上面对本发明的具体实施例作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。The specific embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-mentioned embodiments, and within the scope of knowledge possessed by those of ordinary skill in the art, various changes can also be made without departing from the purpose of the present invention. .
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011458320.3A CN112456499B (en) | 2020-12-11 | 2020-12-11 | Method for preparing high-purity silicon by using silicon cutting waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011458320.3A CN112456499B (en) | 2020-12-11 | 2020-12-11 | Method for preparing high-purity silicon by using silicon cutting waste |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112456499A CN112456499A (en) | 2021-03-09 |
CN112456499B true CN112456499B (en) | 2022-08-26 |
Family
ID=74802912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011458320.3A Active CN112456499B (en) | 2020-12-11 | 2020-12-11 | Method for preparing high-purity silicon by using silicon cutting waste |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112456499B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113044845B (en) * | 2021-03-05 | 2022-11-11 | 昆明理工大学 | A method for efficient purification of silicon wafer cutting waste |
CN116282038B (en) * | 2023-04-04 | 2024-07-02 | 攀枝花学院 | Method for producing C54-TiSi2 by using diamond wire silicon wafer cutting waste and acid-soluble titanium slag |
CN118326161B (en) * | 2024-06-13 | 2024-08-13 | 昆明理工大学 | Method for preparing Si-Ti alloy solder and simultaneously recovering tungsten and vanadium by utilizing waste SCR catalyst and crystalline silicon waste |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102373351A (en) * | 2011-10-26 | 2012-03-14 | 昆明理工大学 | Method for preparing high-purity silicon and aluminum silicon alloy by electromagnetic method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07277722A (en) * | 1994-02-16 | 1995-10-24 | Sumitomo Chem Co Ltd | Silicon purification method |
CN104556045A (en) * | 2014-12-11 | 2015-04-29 | 中国科学院等离子体物理研究所 | Method for mechanically agitating and removing P from Si through Al-Si alloy melt |
CN109319788B (en) * | 2018-10-19 | 2020-06-12 | 厦门大学 | Method for preparing polycrystalline silicon by refining and directional solidification of silicon-aluminum-calcium alloy |
CN110304634A (en) * | 2019-07-05 | 2019-10-08 | 昆明理工大学 | A method for highly efficient and energy-saving purification of industrial silicon |
CN111792647B (en) * | 2020-07-21 | 2021-09-10 | 昆明理工大学 | Method for smelting silicon wafer cutting waste under micro-negative pressure |
-
2020
- 2020-12-11 CN CN202011458320.3A patent/CN112456499B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102373351A (en) * | 2011-10-26 | 2012-03-14 | 昆明理工大学 | Method for preparing high-purity silicon and aluminum silicon alloy by electromagnetic method |
Also Published As
Publication number | Publication date |
---|---|
CN112456499A (en) | 2021-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112456499B (en) | Method for preparing high-purity silicon by using silicon cutting waste | |
Yu et al. | Review of silicon recovery in the photovoltaic industry | |
Zhou et al. | Recovery and purification of metallic silicon from waste silicon slag in electromagnetic induction furnace by slag refining method | |
CN109052407A (en) | A method for recycling and purifying silicon cutting waste | |
CN103086378B (en) | Method for preparing solar polycrystalline silicon by using electro-thermal metallurgy of crystalline silicon cutting wastes | |
CN104894382B (en) | Recovery treatment method of electrolytic aluminum ash and refractory material lining waste | |
CN101792142A (en) | Method for recovering polysilicon ingots, carborundum powder and polyethylene glycol from cutting waste mortar | |
CN101671022B (en) | A method for recovering solar-grade polysilicon from mono/polysilicon cutting slurry | |
CN107572532A (en) | A kind of method of titanium silicon materials direct preparation of high-purity silicon and titanium silicon | |
CN110963493B (en) | Method for preparing super metallurgical grade silicon from crystalline silicon cutting waste | |
CN110257641A (en) | A method of silica-base material and low Fe eutectic Al-Si alloy are prepared using titanium-contained slag and scrap aluminium alloy | |
CN101372334A (en) | A kind of preparation method of high-purity silicon | |
CN104891500A (en) | Method for removing boron in metallurgical grade silicon | |
Wang et al. | Silicon recovery from silicon sawing waste by removal of SiC impurity via CaO–SiO2–Na2O slag absorption | |
Chen et al. | Al2O3 and CaO as sintering aids: A strategy to remove impurity boron and SiO2 surface-layer of diamond wire saw silicon waste | |
Hosseinpour et al. | Thermodynamics of boron removal in slag refining of Fe-Si alloy | |
CN110218874A (en) | A method of recycling in scrap silicon titanium in silicon and titanium-contained slag simultaneously using metallic aluminium | |
Yang et al. | A new strategy for de-oxidation of diamond-wire sawing silicon waste via the synergistic effect of magnesium thermal reduction and hydrochloric acid leaching | |
CN114477187B (en) | Method for extracting industrial silicon from aluminum-silicon-iron alloy | |
CN105274619B (en) | It is a kind of to strengthen the method for removing boron in metallurgical grade silicon | |
CN101775650B (en) | A kind of preparation method of solar polysilicon ingot | |
CN104291340B (en) | Method for removing phosphorus in industrial silicon | |
CN113247905A (en) | Method for refining and purifying industrial silicon by utilizing microalloying | |
CN115124041B (en) | A method of purifying polycrystalline silicon waste using waste glass from solar cells | |
CN101724902A (en) | Process for preparing solar-grade polysilicon by adopting high-temperature metallurgy method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |