[go: up one dir, main page]

CN112321677A - Nannocystin A的类似物及其制备方法和应用 - Google Patents

Nannocystin A的类似物及其制备方法和应用 Download PDF

Info

Publication number
CN112321677A
CN112321677A CN202011145310.4A CN202011145310A CN112321677A CN 112321677 A CN112321677 A CN 112321677A CN 202011145310 A CN202011145310 A CN 202011145310A CN 112321677 A CN112321677 A CN 112321677A
Authority
CN
China
Prior art keywords
compound
reaction
nannocystin
group
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011145310.4A
Other languages
English (en)
Inventor
叶涛
郭益安
廖林萍
廖晓云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Qianyan Pharmaceutical R&d Technology Co ltd
Peking University Shenzhen Graduate School
Original Assignee
Shenzhen Qianyan Pharmaceutical R&d Technology Co ltd
Peking University Shenzhen Graduate School
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Qianyan Pharmaceutical R&d Technology Co ltd, Peking University Shenzhen Graduate School filed Critical Shenzhen Qianyan Pharmaceutical R&d Technology Co ltd
Priority to CN202011145310.4A priority Critical patent/CN112321677A/zh
Publication of CN112321677A publication Critical patent/CN112321677A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0812Tripeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0808Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种Nannocystin A的类似物及其制备方法和应用。Nannocystin A的类似物其分子结构式如下述通式Ⅰ所示,其中,通式Ⅰ中的R为‑H、C1‑C15的烷基、芳基、C1‑C15的烷氧基、卤素、羟基、氨基、硝基、氰基、巯基中的任一种。本发明Nannocystin A的类似物的结构简单,具有抑制癌细胞活性的生物作用,而且能够通过调节所含R的种类,能够优化其生物活性。本发明Nannocystin A的类似物进一步确证了构效关系,并为寻找抗癌活性更好的类化合物打下良好的基础。其制备方法合成路线短,目标得率高,副产物少。

Description

Nannocystin A的类似物及其制备方法和应用
技术领域
本发明属于有机合成与药物化学技术领域,具体涉及一种Nannocystin A的类似物及其制备方法和应用。
背景技术
2015年,Mark Bronstrup(Holger Hoffmann,et al.Angew.Chem.Int.Ed.2015,54,10145-10148)等人从myxobacterial genus,Nannocystis sp.中分离得到的一种大环脂肽类化合物Nannocystin A,该分子具有一个新型的21元环骨架,其中包含一个三肽和一个带有环氧酰胺的聚酮片段。2016年9月,本课题组(Tao Ye,etal.Angew.Chem.Int.Ed.2016,55,13263–13266)完成该分子的首次全合成。
在生物活性测试方面,文章显示Nannocystin A不仅有很强的抗菌活性,而且可在纳摩尔级别通过诱导细胞凋亡而抑制细胞增殖。同年7月,Dominic Hoepfner(PhilippKrastel,et al.Angew.Chem.Int.Ed.2015,54,10149–10154)等人发表相关文章进一步描述了该分子的特性,并确定了该分子的生物合成基因簇。在针对该分子的生物学研究中,Dominic Hoepfner博士等人认为Nannocystin A的高生物活性是通过真核生物翻译延长因子1α起作用。因此,在对该分子构效关系方面的描述,两篇文献的结论并不十分一致。
因此,基于该分子构效关系的相关争议及希望能够进一步提高化合物的活性和稳定性,亦或是在保持Nannocystin A活性的情况下简化其结构,用于生物活性测试,为后续寻找新型抗癌药物提供可能。
另外,由于Nannocystin A为天然产物,但是天然产物的来源比较有限,通过分离提取很难获得足够量的化合物以供后续药理和毒理的研究。因此,对该分子类似物的人工合成和构效关系的进一步确证显得尤为重要,并且探索其进一步成药的可能性。
发明内容
本发明的目的在于克服现有技术的上述不足,提供一种Nannocystin A的类似物及其制备方法和应用,以解决进一步探讨人工合成和构效关系,并解决天然产物的来源有限的技术问题。
为了实现上述发明目的,本发明的一方面,提供了一种Nannocystin A的类似物。所述Nannocystin A的类似物的其分子结构式如下述通式Ⅰ所示:
Figure BDA0002739539460000021
其中,通式Ⅰ中的R为-H、C1-C15的烷基、芳基、C1-C15的烷氧基、卤素、羟基、氨基、硝基、氰基、巯基中的任一种。
本发明的另一方面,提供了一种Nannocystin A的类似物的制备方法。所述Nannocystin A的类似物的制备方法包括如下步骤:
将如下化合物A进行第一脱保护基团反应以脱除-TBS基团和-TMSE基团,生成化合物B;
将所述化合物B与化合物C进行第一酰胺化反应,生成关环前体D;
将所述关环前体D进行Suzuki偶联反应,生成目标产物Ⅰ;其中,所述目标产物Ⅰ为权利要求1-4任一项所述的Nannocystin A的类似物;
所述Nannocystin A的类似物的制备方法合成路线如下:
Figure BDA0002739539460000022
本发明的再一方面,提供了本发明Nannocystin A的类似物和/或所述类似物的药学上可接受的盐在制备治疗结肠癌药物或治疗结肠癌的辅助药物中的应用。
与现有技术相比,本发明Nannocystin A的类似物的结构简单,具有与Nannocystin A近似的抑制细胞的生物活性,而且能够通过调节所含R的种类,能够优化其生物活性,如能够优化其抑制癌症细胞活性的生物作用。本发明Nannocystin A的类似物进一步确证了构效关系,并为寻找抗癌活性更好的Nannocystin A类化合物打下良好的基础。
本发明Nannocystin A的类似物的制备方法能够有效人工合成,在有效保证制备的Nannocystin A的类似物结构稳定和良好生物活性的基础上,其制备方法合成路线短,目标产率高,副产物少。
由于Nannocystin A类似物具有与Nannocystin A相似的骨架结构,并且通过调节所含的R基团可优化其抑制癌细胞增殖的生物活性,使得本发明Nannocystin A的类似物和/或类似物的药学上可接受的盐能够在制备治疗癌症药物或治疗癌症的辅助药物中的应用。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例Nannocystin A的类似物制备方法流程示意图;
图2为本发明实施例化合物Ⅰa对HCT116、HT29、SMMC7721、Hep3B癌细胞的抑制率曲线图;
图3为本发明实施例化合物Ⅰb对HCT116、HT29、SMMC7721、Hep3B癌细胞的抑制率曲线图;
图4为本发明实施例化合物Ⅰc对HCT116、HT29、SMMC7721、Hep3B癌细胞的抑制率曲线图;
图5为本发明实施例化合物Ⅰd对HCT116、HT29、SMMC7721、Hep3B癌细胞的抑制率曲线图;
图6为本发明实施例化合物Ⅰe对HCT116、HT29、SMMC7721、Hep3B癌细胞的抑制率曲线图;
图7为本发明实施例化合物Ⅰf对HCT116、HT29、SMMC7721、Hep3B癌细胞的抑制率曲线。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本申请实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请实施例说明书公开的范围之内。具体地,本申请实施例说明书中的质量可以是μg、mg、g、kg等化工领域公知的质量单位。
一方面,本发明实施例提供了一种Nannocystin A的类似物。所述Nannocystin A的类似物的分子结构式如下述通式Ⅰ所示:
Figure BDA0002739539460000041
其中,通式Ⅰ中的R为-H、C1-C15的烷基、芳基、C1-C15的烷氧基、卤素、羟基(-OH)、氨基(-NH2)、硝基(-NO2)、氰基(-CN)、巯基(-SH)中的任一种。
由于本发明实施例Nannocystin A的类似物具有Nannocystin A的主体结构,而且其结构简单,具有与Nannocystin A近似的抑制细胞活性的生物活性,而且能够通过调节所含R的种类,能够优化其生物活性,如能够优化其抑制癌症细胞的生物活性。
在本发明实施例的所述化合物中,C1-C15的烷基的含义是指具有1-15个碳原子的直链或支链烷基、芳基中的任一种,一实施例中,C1-C15的直链或支链烷基非限定性地例如可为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基、正己基、苄基中的任一种。
所述C1-C15的烷氧基是指上述定义的“C1-C15的烷基”与O原子相连后的基团。除非另有规定,卤素指为F、Cl、Br或I。
在具体实施例中,上述Nannocystin A的类似物所含的R为如下表1中a至h所示基团中的任一种,那么对应的Nannocystin A的类似物为如下表1中Ⅰa至Ⅰh至:
表1.Nannocystin A的类似物和对应R所示的基团
Figure BDA0002739539460000051
通过对上述Nannocystin A的类似物结构式所含的R基团的选择和优化,能够调解并优化Nannocystin A的类似物生物活性,如能够提高其抑制癌症细胞的生物活性,具体如下述实施例第2节中Nannocystin A的类似物生物活性实施例以及数据。
基于上述Nannocystin A的类似物及其所具有的生物活性,本发明上述还提供了一种Nannocystin A类似物的盐。基于上文Nannocystin A的类似物的功能,其盐应该是药学上可接受的盐。如在一实施例中,该Nannocystin A类似物的盐可以是钾盐、钠盐中的至少一种。
另一方面,基于上文本发明实施例Nannocystin A的类似物的分子结构,Nannocystin A的类似物的逆合成分析如下:
Figure BDA0002739539460000052
考虑到结构通式Ⅰ所示的Nannocystin A的类似物所含各酰胺键周围的位阻较大,因此选择在位阻相对较小的邻位双烯进行关环,所用到的反应为Suzuki偶联反应。得到的关环前体如下文化合物D又可由三肽片段A和酯类化合物C通过酰胺化反应得到。三肽片段A又可由A1、A2和A5通过酰胺键的连接而得到,酯类化合物C的构建从C1和C2出发,通过Mitsunobu反应可得。
因此,基于上述逆合成分析,上文本发明实施例Nannocystin A的类似物的制备方法流程如图1所示,包括如下步骤:
S01:将化合物A进行第一脱保护基团反应以脱除-TBS基团和-TMSE基团,生成化合物B;
S02:将步骤S01中化合物B与化合物C进行第一酰胺化反应,生成关环前体D;
S03:将所述关环前体D进行Suzuki偶联反应,生成目标产物Ⅰ;其中,所述目标产物Ⅰ为权利要求1-4任一项所述的Nannocystin A的类似物;
依据上述Nannocystin A的类似物的制备方法,其合成路线如下:
Figure BDA0002739539460000061
其中,步骤S01中的第一脱保护基团反应可以按照脱除-TBS基团(叔丁基二甲基硅基,-Si(CH3)2-C(CH3)3)和-TMSE基团的常规方法进行脱除,如在一所述中,所述脱保护基团反应是利用三(二甲氨基甲基)锍二氟三甲基氨酸硅酸盐(TASF)将化合物A所含的-TBS基团-TMSE基团脱除,生成化合物B。为了充分脱除-TBS基团-TMSE基团,TASF的含量应该是相对化合物A是过量的,如在一实施例中,TASF与化合物A在第一脱保护基团反应体系中的含量比优选但不仅仅为3:1。
另外,第一脱保护基团反应体系的溶剂可以但不仅仅为四氢呋喃(THF),还可以是N,N-二甲基甲酰胺(DMF)、二氯甲烷(DCM)中的至少一种。该溶剂能够有效提高第一脱保护基团反应的效率,在有效脱除-TBS基团-TMSE基团的同时,保证其他基团的稳定性。
在一实施例中,基于上文逆合成分析线路,步骤S01中的化合物A按照包括如下的合成步骤合成:
S011:将如下化合物A1与化合物A2进行第二酰胺化反应,生成化合物A3;
S012:将化合物A3进行第二脱保护基团反应以脱除-Boc基团,生成化合物A4;
S013:将化合物A4与化合物A5进行第三酰胺化反应,生成所述化合物A;
所述化合物A的合成路线如下:
Figure BDA0002739539460000071
其中,S011中的化合物A2所含的R如上文Nannocystin A的类似物所含R所示的基团,为了节约篇幅,在此不再赘述。
在一实施例中,化合物A1与化合物A2之间进行的第二酰胺化反应是在(3H-1,2,3-三唑并[4,5-b]吡啶-3-氧基)三-1-吡咯烷基六氟磷酸盐(PyAOP)、N,N-二异丙基乙胺(DIPEA)存在的条件下,所述化合物A1与化合物A2进行所述第二酰胺化反应。其中,化合物A1与化合物A2在第二酰胺化反应体系中的含量比可以是按照上述A合成路线中两者的化学反应摩尔比含量。另外,PyAOP、DIPEA的含量优选是相对化合物A1和/或化合物A2过量,以促使化合物A1与化合物A2充分进行酰胺化反应,提高目标产物化合物A3的得率。
如在一实施例中,PyAOP与化合物A1在第二酰胺化反应体系中的含量比优选但不仅仅为3:1;DIPEA与化合物A1在第二酰胺化反应体系中的含量比优选但不仅仅为5:1。
另外,第二酰胺化反应体系的溶剂可以但不仅仅为二氯甲烷(DCM),还可以是乙腈(MeCN)、N,N-二甲基甲酰胺(DMF),或DMF与DCM的混合物。该溶剂能够有效提高第二酰胺化反应体系的效率,提高目标产物化合物A3的得率。
S012中的第二脱保护基团反应可以按照脱除-Boc基团(叔丁氧羰基)的常规方法进行脱除,如在一所述中,所述第二脱保护基团反应是利用三氟乙酸(TFA)将化合物A3所含的-Boc基团脱除。为了充分脱除-Boc基团,TFA的含量应该是相对化合物A3是过量的,如在一实施例中,TFA与化合物A3在第二脱保护基团反应体系中的含量比优选但不仅仅为10:1。
另外,第二脱保护基团反应体系的溶剂可以但不仅仅为二氯甲烷(DCM)。该溶剂能够有效提高第二脱保护基团反应的效率,在有效脱除-Boc基团的同时,保证其他基团的稳定性。
S013中,作为本发明的一实施例,化合物A4与化合物A5之间进行的第三酰胺化反应是在2-溴-1-乙基吡啶四氟硼酸盐(BEP)、N,N-二异丙基乙胺(DIPEA)存在的条件下,所述化合物A4与化合物A5进行所述第三酰胺化反应。其中,化合物A4与化合物A5在第三酰胺化反应体系中的含量比可以是按照上述A合成路线中两者的化学反应摩尔比含量。另外,BEP、DIPEA的含量优选是相对化合物A4和/或化合物A5过量,以促使化合物A4与化合物A5充分进行酰胺化反应,提高目标产物化合物A的得率。
如在一实施例中,BEP与化合物A5在第三酰胺化反应体系中的含量比优选但不仅仅为2:1;DIPEA与化合物A5在第三酰胺化反应体系中的含量比优选但不仅仅为5:1。
另外,第三酰胺化反应体系的溶剂可以但不仅仅为乙腈(MeCN)、二氯甲烷(DCM),还可以是N,N-二甲基甲酰胺(DMF),或DMF与DCM的混合物。该溶剂能够有效提高第三酰胺化反应体系的效率,提高目标产物化合物A的得率。
步骤S02中,为了提高关环前体D的得率,一实施例中,化合物B与化合物C之间进行的第一酰胺化反应是在1-羟基苯并三唑(HOBt)和N,N'-二异丙基碳二亚胺(DIC)存在的条件下使得化合物B与化合物C进行所述第一酰胺化反应。其中,化合物B与化合物C在第一酰胺化反应体系中的含量比可以是按照上述Nannocystin A的类似物合成路线中两者的化学反应摩尔比含量。另外,HOBt、DIC的含量优选是相对化合物B与化合物C过量,以促使化合物B与化合物C充分进行酰胺化反应,提高目标产物关环前体D的得率。
如在一实施例中,HOBt与化合物C在第一酰胺化反应体系中的含量比优选但不仅仅为8:1;DIC与化合物C在第一酰胺化反应体系中的含量比优选但不仅仅为3:1。
另外,第一酰胺化反应体系的溶剂可以但不仅仅为二甲基甲酰胺(DMF)、二氯甲烷(DCM),还可以是还可以是乙腈(MeCN),或者是DMF和DCM的混合物。该溶剂能够有效提高第一酰胺化反应体系的效率,提高目标产物关环前体D的得率。
其次,化合物C可以按照现有方法进行合成,如上述Nannocystin A的类似物的逆合成分析路线中的C1和C2通过Mitsunobu反应合成得到。
步骤S03中,关环前体D进行的Suzuki偶联反应也即是关环反应可以按照Suzuki偶联反应所要的条件进行,如在有机钯金属催化剂存在的条件进行,如在一实施例中,所述Suzuki偶联反应是在Pd(PPh3)4、Ag2O等催化剂存在的条件下进行。Pd(PPh3)4、Ag2O的含量优选是相对化合物D过量,以促使化合物D充分进行关环反应,提高终产物化合物Ⅰ的得率。
如在一实施例中,Pd(PPh3)4与化合物D在Suzuki偶联反应体系中的含量比优选但不仅仅为1:3.5;Ag2O与化合物D在Suzuki偶联反应体系中的含量比优选但不仅仅为5:1。
另外,Suzuki偶联反应体系的溶剂可以但不仅仅为水、四氢呋喃(THF),还可以是1,4-二氧六环(Dioxane)、甲苯(Toluene)、二甲苯(Xylenes)、N,N-二甲基甲酰胺(DMF)等中的至少一种。该溶剂能够有效提高Suzuki偶联反应的效率,提高终产物化合物Ⅰ的得率。
因此,上文各实施例中Nannocystin A的类似物的制备方法能够有效人工合成,在有效保证制备的Nannocystin A的类似物结构稳定和良好生物活性的基础上,其制备方法合成路线短,目标得率高,副产物少。
再一方面,发明人基于上文本发明实施例Nannocystin A的类似物及其制备方法,进一步对其生物活性进行研究。发现并验证本发明实施例Nannocystin A的类似物具有良好的生物活性,且能够通过所含的R基团能够优化其生物活性,进一步确证本发明实施例Nannocystin A的类似物的构效关系。
如在一实施例中,发现并验证上文本发明实施例Nannocystin A的类似物具有良好的抑制癌症细胞活性的作用,其中,癌症细胞包括结肠癌细胞、肝癌细胞中的至少一种。因此,上文本发明实施例Nannocystin A的类似物和/或及其的药学上可接受的盐可以在制备治疗癌症药物或治疗癌症的辅助药物中的应用。在具体实施例中,该治疗癌症药物、辅助药物癌症中所述的癌症包括结肠癌、肝癌中的至少一种。
现以本发明实施例Nannocystin A的类似物及其制备方法和生物活性实验为例,对本发明进行进一步详细说明。
1.Nannocystin A的类似物及其制备方法实施例
实施例1
本发明实施例提供了一种Nannocystin A的类似物及其制备方法。其中,该Nannocystin A的类似物的分子结构式为下述Ⅰa所示。
该Nannocystin A的类似物Ⅰa制备方法包括如下步骤:
S1.化合物9a的合成:
Figure BDA0002739539460000091
0℃下,化合物6(268mg,0.96mmol)溶于DCM(6mL),PyAOP(834mg,1.6mmol)和DIPEA(0.7mL,4.0mmol)逐渐加入反应体系。随后脱完保护的酸(0.8mmol)溶于DCM(2mL)后加入到反应中。反应升到室温并继续搅拌12小时。饱和的NH4Cl溶液(20mL)淬灭反应。用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用饱和NaHCO3溶液(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物9a(434.6mg,83%)。[α]25D=-69.60(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.26–7.15(m,5H),6.86(dd,J=12.0,8.2Hz,2H),6.70(t,J=7.9Hz,2H),4.98(brs,1H),4.78–4.71(m,1H),4.26–4.06(m,2H),3.48–3.28(m,1H),3.06–2.93(m,2H),2.92–2.79(m,1H),2.72(d,J=32.3Hz,3H),1.29(d,J=50.4Hz,9H),0.96(s,11H),0.17(s,6H),0.04(s,9H).13CNMR(125MHz,CDCl3)δ171.32,170.21,169.84,154.72,137.62,130.28,129.10,128.38,126.58,120.11,80.39,63.69,61.66,59.49,53.24,37.02,33.91,30.64,28.23,25.67,18.17,17.44,-1.52,-4.41.HRMS ESI calcd.for[C35H56N2O6Si2Na]+[M+Na]+:679.3575;found:679.3570;
S02.化合物2a的合成:
Figure BDA0002739539460000101
化合物9a(150mg,0.23mmol)溶于DCM(2mL)中,TFA(0.2mL,2.3mmol)加入到反应体系中。室温搅拌30分钟。减压旋干后直接投入下一步反应;
所得胺溶于MeCN(2mL)中。DIPEA(0.2mL,1.15mmol)和BEP(126mg,0.46mmol)依次加入体系中。酸4(0.23mmol)溶于DCM(0.3mL)后加入反应体系中。随后,反应室温搅拌过夜。饱和NH4Cl溶液(20mL)淬灭反应。水相用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用饱和NaHCO3溶液(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物2a(108mg,两步产率54%)。[α]24D=-60.00(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.26–7.13(m,5H),6.86(d,J=8.4Hz,2H),6.71(d,J=8.4Hz,2H),6.39(d,J=7.8Hz,1H),6.30(s,1H),5.29(dt,J=21.1,10.6Hz,1H),4.72–4.61(m,1H),4.15(pd,J=10.8,7.3Hz,2H),3.79(t,J=6.7Hz,1H),3.29(dd,J=14.8,6.6Hz,1H),3.19(s,3H),3.01–2.92(m,3H),2.89(s,3H),2.81(dd,J=6.9,4.9Hz,1H),1.74(s,3H),1.24(t,J=6.7Hz,2H),1.18(s,3H),0.97–0.93(m,12H),0.17(s,5H),0.03(s,9H).13C NMR(125MHz,CDCl3)δ171.23,169.18,154.74,146.62,136.61,130.20,128.94,128.52,128.38,126.84,120.18,83.54,80.38,63.81,60.23,58.92,57.07,56.47,53.46,36.92,33.32,32.66,30.82,29.71,25.70,18.74,18.20,17.40,14.62,-1.48,-4.37.HRMS ESI calcd.for[C40H61IN2O7Si2Na]+[M+Na]+:887.2960;found:887.2950.
