CN112366236B - Light energy collecting microstructure, photosensitive element and optical device - Google Patents
Light energy collecting microstructure, photosensitive element and optical device Download PDFInfo
- Publication number
- CN112366236B CN112366236B CN202011292023.6A CN202011292023A CN112366236B CN 112366236 B CN112366236 B CN 112366236B CN 202011292023 A CN202011292023 A CN 202011292023A CN 112366236 B CN112366236 B CN 112366236B
- Authority
- CN
- China
- Prior art keywords
- nanoparticles
- nanoparticle
- light energy
- incident light
- dimers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 21
- 239000002105 nanoparticle Substances 0.000 claims abstract description 167
- 239000000539 dimer Substances 0.000 claims abstract description 72
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 claims abstract description 24
- 230000010287 polarization Effects 0.000 claims abstract description 16
- 230000008878 coupling Effects 0.000 claims abstract description 12
- 238000010168 coupling process Methods 0.000 claims abstract description 12
- 238000005859 coupling reaction Methods 0.000 claims abstract description 12
- 239000002082 metal nanoparticle Substances 0.000 claims description 5
- 230000005284 excitation Effects 0.000 claims description 4
- 238000009826 distribution Methods 0.000 description 7
- 238000003306 harvesting Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/40—Optical elements or arrangements
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本申请涉及光能量收集领域,特别是涉及一种光能量收集微结构、感光元件和光学器件。The present application relates to the field of light energy collection, in particular to a light energy collection microstructure, a photosensitive element and an optical device.
背景技术Background technique
43年前,第一台红宝石激光器诞生,由这台激光器引发、孕育出的光电技术给人类的生活带来了翻天覆地的变化。光电技术因其优异的性能特征得到了快速的发展,形成了一大批以光电技术为载体的产业,如光通信、光显示、光存储、太阳能电池等。无论是何种应用,都需要先收集入射光,再对收集到的入射光进行处理或转化。43 years ago, the first ruby laser was born. The optoelectronic technology triggered by this laser has brought earth-shaking changes to human life. Due to its excellent performance characteristics, optoelectronic technology has developed rapidly, forming a large number of industries based on optoelectronic technology, such as optical communication, optical display, optical storage, solar cells, etc. Regardless of the application, it is necessary to collect the incident light first, and then process or convert the collected incident light.
传统的光能量收集方法,利用感光元件的光电转换功能,将入射光传输至感光元件,由感光元件将接收到的光信号转化成电信号。由于收集过程中存在较大的光能量损耗,在确定的入射条件下,传统的感光元件可以用来转化成电信号的光信号受限,进而导致输出的电信号较弱。通常,需要在前端设计聚光结构以增大入射光能量,在后端设计放大电路对电信号进行放大后再输出。The traditional light energy harvesting method uses the photoelectric conversion function of the photosensitive element to transmit the incident light to the photosensitive element, and the photosensitive element converts the received light signal into an electrical signal. Due to the large loss of light energy in the collection process, under certain incident conditions, the light signals that can be converted into electrical signals by traditional photosensitive elements are limited, resulting in weaker output electrical signals. Usually, it is necessary to design a concentrating structure at the front end to increase the energy of the incident light, and design an amplifier circuit at the back end to amplify the electrical signal before outputting it.
因此,传统的感光元件,有能量收集效率低的缺点。Therefore, the traditional photosensitive element has the disadvantage of low energy collection efficiency.
发明内容Contents of the invention
基于此,有必要针对上述技术问题,提供一种能量收集效率高的光能量收集微结构、感光元件和光学器件。Based on this, it is necessary to provide a light energy collection microstructure, a photosensitive element and an optical device with high energy collection efficiency in order to solve the above technical problems.
第一方面,提供了一种光能量收集微结构,包括:In the first aspect, a light energy collection microstructure is provided, including:
纳米粒子二聚体阵列,所述纳米粒子二聚体阵列由周期排列的纳米粒子二聚体构成;所述纳米粒子二聚体的排列方向垂直于入射光的传播方向;所述纳米粒子二聚体中的第一纳米粒子和第二纳米粒子沿所述入射光的传播方向分布,且所述第一纳米粒子和所述第二纳米粒子在所述入射光偏振方向错位分布。A nanoparticle dimer array, the nanoparticle dimer array is composed of periodically arranged nanoparticle dimers; the arrangement direction of the nanoparticle dimers is perpendicular to the propagation direction of the incident light; the nanoparticle dimers The first nanoparticles and the second nanoparticles in the body are distributed along the propagating direction of the incident light, and the first nanoparticles and the second nanoparticles are dislocated in the polarization direction of the incident light.
在其中一个实施例中,所述第一纳米粒子和所述第二纳米粒子在所述入射光偏振方向的错位距离不超过所述纳米粒子二聚体之间的较小间距的一半。In one of the embodiments, the misalignment distance between the first nanoparticles and the second nanoparticles in the polarization direction of the incident light is not more than half of the smaller spacing between the nanoparticle dimers.
在其中一个实施例中,所述纳米粒子二聚体之间的间距为370nm-1000nm。In one embodiment, the distance between the nanoparticle dimers is 370nm-1000nm.
在其中一个实施例中,所述第一纳米粒子和所述第二纳米粒子在所述入射光传播方向紧密分布。In one of the embodiments, the first nanoparticles and the second nanoparticles are closely distributed in the direction of propagation of the incident light.
在其中一个实施例中,所述第一纳米粒子和所述第二纳米粒子的半径为10nm-100nm。In one embodiment, the radii of the first nanoparticles and the second nanoparticles are 10 nm-100 nm.
在其中一个实施例中,所述纳米粒子二聚体为惰性金属纳米粒子二聚体。In one embodiment, the nanoparticle dimer is an inert metal nanoparticle dimer.
在其中一个实施例中,所述纳米粒子二聚体中的纳米粒子的半径与晶格常数的比值为1:10-1:7。In one embodiment, the ratio of the radius of the nanoparticles in the nanoparticle dimer to the lattice constant is 1:10-1:7.
第二方面,提供了一种感光元件,包括上述的光能量收集微结构。In a second aspect, a photosensitive element is provided, including the above-mentioned light energy collection microstructure.
第三方面,提供了一种光学器件,包括上述的感光元件。In a third aspect, an optical device is provided, including the above-mentioned photosensitive element.
上述光能量收集微结构,包括纳米粒子二聚体阵列,该纳米粒子二聚体阵列由周期排列的纳米粒子二聚体构成。其中,纳米粒子二聚体的排列方向垂直于入射光的传播方向。纳米粒子二聚体中的两个纳米粒子沿入射光的传播方向分布,且在入射光偏振方向错位分布。在入射光的照射下,两个纳米粒子将同时被激发,形成电偶极振荡,产生局域表面等离激元共振,进而发生耦合促进表面等离激元共振增强现象,可以显著提高光能量收集效率。The light energy collection microstructure includes a nanoparticle dimer array, and the nanoparticle dimer array is composed of periodically arranged nanoparticle dimers. Wherein, the arrangement direction of the nanoparticle dimers is perpendicular to the propagation direction of the incident light. The two nanoparticles in the nanoparticle dimer are distributed along the propagating direction of the incident light, and are dislocated in the polarization direction of the incident light. Under the irradiation of incident light, the two nanoparticles will be excited at the same time, forming electric dipole oscillation, resulting in localized surface plasmon resonance, and then coupling to promote the enhancement of surface plasmon resonance, which can significantly increase the light energy. collection efficiency.
附图说明Description of drawings
图1为一个实施例中纳米粒子二聚体阵列的示意图;Fig. 1 is the schematic diagram of nanoparticle dimer array in one embodiment;
图2为一个实施例中表面等离激元共振吸收光谱的示意图;2 is a schematic diagram of a surface plasmon resonance absorption spectrum in an embodiment;
图3为一个实施例中共振模式下纳米粒子二聚体正负电荷分布的示意图;Fig. 3 is a schematic diagram of the positive and negative charge distribution of nanoparticle dimers in resonance mode in one embodiment;
图4为一个实施例中纳米粒子二聚体在三种共振模式下的空间相位分布和光能流收集的示意图。Fig. 4 is a schematic diagram of spatial phase distribution and optical energy flow collection of nanoparticle dimers in three resonance modes in one embodiment.
具体实施方式Detailed ways
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。In order to facilitate the understanding of the present application, the present application will be described more fully below with reference to the relevant drawings. Embodiments of the application are given in the drawings. However, the present application can be embodied in many different forms and is not limited to the embodiments described herein. On the contrary, the purpose of providing these embodiments is to make the disclosure of this application more thorough and comprehensive.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field to which this application belongs. The terms used herein in the specification of the application are only for the purpose of describing specific embodiments, and are not intended to limit the application.
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一纳米粒子称为第二纳米粒子,且类似地,可将第二纳米粒子称为第一纳米粒子。第一纳米粒子和第二纳米粒子都是纳米粒子,但其不是同一纳米粒子。It can be understood that the terms "first", "second" and the like used in this application may be used to describe various elements herein, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element. For example, a first nanoparticle could be termed a second nanoparticle, and, similarly, a second nanoparticle could be termed a first nanoparticle, without departing from the scope of the present application. The first nanoparticle and the second nanoparticle are both nanoparticles, but they are not the same nanoparticle.
可以理解,以下实施例中的“连接”,如果被连接的电路、模块、单元等相互之间具有光信号或数据的传递,则应理解为“光连接”、“光学连接”等。It can be understood that "connection" in the following embodiments should be understood as "optical connection", "optical connection" and the like if the connected circuits, modules, units, etc. have optical signal or data transmission between each other.
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中使用的术语“和/或”包括相关所列项目的任何及所有组合。When used herein, the singular forms "a", "an" and "the/the" may also include the plural forms unless the context clearly dictates otherwise. It should also be understood that the terms "comprising/comprising" or "having" etc. specify the presence of stated features, integers, steps, operations, components, parts or combinations thereof, but do not exclude the presence or addition of one or more The possibility of other features, integers, steps, operations, components, parts or combinations thereof. Meanwhile, the term "and/or" used in this specification includes any and all combinations of the related listed items.
在一个实施例中,提供了一种光能量收集微结构,包括:纳米粒子二聚体阵列,该纳米粒子二聚体阵列由周期排列的纳米粒子二聚体构成;该纳米粒子二聚体的排列方向和垂直于入射光的传播方向;该纳米粒子二聚体中的第一纳米粒子和第二纳米粒子沿入射光的传播方向分布,且第一纳米粒子和第二纳米粒子在入射光偏振方向错位分布。In one embodiment, a light energy collection microstructure is provided, comprising: a nanoparticle dimer array, the nanoparticle dimer array is composed of periodically arranged nanoparticle dimers; the nanoparticle dimer The arrangement direction and the propagation direction perpendicular to the incident light; the first nanoparticles and the second nanoparticles in the nanoparticle dimer are distributed along the propagation direction of the incident light, and the first nanoparticles and the second nanoparticles are polarized in the incident light Directional misalignment distribution.
其中,纳米粒子又称超细微粒,是由数目不多的原子或分子组成的集团。可以认为纳米粒子表面原子的状态更接近气态,而粒子内部的原子可能呈有序的排列。纳米粒子二聚体是指由两个纳米粒子构成的整体。表面等离激元是指材料表面区域的一种自由电子和光子相互作用的形成的电磁振荡。表面等离激元共振是指表面等离激元沿界面方向传播的现象。纳米粒子的特殊结构使其具有一些特殊的物理化学特性。在光场的激励下,纳米粒子中的自由电子集体振动,与晶格内的正电荷形成电偶极子产生局域表面等离激元共振。第一纳米粒子和第二纳米粒子沿所述入射光的传播方向分布,是指入射光不能同时到达第一纳米粒子和第二纳米粒子,即二者在入射光的传播方向上存在错位,具体包括:第一纳米粒子与第二纳米粒子在入射光的偏振方向的投影之间间隔一定的距离、相切或重叠。第一纳米粒子和第二纳米粒子在入射光偏振方向错位分布,是指第一纳米粒子与第二纳米粒子的中心连线与入射光的传播方向不重合。Among them, nanoparticles, also known as ultrafine particles, are groups composed of a small number of atoms or molecules. It can be considered that the state of atoms on the surface of nanoparticles is closer to the gas state, while the atoms inside the particles may be arranged in an orderly manner. A nanoparticle dimer refers to a whole composed of two nanoparticles. Surface plasmons are electromagnetic oscillations formed by the interaction of free electrons and photons in the surface region of a material. Surface plasmon resonance refers to the phenomenon that surface plasmons propagate along the direction of the interface. The special structure of nanoparticles makes them have some special physical and chemical properties. Under the excitation of the light field, the free electrons in the nanoparticles vibrate collectively, and form electric dipoles with the positive charges in the lattice to produce localized surface plasmon resonance. The distribution of the first nanoparticles and the second nanoparticles along the propagation direction of the incident light means that the incident light cannot reach the first nanoparticles and the second nanoparticles at the same time, that is, there is a dislocation between the two in the propagation direction of the incident light, specifically Including: the projections of the first nanoparticle and the second nanoparticle in the polarization direction of the incident light are separated by a certain distance, tangent or overlapping. The dislocation distribution of the first nanoparticles and the second nanoparticles in the polarization direction of the incident light means that the connecting line between the centers of the first nanoparticles and the second nanoparticles does not coincide with the propagating direction of the incident light.
具体的,请参考图1,为一个典型的纳米粒子二聚体阵列。图1中,E为入射光的偏振方向,k为入射光的传播方向。纳米粒子二聚体100的排列方向为x和y,垂直于入射光的传播方向k。其中E与x方向重合,k与z方向重合。两个纳米粒子二聚体之间在x方向的间距为Px,在y方向的间距为Py。每组纳米粒子二聚体100均由成对的第一纳米粒子110和第二纳米粒子120组成。第一纳米粒子110和第二纳米粒子120在入射光偏振方向错位距离为Sx。可以理解,第一纳米粒子110相对于第二纳米粒子120,可以沿x的正方向错位,也可以沿x的负方向错位,如图1中,即为第一纳米粒子110相对于第二纳米粒子120,沿x的正方向错位的情况。Specifically, please refer to FIG. 1 , which is a typical nanoparticle dimer array. In Figure 1, E is the polarization direction of the incident light, and k is the propagation direction of the incident light. The
在入射光光场的激励下,纳米粒子二聚体100中的第一纳米粒子110和第二纳米粒子120分别被激发,形成电偶极子,产生第一局域表面等离激元共振和第二局域表面等离激元共振。由于第一纳米粒子110和第二纳米粒子120在入射光的偏振方向存在错位,两个粒子的局域表面等离激元共振可以通过光栅耦合模式实现在晶格常数范围内的共振光谱调制,发生表面等离激元共振增强现象,实现稳定的光能量持续环流,提高光能量收集效率。可以理解,制作纳米粒子的材料,可以是金属,也可以是石墨烯;纳米粒子的形状,可以是球形,也可以是椭球形,还可以是圆锥形;可以采用半导体工艺制作凹槽,再将纳米粒子放入凹槽,也可以使用飞秒激光直接制作出阵列分布的纳米粒子二聚体阵列。总之,本实施例对纳米粒子的材料、形状以及制作方法不作限定。Under the excitation of the incident light field, the
上述光能量收集微结构,包括纳米粒子二聚体阵列,该纳米粒子二聚体阵列由周期排列的纳米粒子二聚体构成。其中,纳米粒子二聚体的排列方向垂直于入射光的传播方向。纳米粒子二聚体中的两个纳米粒子沿入射光的传播方向分布,且在入射光的偏振方向存在错位。在入射光的照射下,两个纳米粒子将同时被激发,形成电偶极振荡,产生局域表面等离激元共振,进而发生耦合促进表面等离激元共振增强现象,实现稳定的光能量持续环流,可以显著提高光能量收集效率。此外,由于光能量收集效率的提高,无需在后端增加信号放大功能模块,可以简化器件结构,降低体积和制作成本,加快器件小型化进程。The light energy collection microstructure includes a nanoparticle dimer array, and the nanoparticle dimer array is composed of periodically arranged nanoparticle dimers. Wherein, the arrangement direction of the nanoparticle dimers is perpendicular to the propagation direction of the incident light. The two nanoparticles in the nanoparticle dimer are distributed along the propagating direction of the incident light, and there is a dislocation in the polarization direction of the incident light. Under the irradiation of incident light, the two nanoparticles will be excited at the same time, forming electric dipole oscillation, generating localized surface plasmon resonance, and then coupling to promote the enhancement of surface plasmon resonance to achieve stable light energy. The continuous circulation can significantly improve the light energy collection efficiency. In addition, due to the improvement of light energy collection efficiency, there is no need to add a signal amplification function module at the back end, which can simplify the device structure, reduce the volume and production cost, and accelerate the miniaturization process of the device.
在一个实施例中,请继续参考图1,第一纳米粒子110和第二纳米粒子120在入射光传播方向k紧密分布。In one embodiment, please continue to refer to FIG. 1 , the
具体的,如图1所示,第一纳米粒子和第二纳米粒子在入射光传播方向紧密分布,是指第一纳米粒子110与第二纳米粒子120的公切线L垂直于入射光的传播方向z。Specifically, as shown in FIG. 1 , the first nanoparticles and the second nanoparticles are closely distributed in the propagation direction of the incident light, which means that the common tangent L between the
上述实施例中,第一纳米粒子和第二纳米粒子在入射光传播方向紧密分布,可以降低工艺难度,进而降低制作成本。In the above embodiments, the first nanoparticles and the second nanoparticles are closely distributed in the direction of incident light propagation, which can reduce the difficulty of the process and further reduce the production cost.
在一个实施例中,第一纳米粒子和第二纳米粒子的半径为10nm-100nm。In one embodiment, the radii of the first nanoparticles and the second nanoparticles are 10 nm-100 nm.
具体的,第一纳米粒子和第二纳米粒子的半径可以相同,也可以不相同,只需半径在10nm-100nm范围内即可。例如,第一纳米粒子和/或第二纳米粒子的半径可以为10nm、20nm、40nm、50nm、70nm、80nm或100nm。Specifically, the radii of the first nanoparticle and the second nanoparticle may be the same or different, as long as the radii are within the range of 10nm-100nm. For example, the first nanoparticles and/or the second nanoparticles may have a radius of 10 nm, 20 nm, 40 nm, 50 nm, 70 nm, 80 nm or 100 nm.
上述实施例中,选择合适的尺寸作为纳米粒子的半径,可以提升局部表面等离激元共振耦合的效果,提高光能量收集效率。In the above embodiments, choosing an appropriate size as the radius of the nanoparticle can improve the effect of local surface plasmon resonance coupling and improve the light energy collection efficiency.
在一个实施例中,纳米粒子二聚体之间的间距为370nm-1000nm。In one embodiment, the spacing between nanoparticle dimers is 370nm-1000nm.
如上文所述,纳米粒子二聚体在x方向的间距为Px,在y方向的间距为Py。其中,Px和Py可以相同也可以不相同。进一步的,可以在370nm-1000nm的范围内,选择任意一个数值作为纳米粒子二聚体之间的间距。例如,该间距可以是370nm、400nm、500nm、700nm、850nm或1000nm。进一步的,当入射光为单色光时,可以选择与入射光波长相等的数值作为纳米粒子二聚体之间的间距。例如,当入射光波长为532nm时,可以选择532nm作为纳米粒子二聚体之间的间距。As mentioned above, the nanoparticle dimers have a pitch of P x in the x direction and a pitch of P y in the y direction. Wherein, P x and P y may or may not be the same. Further, within the range of 370nm-1000nm, any value can be selected as the distance between nanoparticle dimers. For example, the pitch may be 370nm, 400nm, 500nm, 700nm, 850nm or 1000nm. Further, when the incident light is monochromatic light, a value equal to the wavelength of the incident light can be selected as the distance between nanoparticle dimers. For example, when the incident light wavelength is 532nm, 532nm can be selected as the distance between nanoparticle dimers.
上述实施例中,选择合适的尺寸作为纳米粒子二聚体之间的间距,可以提升局部表面等离激元共振耦合的效果,提高光能量收集效率。在一个实施例中,请继续参考图1,第一纳米粒子110和第二纳米粒子120在入射光偏振方向E的错位距离为Sx不超过纳米粒子二聚体之间的较小间距的一半。In the above embodiments, choosing an appropriate size as the distance between nanoparticle dimers can improve the effect of local surface plasmon resonance coupling and improve the light energy collection efficiency. In one embodiment, please continue to refer to FIG. 1 , the misalignment distance between the
如上文所述,在两个周期排列的方向上,纳米粒子二聚体之间的间距Px和Py可能不相等。在Px和Py不相等时,错位距离Sx不超过Px和Py中较小值的一半,可以避免相邻的两个纳米粒子二聚体互相干扰,有利于形成稳定的表面等离激元共振,进一步提高光能量收集效率。As mentioned above, the spacings P x and P y between nanoparticle dimers may not be equal in the two periodic alignment directions. When P x and P y are not equal, the dislocation distance S x does not exceed half of the smaller value of P x and P y , which can avoid the mutual interference of two adjacent nanoparticle dimers, and is conducive to the formation of stable surfaces, etc. The ion polariton resonance further improves the light energy collection efficiency.
在一个实施例中,纳米粒子二聚体为惰性金属纳米粒子二聚体。In one embodiment, the nanoparticle dimer is an inert metal nanoparticle dimer.
具体的,惰性金属是指不能将氢化物中的氢元素置换出来的金属,即元素周期表中排在氢之后的金属。具体的,惰性金属材料包括金、银和铂金等。由于惰性金属材料的优异光学性能,当激发光波长在可见光及部分近红外区域时,均能产生局域表面等离激元共振,进而发生耦合发生表面等离激元共振增强现象,可以显著提高光能量收集效率。Specifically, an inert metal refers to a metal that cannot replace the hydrogen element in the hydride, that is, a metal that ranks after hydrogen in the periodic table of elements. Specifically, the inert metal material includes gold, silver, platinum and the like. Due to the excellent optical properties of inert metal materials, when the excitation light wavelength is in the visible light and part of the near-infrared region, localized surface plasmon resonance can be generated, and then the phenomenon of coupling surface plasmon resonance enhancement occurs, which can significantly improve Light energy harvesting efficiency.
上述实施例中,使用惰性金属纳米粒子二聚体,可以增大光能量收集微结构的适用波长范围,使器件的应用场景更加灵活。In the above embodiments, the use of dimers of inert metal nanoparticles can increase the applicable wavelength range of the light energy harvesting microstructure, making the application scenarios of the device more flexible.
在一个实施例中,纳米粒子二聚体中的纳米粒子的半径与纳米粒子二聚体之间的间距的比值为1:10-1:7。In one embodiment, the ratio of the radius of the nanoparticles in the nanoparticle dimers to the distance between the nanoparticle dimers is 1:10-1:7.
具体的,确定了纳米粒子的半径和纳米粒子二聚体之间的间距的其中一个参数后,可以在1:10-1:7的范围内选择一个任意的比值,再根据该比值确定另外一个参数。例如,纳米粒子二聚体之间的间距Px和Py均为532nm时,选择1:10、1:9、1:8和1:7作为半径与晶格常数的比值时,得出的纳米粒子的半径分别为53.2nm、59.1nm、66.5nm和76nm。Specifically, after determining one of the parameters of the radius of the nanoparticle and the distance between the nanoparticle dimers, an arbitrary ratio can be selected within the range of 1:10-1:7, and then another one can be determined according to the ratio. parameter. For example, when the spacing P x and P y between nanoparticle dimers are both 532nm, when 1:10, 1:9, 1:8 and 1:7 are selected as the ratio of radius to lattice constant, the obtained The radii of the nanoparticles are 53.2 nm, 59.1 nm, 66.5 nm and 76 nm, respectively.
上述实施例中,通过限定纳米粒子二聚体中的纳米粒子的半径与纳米粒子二聚体之间的间距的比值,可以提升局部表面等离激元共振耦合的效果,提高光能量收集效率。In the above embodiments, by limiting the ratio of the radius of the nanoparticles in the nanoparticle dimers to the distance between the nanoparticle dimers, the effect of local surface plasmon resonance coupling can be improved and the light energy collection efficiency can be improved.
在一个实施例中,纳米粒子的材料为银,纳米粒子半径为90nm,纳米粒子二聚体之间的间距为630nm,水平方向错位为120nm,入射光波长范围为500nm-800nm。入射光沿着竖直k方向传播,偏振方向E与水平方向重合。In one embodiment, the material of the nanoparticles is silver, the radius of the nanoparticles is 90nm, the distance between dimers of the nanoparticles is 630nm, the dislocation in the horizontal direction is 120nm, and the wavelength range of the incident light is 500nm-800nm. The incident light propagates along the vertical k direction, and the polarization direction E coincides with the horizontal direction.
入射平面光沿着竖直方向传播照射到光能量收集微结构上,会同时激发多种共振模式。如图2为本实施例的表面等离激元共振吸收光谱。其中,横坐标为波长,纵坐标为归一化吸收率。由图2可以看出,本实施例的光能量收集微结构有三个明显共振吸收峰,对应吸收波长分别为648nm,665nm和748nm。The incident planar light propagates along the vertical direction and irradiates the light energy harvesting microstructure, which will simultaneously excite multiple resonance modes. Figure 2 is the surface plasmon resonance absorption spectrum of this embodiment. Wherein, the abscissa is the wavelength, and the ordinate is the normalized absorbance. It can be seen from FIG. 2 that the light energy harvesting microstructure of this embodiment has three obvious resonant absorption peaks, corresponding to absorption wavelengths of 648nm, 665nm and 748nm.
图3为本实施例共振模式下的纳米粒子二聚体正负电荷分布示意。可以看出648nm,665nm和748nm吸收峰分别对应了横向共振模式,局域共振模式以及纵向共振模式。局域共振模式下与单个纳米粒子电偶极子振荡情况一致,两个纳米粒子之间并未发生等离激元耦合现象。横向共振模式下的电偶极距方向与入射光偏振方向垂直,纵向共振模式下的电偶极矩方向与入射光偏振方向一致,这两种共振模式均来源于两个纳米粒子之间的等离激元耦合。FIG. 3 is a schematic diagram of the positive and negative charge distribution of the nanoparticle dimer in the resonance mode of this embodiment. It can be seen that the absorption peaks at 648nm, 665nm and 748nm correspond to the transverse resonance mode, local resonance mode and longitudinal resonance mode, respectively. The local resonance mode is consistent with the electric dipole oscillation of a single nanoparticle, and the plasmon coupling phenomenon does not occur between the two nanoparticles. The direction of the electric dipole moment in the transverse resonance mode is perpendicular to the polarization direction of the incident light, and the direction of the electric dipole moment in the longitudinal resonance mode is consistent with the polarization direction of the incident light. from excitonic coupling.