S03.化合物12a的合成:
Figure BDA0002739539460000102
化合物2a(53.5mg,0.06mmol)溶于THF(2mL),随后TASF(48mg,0.17mmol)加入反应体系中。反应搅拌12小时。饱和的NH4Cl溶液(10mL)淬灭反应。用二氯甲烷(3x 30mL)反复萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水Na2SO4干燥。旋干后直接投入下一步反应。
0℃下,NMM(0.1mL,0.9mmol)、HOBt(68mg,0.5mmol)和DIC(28ul,0.18mmol)依次加到脱保护的化合物3(0.06mmol)的DMF(1.5mL)溶液中。酸(0.06mmol)溶在DCM(0.4mL)中加入体系中。反应搅拌过夜。饱和的NH4Cl溶液(10mL)淬灭反应。用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用NaHCO3饱和溶液(30mL)、水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物12a(44mg,两步产率71%)。[α]24D=-51.07(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.32–7.29(m,8H),7.28–7.25(m,6H),7.15(d,J=7.1Hz,3H),6.95(d,J=8.4Hz,2H),6.76(d,J=8.4Hz,2H),6.48–6.39(m,2H),6.32(s,2H),5.70(d,J=7.3Hz,2H),5.42–5.36(m,2H),4.82(s,1H),4.74–4.67(m,2H),4.50(dd,J=16.0,8.6Hz,2H),3.89–3.79(m,2H),3.37–3.31(m,2H),3.25(dd,J=10.4,6.5Hz,2H),3.19(d,J=15.7Hz,6H),3.12–3.06(m,2H),2.93(dd,J=11.0,4.9Hz,3H),2.89(d,J=8.2Hz,6H),2.85–2.81(m,2H),1.76(s,5H),1.74–1.69(m,4H),1.25(s,22H),1.24(s,6H),1.15(s,10H),1.08(d,J=8.4Hz,6H).13C NMR(125MHz,CDCl3)δ171.77,170.71,169.92,169.53,155.29,153.36,150.71,146.84,138.01,136.71,130.57,129.80,128.95,128.64,128.14,127.54,127.41,126.96,120.20,116.67,115.96,108.53,83.29,80.27,80.14,71.91,71.67,60.58,60.29,59.01,56.37,54.03,44.57,36.49,33.60,32.82,27.15,26.82,24.69,18.82,15.61,15.45,14.34.HRMS ESIcalcd.for[C51H67BIN3O11Na]+[M+Na]+:1058.3811;found:1058.3798;
S04.化合物Ⅰa的合成:
Figure BDA0002739539460000111
Pd(PPh3)4(15mg,0.013mmol)和Ag2O(50mg,0.21mmol)溶于THF/H2O(44mL,v:v=10:1),化合物12a(43.6mg,0.042mmol)溶于THF(1mL)中后加入反应体系中。随后反应继续搅拌12小时。反应完全后,用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物Ⅰa(24mg,73%)。[α]25D=-60.20(c 1.0,CHCl3).1H NMR(400MHz,MeOD)δ7.44(d,J=7.4Hz,2H),7.32(dd,J=13.4,5.7Hz,3H),7.26(dd,J=6.7,3.2Hz,2H),7.22(d,J=6.7Hz,3H),6.96(d,J=8.5Hz,2H),6.65(d,J=8.5Hz,2H),6.41(dd,J=15.3,10.8Hz,1H),6.13(d,J=10.8Hz,1H),5.98(dd,J=15.2,6.1Hz,1H),5.90(d,J=1.8Hz,1H),5.14(dd,J=9.7,6.6Hz,1H),4.70(t,J=7.1Hz,1H),4.55(s,1H),3.70(dd,J=9.1,3.0Hz,1H),3.20(s,3H),3.07–2.97(m,2H),2.96(s,3H),2.94–2.86(m,2H),2.76–2.65(m,2H),2.13–2.02(m,1H),1.70(s,3H),1.56(ddd,J=14.1,8.9,3.1Hz,1H),1.18(d,J=1.6Hz,6H),1.07(s,3H),1.04(d,J=6.9Hz,3H).13C NMR(100MHz,MeOD)δ171.63,171.27,170.04,169.37,155.97,139.22,136.85,136.52,133.21,130.12,128.78,128.32,128.10,127.60,127.05,126.38,126.29,125.63,114.80,83.61,80.03,71.58,60.43,60.33,58.33,57.82,54.88,53.97,42.20,37.36,33.17,30.78,26.93,24.41,13.69,10.58,10.40.HRMS ESI calcd.for[C45H55N3O9Na]+[M+Na]+:804.3836;found:804.3820。
实施例2
本发明实施例提供了一种Nannocystin A的类似物及其制备方法。其中,该Nannocystin A的类似物的分子结构式为下述Ⅰb所示。
该Nannocystin A的类似物Ⅰb制备方法包括如下步骤:
S1.化合物5b’的合成:
Figure BDA0002739539460000112
多聚甲醛(2.6g,29.3mmol)和对甲苯磺酸(77.5mg,0.45mmol)依次加入到化合物13(2g,4.5mmol)的甲苯溶液中(45mL),加热回流4小时。反应完全后,冷却到室温,用乙酸乙酯(3x 30mL)反复萃取。合并有机相,用NaHCO3饱和溶液(30mL)洗涤,无水Na2SO4干燥。旋干后直接投入下一步反应;
将得到的五元环化合物(1.5g,3.3mmol)溶解在DCM(10mL)中,将TFA(5.4mL,72.6mmol)和三乙基硅烷(1mL,4.95mmol)依次加入到反应体系中,室温条件下,搅拌反应24小时。反应结束后,减压旋干,得到无色油状物5b’(1.4g,两步产率68%)。[α]25D=-73.20(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.76(d,J=7.5Hz,2H),7.58–7.47(m,2H),7.45–7.37(m,3H),7.30(dd,J=7.1,5.7Hz,3H),7.20(t,J=16.5Hz,2H),6.93(d,J=8.1Hz,1H),4.99(dd,J=11.0,5.0Hz,1H),4.60(ddd,J=16.6,10.7,5.3Hz,1H),4.42–4.32(m,2H),4.17(dt,J=11.9,6.9Hz,1H),3.39(dd,J=14.7,4.9Hz,1H),3.20–3.09(m,1H),2.84(d,J=11.0Hz,3H),1.26(d,J=15.9Hz,9H).13C NMR(125MHz,CDCl3)δ175.91,156.86,149.75,144.00,141.37,133.76,128.49,127.72,127.09,125.55,119.99,108.52,67.91,60.85,47.18,34.41,32.37,31.32.HRMS ESI calcd.for[C29H31NO4H]+[M+H]+:458.2331;found:458.2322;
S2.化合物9b’的合成:
Figure BDA0002739539460000121
0℃下,化合物5b’(183mg,0.4mmol)溶于DCM(4mL),PyAOP(617mg,1.2mmol)和DIPEA(0.35mL,2.0mmol)逐渐加入反应体系。随后脱完保护的胺6(0.4mmol)溶于DCM(2mL)后加入到反应中。反应升到室温并继续搅拌12小时。饱和的NH4Cl溶液(20mL)淬灭反应。用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用饱和NaHCO3溶液(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物9b’(245mg,73%)。[α]25D=-94.80(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.77(t,J=8.7Hz,2H),7.40(t,J=7.4Hz,2H),7.36–7.17(m,6H),6.90–6.77(m,2H),6.75–6.63(m,2H),5.08–5.00(m,1H),4.83–4.68(m,1H),4.47–4.29(m,1H),4.25–4.01(m,4H),3.36(dd,J=14.3,6.7Hz,1H),2.99(dd,J=15.9,9.6Hz,3H),2.88(d,J=35.2Hz,3H),1.23(d,J=29.2Hz,9H),0.97–0.93(m,11H),0.15(d,J=15.5Hz,6H),0.05(d,J=12.7Hz,9H).13C NMR(125MHz,CDCl3)δ171.30,169.77,169.18,157.09,154.75,149.51,144.09,143.70,141.31,134.09,130.28,128.73,127.71,127.04,125.44,125.06,120.12,68.02,63.78,60.24,53.38,47.14,37.09,34.35,33.60,31.27,30.45,29.72,25.67,18.16,17.42,-1.54,-4.42.HRMS ESI calcd.for[C49H66N2O6Si2H]+[M+H]+:835.4538;found:835.4557;
S3.化合物2b的合成:
Figure BDA0002739539460000122
将DEA(0.4mL,3.6mmol)加入到化合物9b’(150mg,0.18mmol)的MeCN(2mL)中,室温搅拌2小时,反应结束后,旋干进行下一步;
所得胺溶于MeCN(2mL)中。DIPEA(0.15mL,0.9mmol)和BEP(99mg,0.36mmol)依次加入体系中。酸4(0.18mmol)溶于DCM(0.3mL)后加入反应体系中。随后,反应室温搅拌过夜。饱和NH4Cl溶液(20mL)淬灭反应。水相用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用饱和NaHCO3溶液(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物2b(130.4mg,79%)。[α]26D=-70.20(c1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.30(t,J=8.3Hz,2H),7.15(d,J=8.2Hz,2H),6.87(d,J=8.4Hz,2H),6.74(d,J=8.4Hz,2H),6.38(d,J=7.8Hz,1H),6.32(s,1H),5.33(dd,J=9.7,6.8Hz,1H),4.70(dd,J=13.7,6.1Hz,1H),4.23–4.11(m,2H),3.82(t,J=6.7Hz,1H),3.30(dd,J=14.7,6.7Hz,1H),3.21(s,3H),2.96(dd,J=8.8,4.6Hz,3H),2.94(s,3H),2.91(s,1H),1.77(d,J=6.4Hz,4H),1.29(s,9H),1.26(d,J=9.0Hz,2H),1.13(s,3H),0.98(s,9H),0.96(dd,J=6.7,3.9Hz,2H),0.19(s,6H),0.05(s,9H).13C NMR(125MHz,CDCl3)δ171.21,171.11,169.23,154.73,149.63,146.77,133.53,130.22,128.70,128.40,125.35,120.19,83.61,80.23,63.77,60.33,59.05,57.03,56.49,53.44,36.96,34.43,32.90,32.85,31.40,30.65,25.71,18.80,18.19,17.40,14.48,-1.48,-4.37.HRMS ESIcalcd.for[C44H69IN2O7Si2Na]+[M+Na]+:943.3586;found:943.3544;
S4.化合物12b的合成:
Figure BDA0002739539460000131
化合物2b(65mg,0.07mmol)溶于THF(2mL),随后TASF(58mg,0.21mmol)加入反应体系中。反应搅拌12小时。饱和的NH4Cl溶液(10mL)淬灭反应。用二氯甲烷(3x 30mL)反复萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水Na2SO4干燥。旋干后直接投入下一步反应;
0℃下,NMM(0.1mL,0.9mmol)、HOBt(80mg,0.6mmol)和DIC(33ul,0.21mmol)依次加到脱保护的化合物3(0.07mmol)的DMF(1.5mL)溶液中。酸(0.07mmol)溶在DCM(0.5mL)中加入体系中。反应搅拌过夜。饱和的NH4Cl溶液(10mL)淬灭反应。用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用NaHCO3饱和溶液(30mL)、水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物12b(57mg,两步产率75%)。[α]24D=-41.60(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.31(d,J=8.2Hz,2H),7.28–7.26(m,2H),7.26–7.22(m,3H),7.08(d,J=8.2Hz,2H),6.87(d,J=8.3Hz,2H),6.72(d,J=8.4Hz,2H),6.41(dd,J=18.1,7.1Hz,1H),6.29(s,1H),6.21(t,J=9.4Hz,1H),5.67(d,J=7.2Hz,1H),5.36(d,J=18.0Hz,1H),4.83–4.73(m,1H),4.67(dd,J=13.4,6.2Hz,1H),4.48(d,J=8.7Hz,1H),3.82(dd,J=7.7,5.4Hz,1H),3.27–3.21(m,2H),3.18(s,3H),2.98–2.95(m,1H),2.89(s,3H),2.85–2.79(m,1H),2.75–2.72(m,1H),1.76–1.70(m,6H),1.28(s,9H),1.26(s,3H),1.23(d,J=3.9Hz,5H),1.22(s,12H),1.05(d,3H).13C NMR(125MHz,CDCl3)δ171.78,170.76,169.95,169.74,155.43,153.41,149.96,146.89,137.97,133.47,130.54,128.70,128.58,128.13,128.09,127.42,127.32,125.53,115.93,83.46,83.31,80.30,80.13,71.93,60.56,60.30,59.09,56.39,53.99,44.56,36.45,34.47,33.24,32.90,32.59,31.37,29.69,28.32,27.18,26.82,24.71,18.84,15.47,14.28.HRMS ESI calcd.for[C55H75BIN3O11Na]+[M+Na]+:1114.4437;found:1114.4432;
S5.化合物Ⅰb的合成:
Figure BDA0002739539460000141
Pd(PPh3)4(15mg,0.013mmol)和Ag2O(48mg,0.2mmol)溶于THF/H2O(44mL,v:v=10:1),化合物12b(45mg,0.04mmol)溶于THF(1mL)中后加入反应体系中。随后反应继续搅拌12小时。反应完全后,用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物Ⅰb(25mg,75%)。[α]28D=-29.80(c 1.0,CHCl3).1H NMR(400MHz,MeOD)δ7.44(d,J=7.4Hz,2H),7.32(dt,J=7.6,3.2Hz,5H),7.15(d,J=8.3Hz,2H),6.95(d,J=8.5Hz,2H),6.66(d,J=8.5Hz,2H),6.40(dd,J=15.1,12.1Hz,1H),6.12(d,J=10.8Hz,1H),5.98(dd,J=15.3,6.1Hz,1H),5.90(d,J=1.9Hz,1H),5.15(dd,J=9.8,6.6Hz,1H),4.70(t,J=7.0Hz,1H),4.58(s,1H),4.54(s,1H),3.69(dd,J=9.0,2.9Hz,1H),3.20(s,3H),3.07–2.98(m,2H),2.95(s,3H),2.93–2.88(m,1H),2.83(dd,J=8.8,3.3Hz,1H),2.71(dd,J=13.8,7.4Hz,2H),2.12–2.02(m,1H),1.69(s,3H),1.61–1.50(m,1H),1.28(s,9H),1.16(s,3H),1.14(s,3H),1.06(s,3H),1.04(d,J=6.9Hz,3H).13C NMR(100MHz,MeOD)δ171.64,171.23,170.04,169.50,155.99,149.45,139.22,136.55,133.64,133.20,130.14,128.52,128.34,127.59,127.03,126.31,125.60,124.93,114.80,83.60,80.07,71.57,60.42,60.33,58.32,57.68,54.87,53.90,42.21,37.35,33.85,32.68,30.79,30.69,30.38,26.93,24.37,13.63,10.56,10.38.HRMS ESI calcd.for[C49H63N3O9Na]+[M+Na]+:860.4462;found:860.4455.
实施例3
本发明实施例提供了一种Nannocystin A的类似物及其制备方法。其中,该Nannocystin A的类似物的分子结构式为下述Ⅰc所示。
该Nannocystin A的类似物Ⅰc制备方法包括如下步骤:
S1.化合物9c的合成:
Figure BDA0002739539460000142
0℃下,化合物5c(104mg,0.4mmol)溶于DCM(4mL),PyAOP(521mg,1.0mmol)和DIPEA(0.35mL,2.0mmol)逐渐加入反应体系。随后脱完保护的胺6(0.4mmol)溶于DCM(2mL)后加入到反应中。反应升到室温并继续搅拌12小时。饱和的NH4Cl溶液(20mL)淬灭反应。用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用饱和NaHCO3溶液(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物9c(232mg,91%)。[α]26D=-49.20(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.01–6.90(m,2H),6.72(d,J=8.3Hz,2H),4.71(brs,1H),4.61–4.30(m,1H),4.14(brs,2H),3.07–2.92(m,2H),2.67(s,3H),1.98–1.83(m,1H),1.65–1.49(m,2H),1.44(s,9H),1.18–1.00(m,2H),1.00–0.90(m,11H),0.86(s,5H),0.15(s,5H),0.02(s,9H).13C NMR(125MHz,CDCl3)δ171.44,170.87,154.75,130.20,128.51,120.09,80.36,63.63,58.20,53.17,37.16,35.04,29.69,28.33,27.74,25.64,22.72,22.25,18.14,17.43,0.99,-1.57,-4.45.HRMSESI calcd.for[C33H60N2O6Si2Na]+[M+Na]+:659.3888;found:659.3836;
S2.化合物2c的合成:
Figure BDA0002739539460000151
化合物9c(150mg,0.24mmol)溶于DCM(2mL)中,TFA(0.17mL,2.4mmol)加入到反应体系中。室温搅拌30分钟。减压旋干后直接投入下一步反应;
所得胺溶于MeCN(2mL)中。DIPEA(0.2mL,1.2mmol)和BEP(131mg,0.48mmol)依次加入体系中。酸4(0.24mmol)溶于DCM(0.7mL)后加入反应体系中。随后,反应室温搅拌过夜。饱和NH4Cl溶液(20mL)淬灭反应。水相用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用饱和NaHCO3溶液(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物2c(140mg,两步产率69%)。[α]26D=-64.00(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ6.94(d,J=8.4Hz,2H),6.72(d,J=8.4Hz,2H),6.38(d,J=7.9Hz,1H),6.32(s,1H),4.83(dd,J=9.1,6.5Hz,1H),4.63(dd,J=13.3,7.2Hz,1H),4.15(dt,J=17.2,4.3Hz,2H),3.85(t,J=6.7Hz,1H),3.20(s,3H),3.06–2.99(m,2H),2.91(s,3H),2.73(t,J=7.8Hz,1H),1.82(dt,J=10.6,6.7Hz,2H),1.76(d,J=0.4Hz,3H),1.74(s,1H),1.56–1.46(m,2H),1.44(s,3H),1.15–0.97(m,2H),0.94(s,9H),0.92(d,J=7.3Hz,2H),0.84(dd,J=6.6,1.9Hz,6H),0.15(s,6H),0.01(s,9H).13C NMR(125MHz,CDCl3)δ171.41,171.37,169.76,154.72,146.69,130.16,128.56,120.15,83.59,80.19,64.09,63.68,60.37,59.20,56.49,53.37,37.06,34.84,32.74,30.23,29.67,27.78,26.91,25.68,24.66,22.67,22.33,18.84,18.16,17.39,15.00,-1.51,-4.41.HRMSESI calcd.for[C38H65IN2O7Si2Na]+[M+Na]+:867.3273;found:867.3244.
S3.化合物12c的合成:
Figure BDA0002739539460000152
化合物2c(32mg,0.038mmol)溶于THF(2mL),随后TASF(31mg,0.11mmol)加入反应体系中。反应搅拌12小时。饱和的NH4Cl溶液(10mL)淬灭反应。用二氯甲烷(3x 30mL)反复萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水Na2SO4干燥。旋干后直接投入下一步反应;
0℃下,NMM(0.1mL,0.19mmol)、HOBt(43mg,0.32mmol)和DIC(18ul,0.11mmol)依次加到脱保护的化合物3(0.038mmol)的DMF(1.5mL)溶液中。酸(0.07mmol)溶在DCM(0.5mL)中加入体系中。反应搅拌过夜。饱和的NH4Cl溶液(10mL)淬灭反应。用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用NaHCO3饱和溶液(30mL)、水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物12c(22mg,两步产率57%)。[α]27D=-42.80(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.32–7.27(m,2H),7.25–7.22(m,3H),7.03(d,J=7.8Hz,2H),6.91(brs,1H),6.75(d,J=7.4Hz,2H),6.47(brs,1H),6.40(dd,J=18.1,7.0Hz,1H),6.32(s,1H),5.67(d,J=7.3Hz,1H),5.36(d,J=18.0Hz,1H),4.67(dd,J=14.0,6.5Hz,1H),4.59–4.51(m,1H),4.48(d,J=8.7Hz,1H),3.87(t,J=6.5Hz,1H),3.28–3.21(m,1H),3.17(s,3H),3.08–3.04(m,1H),3.00(s,3H),2.85–2.79(m,1H),1.91–1.84(m,1H),1.79–1.77(m,2H),1.76(s,3H),1.71–1.63(m,1H),1.60–1.45(m,2H),1.39(s,3H),1.22(s,14H),1.10(s,6H),1.05(s,3H),0.86(d,J=6.5Hz,6H).13C NMR(125MHz,CDCl3)δ171.91,170.91,170.45,170.14,158.84,155.43,153.32,146.77,137.93,130.44,128.16,128.13,127.41,127.33,115.94,83.53,83.29,80.38,80.28,71.87,60.51,59.32,56.45,54.31,44.56,36.76,35.05,32.83,31.69,29.71,27.84,27.13,26.80,25.23,24.71,22.62,22.34,18.86,15.48,14.82.HRMS ESIcalcd.for[C49H71BIN3O11Na]+[M+Na]+:1038.4124;found:1038.4123.
S4.化合物Ⅰc的合成:
Figure BDA0002739539460000161
Pd(PPh3)4(7mg,0.006mmol)和Ag2O(25mg,0.1mmol)溶于THF/H2O(27mL,v:v=10:1),化合物12c(22mg,0.02mmol)溶于THF(1mL)中后加入反应体系中。随后反应继续搅拌12小时。反应完全后,用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物Ⅰc(14mg,88%)。[α]28D=-65.20(c 1.0,CHCl3).1H NMR(400MHz,MeOD)δ7.45(d,J=7.4Hz,2H),7.33(t,J=7.4Hz,2H),7.26(d,J=7.3Hz,1H),7.05(d,J=8.5Hz,2H),6.67(d,J=8.5Hz,2H),6.43(dd,J=15.2,10.8Hz,1H),6.15(d,J=11.2Hz,1H),6.00(dd,J=15.2,5.8Hz,1H),5.92(d,J=1.8Hz,1H),4.77–4.68(m,2H),4.59(s,1H),3.74(dd,J=9.4,3.1Hz,1H),3.21(s,3H),3.03(s,3H),2.98(dd,J=9.2,3.1Hz,1H),2.74–2.64(m,2H),2.21–2.12(m,1H),1.73(s,3H),1.65(ddd,J=14.0,9.2,5.6Hz,2H),1.59–1.52(m,1H),1.49(s,3H),1.47–1.23(m,2H),1.21(s,3H),1.10(s,3H),1.05(d,J=6.9Hz,3H),0.99–0.91(m,2H),0.87(dd,J=6.6,3.3Hz,5H).13C NMR(100MHz,MeOD)δ171.64,171.42,170.04,170.00,155.95,139.30,136.67,133.21,130.07,128.71,127.61,127.24,127.03,126.26,125.54,114.78,83.87,79.91,71.73,60.86,60.15,58.54,56.52,54.81,53.69,42.14,37.70,34.47,30.87,29.68,27.55,26.93,25.24,24.35,21.50,21.32,14.08,10.30,10.09.HRMS ESI calcd.for[C43H59N3O9Na]+[M+Na]+:784.4149;found:784.4144.
实施例4
本发明实施例提供了一种Nannocystin A的类似物及其制备方法。其中,该Nannocystin A的类似物的分子结构式为下述Ⅰd所示。
该Nannocystin A的类似物Ⅰd制备方法包括如下步骤:
S1.化合物9d的合成:
Figure BDA0002739539460000162
0℃下,化合物5d(170mg,0.44mmol)溶于DCM(2mL),PyAOP(573mg,1.1mmol)和DIPEA(0.4mL,2.2mmol)逐渐加入反应体系。随后脱完保护的胺6(0.44mmol)溶于DCM(2mL)后加入到反应中。反应升到室温并继续搅拌12小时。饱和的NH4Cl溶液(20mL)淬灭反应。用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用饱和NaHCO3溶液(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物9d(270mg,80%)。[α]26D=-68.80(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.38(ddd,J=28.8,16.7,7.2Hz,5H),7.13(dd,J=27.7,7.4Hz,2H),6.92(d,J=8.5Hz,4H),6.74(d,J=6.8Hz,2H),5.05(s,2H),4.77(s,1H),4.20(dd,J=18.3,9.6Hz,2H),3.33(dd,J=26.7,11.3Hz,1H),3.04(s,2H),3.00–2.80(m,2H),2.75(d,J=28.3Hz,3H),1.34(d,J=46.6Hz,9H),0.99(s,11H),0.20(s,5H),0.07(s,9H).13C NMR(125MHz,CDCl3)δ171.32,170.29,169.91,157.60,154.79,137.19,130.26,130.05,128.54,128.38,127.87,127.39,120.11,115.04,114.86,80.37,70.10,63.66,61.78,59.65,53.25,37.07,33.10,30.66,28.25,25.67,18.17,17.47,-1.54,-4.41.HRMS ESI calcd.for[C42H62N2O7Si2Na]+[M+Na]+:785.3993;found:785.3941.
S2.化合物2d的合成:
Figure BDA0002739539460000171
化合物9d(212mg,0.28mmol)溶于DCM(3mL)中,TFA(0.2mL,2.8mmol)加入到反应体系中。室温搅拌1小时。减压旋干后直接投入下一步反应。
所得胺溶于MeCN(2mL)中。DIPEA(0.24mL,1.4mmol)和BEP(152mg,0.56mmol)依次加入体系中。酸4(0.28mmol)溶于DCM(1.0mL)后加入反应体系中。随后,反应室温搅拌过夜。饱和NH4Cl溶液(20mL)淬灭反应。水相用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用饱和NaHCO3溶液(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物2d(129mg,两步产率48%)。[α]26D=-75.00(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.40(d,J=7.1Hz,2H),7.36(t,J=7.4Hz,2H),7.30(t,J=7.2Hz,1H),7.10(d,J=8.6Hz,2H),6.88(dd,J=10.8,8.5Hz,4H),6.73(d,J=8.4Hz,2H),6.39(d,J=7.7Hz,1H),6.31(s,1H),5.24(dd,J=9.6,6.8Hz,1H),5.03(s,2H),4.67(dd,J=13.6,6.1Hz,1H),4.22–4.10(m,2H),3.82(t,J=6.6Hz,1H),3.27–3.21(m,1H),3.20(s,3H),2.98–2.93(m,2H),2.92(s,3H),2.89(d,J=4.4Hz,1H),1.78–1.73(m,5H),1.19(s,3H),0.99–0.94(m,11H),0.17(s,6H),0.04(s,9H).13C NMR(125MHz,CDCl3)δ171.24,171.20,169.22,157.65,154.76,146.75,137.05,130.23,129.98,128.91,128.57,128.40,127.92,127.42,120.19,114.95,83.59,80.29,70.01,63.80,60.32,59.08,57.32,56.51,53.48,36.94,32.79,32.51,30.82,29.72,25.71,18.82,18.20,17.41,14.67,-1.48,-4.37.HRMS ESI calcd.for[C47H67IN2O8Si2Na]+[M+Na]+:993.3378;found:993.3378;
S3.化合物12d的合成:
Figure BDA0002739539460000172
化合物2d(70mg,0.072mmol)溶于THF(2mL),随后TASF(60mg,0.22mmol)加入反应体系中。反应搅拌12小时。饱和的NH4Cl溶液(10mL)淬灭反应。用二氯甲烷(3x 30mL)反复萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水Na2SO4干燥。旋干后直接投入下一步反应。
0℃下,NMM(0.1mL,0.19mmol)、HOBt(82mg,0.61mmol)和DIC(33ul,0.22mmol)依次加到脱保护的化合物3(0.072mmol)的DMF(2mL)溶液中。酸(0.072mmol)溶在DCM(0.5mL)中加入体系中。反应搅拌过夜。饱和的NH4Cl溶液(10mL)淬灭反应。用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用NaHCO3饱和溶液(30mL)、水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物12d(36mg,两步产率45%)。[α]24D=-46.40(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.41(d,J=7.1Hz,2H),7.35(d,J=7.8Hz,2H),7.31–7.27(m,3H),7.05(t,J=8.4Hz,2H),6.90(dd,J=8.2,5.2Hz,4H),6.73(d,J=8.4Hz,2H),6.42(dd,J=18.1,7.1Hz,1H),6.30(s,1H),5.68(d,J=7.3Hz,1H),5.37(d,J=17.2Hz,1H),5.04(s,2H),4.71–4.64(m,1H),4.52–4.46(m,1H),3.83(dd,J=7.9,5.2Hz,1H),3.23(dd,J=14.7,6.2Hz,2H),3.17(s,3H),2.98(dd,J=14.6,9.1Hz,2H),2.88(s,3H),2.84–2.79(m,1H),2.77(dd,J=8.9,4.6Hz,1H),1.76(d,J=3.0Hz,2H),1.74(s,3H),1.24(s,3H),1.22(s,12H),1.13(d,J=5.6Hz,6H),0.87(d,J=6.9Hz,3H).13C NMR(125MHz,CDCl3)δ171.75,170.73,169.95,169.57,157.80,155.28,153.38,146.90,138.01,137.01,130.54,129.98,128.96,128.57,128.14,127.94,127.42,115.95,115.17,83.42,83.30,80.26,80.11,71.90,70.14,60.56,60.34,59.11,56.39,53.98,44.59,36.43,32.89,31.92,29.69,29.34,27.17,26.84,24.69,22.67,19.15,18.85,15.47,14.40,14.07.HRMS ESI calcd.for[C58H73BIN3O12Na]+[M+Na]+:1164.4230;found:1164.4234.
S4.化合物Ⅰd的合成:
Figure BDA0002739539460000181
Pd(PPh3)4(9mg,0.007mmol)和Ag2O(30mg,0.1mmol)溶于THF/H2O(27mL,v:v=10:1),化合物12d(28mg,0.025mmol)溶于THF(1mL)中后加入反应体系中。随后反应继续搅拌12小时。反应完全后,用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物1d(18mg,81%)。[α]27D=-32.00(c 1.0,CHCl3).1H NMR(500MHz,MeOD)δ7.44(dd,J=15.3,7.4Hz,4H),7.37–7.33(m,4H),7.29(dd,J=13.9,7.2Hz,2H),7.14(d,J=8.6Hz,2H),6.95(dd,J=18.2,8.5Hz,4H),6.68(d,J=8.4Hz,2H),6.42(dd,J=14.7,11.4Hz,1H),6.14(d,J=10.5Hz,1H),5.99(dd,J=15.3,6.1Hz,1H),5.91(s,1H),5.08(s,2H),4.70(t,J=7.0Hz,1H),4.56(s,1H),3.72(d,J=8.1Hz,1H),3.22(s,3H),3.02(dd,J=14.2,6.6Hz,1H),2.96(s,3H),2.93(d,J=4.0Hz,1H),2.92–2.89(m,1H),2.73(dd,J=13.9,7.4Hz,2H),2.14–2.06(m,1H),1.72(s,3H),1.58(dd,J=16.6,10.8Hz,2H),1.19(d,J=1.9