图4为本实施例的纳米粒子二聚体在三种共振模式下的空间相位分布和光能流收集示意图。从图4可以直观看出,横向模式和纵向模式中出现了明显的相位翻转现象,这说明纳米粒子周围的光能量会受到方向调制。此外,可以看出纳米粒子周围光能流以涡旋形式集中在金属纳米粒子表面附近区域,正向反向均可实现稳定的光能量持续环流,因此表面等离激元光能量损失较小。FIG. 4 is a schematic diagram of the spatial phase distribution and optical energy flow collection of the nanoparticle dimer in the three resonance modes of this embodiment. It can be seen intuitively from Figure 4 that there is an obvious phase reversal phenomenon in the transverse mode and the longitudinal mode, which indicates that the light energy around the nanoparticles will be directional modulated. In addition, it can be seen that the light energy flow around the nanoparticles is concentrated in the area near the surface of the metal nanoparticles in the form of a vortex, and stable light energy can be continuously circulated in both forward and reverse directions, so the loss of surface plasmon light energy is small.
上述实施例中,通过选择合适的纳米粒子二聚体之间的间距,纳米粒子的材料、半径、以及水平方向错位,可以实现局部表面等离激光的三种共振模式,实现光能量的调制和光能量的持续环流,有利于减小光能量损失,提高能量收集效率。In the above-mentioned embodiments, by selecting the appropriate spacing between nanoparticle dimers, the material, radius, and horizontal dislocation of the nanoparticles, the three resonance modes of the local surface plasmon laser can be realized, and the modulation of light energy and light The continuous circulation of energy is beneficial to reduce the loss of light energy and improve the efficiency of energy collection.
在一个实施例中,提供了一种感光元件,上述任意实施例所述的光能量收集微结构。In one embodiment, there is provided a photosensitive element, the light energy collection microstructure described in any embodiment above.
其中,感光元件是指用于收集光信号的元件。感光元件可以是电荷耦合元件,也可以是互补金属氧化物半导体器件,还可以包括其他类型的器件。本实施例对感光元件的具体类型不作限定。具体的,可以将光能量收集微结构嵌入到感光元件中,通过光学和电学连接与其他微结构协调作用,实现光信号的收集与转换功能。关于光能量收集微结构的具体限定可以参见上文,在此不再赘述。Wherein, the photosensitive element refers to an element for collecting light signals. The photosensitive element may be a charge-coupled element, or a complementary metal-oxide-semiconductor device, or other types of devices. In this embodiment, the specific type of the photosensitive element is not limited. Specifically, the optical energy harvesting microstructure can be embedded in the photosensitive element, and it can be coordinated with other microstructures through optical and electrical connections to realize the collection and conversion of optical signals. The specific limitations of the light energy harvesting microstructure can be referred to above, and will not be repeated here.
在一个实施例中,提供了一种光学器件,包括上述任意实施例所述的感光元件。In one embodiment, an optical device is provided, including the photosensitive element described in any of the above embodiments.
其中,光学器件包括但不限于纳米激光器、量子存储计算机、光能电池以及降速光导通讯。总之,本实施例对光学器件的种类不作限制。关于感光元件的具体限定可以参见上文,在此不再赘述。Among them, optical devices include but are not limited to nano-lasers, quantum storage computers, solar cells, and slow-down photoconductive communications. In a word, this embodiment does not limit the type of the optical device. The specific limitations of the photosensitive element can be referred to above, and will not be repeated here.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, they should be It is considered to be within the range described in this specification.
以上该实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above example only expresses several implementation modes of the present application, and the description thereof is relatively specific and detailed, but it should not be understood as limiting the scope of the patent for the invention. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the scope of protection of the patent application should be based on the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011292023.6A CN112366236B (en) | 2020-11-18 | 2020-11-18 | Light energy collecting microstructure, photosensitive element and optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011292023.6A CN112366236B (en) | 2020-11-18 | 2020-11-18 | Light energy collecting microstructure, photosensitive element and optical device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112366236A CN112366236A (en) | 2021-02-12 |
CN112366236B true CN112366236B (en) | 2023-02-28 |
Family
ID=74532546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011292023.6A Active CN112366236B (en) | 2020-11-18 | 2020-11-18 | Light energy collecting microstructure, photosensitive element and optical device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112366236B (en) |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7772013B2 (en) * | 2006-08-21 | 2010-08-10 | Virginia Tech Intellectual Properties, Inc. | Enhancement of second-order non-linear optical susceptibilities in organic film materials using non-centrosymmetric nanoparticles |
EP2504687B1 (en) * | 2009-11-25 | 2017-04-05 | University of Maryland, Baltimore County | System for detecting metal enhanced fluorescence from metallic nanoburger structures |
EP2694949A1 (en) * | 2011-04-05 | 2014-02-12 | Integrated Plasmonics Corporation | Integrated plasmonic sensing device and apparatus |
US20140175546A1 (en) * | 2012-11-06 | 2014-06-26 | The Regents Of The University Of California | Plasmonically enhanced electro-optic devices and methods of production |
CN103808691A (en) * | 2014-02-19 | 2014-05-21 | 中国科学院半导体研究所 | Asymmetric Au particle array and FPcavity coupled refractive index sensor |
WO2018162742A1 (en) * | 2017-03-10 | 2018-09-13 | Universität Duisburg-Essen | Efficient ligand exchange of a detergent bilayer on the surface of metal nanoparticles for molecular functionalization and assembly, corresponding functionalized nanoparticles and nanoparticle assemblies, and their use in plasmonic applications including surface-enhanced raman spectroscopy |
US10566094B2 (en) * | 2017-08-03 | 2020-02-18 | Google Inc. | Enhanced electron screening through plasmon oscillations |
JP6661871B2 (en) * | 2017-10-11 | 2020-03-11 | 惠子 江刺家 | Method for producing noble metal nanoparticle multimer, method for recovering noble metal nanoparticle isomer, method for controlling absorption spectrum of noble metal nanoparticle isomer, and method for controlling optical characteristics of noble metal nanoparticle isomer |
JP7349121B2 (en) * | 2018-03-02 | 2023-09-22 | 国立大学法人東京農工大学 | Thermoelectric conversion elements, photodetectors, image elements, and photothermoelectric conversion elements |
CN108803088A (en) * | 2018-05-31 | 2018-11-13 | 上海理工大学 | The transflector integral type converter of light polarization control based on super surface |
CN113544086A (en) * | 2019-03-29 | 2021-10-22 | 松下知识产权经营株式会社 | Optical device, photoelectric conversion device, and fuel generating device |
CN111122517A (en) * | 2020-01-07 | 2020-05-08 | 沈阳大学 | A sensor based on asymmetric nanoparticle dimer micro-nano structure |
CN111552014B (en) * | 2020-05-17 | 2022-04-29 | 桂林电子科技大学 | A Transverse MIM Lattice Plasmon Absorber |
-
2020
- 2020-11-18 CN CN202011292023.6A patent/CN112366236B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112366236A (en) | 2021-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Masoudian Saadabad et al. | Polarization-independent perfect absorber enabled by quasibound states in the continuum | |
Xiao et al. | Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures | |
Liu et al. | Ultra-directional forward scattering by individual core-shell nanoparticles | |
CN102315290B (en) | Full-spectrum absorption enhanced hydrogenated amorphous silicon thin-film solar cell | |
Ghanim et al. | Highly directive hybrid Yagi-Uda nanoantenna for radition emission enhancement | |
WO2011028179A1 (en) | A plasmonic detector and method for manufacturing the same | |
Liu et al. | Spoof surface plasmons arising from corrugated metal surface to structural dispersion waveguide | |
Xiong et al. | Strongly enhanced and directionally tunable second-harmonic radiation from a plasmonic particle-in-cavity nanoantenna | |
Li et al. | Epsilon-near-zero Metamaterials | |
Nie et al. | Extreme absorption enhancement in ZnTe: O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas | |
CN112366236B (en) | Light energy collecting microstructure, photosensitive element and optical device | |
KR101738877B1 (en) | Plasmonic integrated circuit and method for making the integrated circuit | |
Jia | Nanophotonics silicon solar cells: status and future challenges | |
Hu et al. | Broadband absorption and efficient hot-carrier photovoltaic conversion based on sunlight-induced non-radiative decay of propagating surface plasmon polaritons | |
Yin et al. | Tailoring third harmonic generation from anapole mode in a metal-dielectric hybrid nanoantenna | |
CN102928927B (en) | Terahertz wave polarizing beam splitter with polygonal liquid crystal cell structure | |
Bahari et al. | High-quantum efficiency of the plasmonic photodetectors-based on coupling between Ag nanoparticles and Ag nanograting electrodes | |
Kumar et al. | Recent Advances and Trends in Photonic Crystal Technology | |
Rodhuan et al. | Size dependency of CdSe for light harvesting in quantum dots solar cell using COMSOL multiphysics | |
Fang et al. | Kerker effects and bound states in the continuum in PT-symmetric dielectric metasurfaces | |
Atwater | Bending light to our will | |
Zhang et al. | Design and Analysis of Asymmetric Capsule-Shaped Metallic Cavities for Unidirectional Waveguide Coupling | |
Li | Design and Applications of Nanoscale Light Sources | |
CN115291324B (en) | A silicon-based all-photodiode | |
Liu et al. | Light Trapping in Single Elliptical Nanowires |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |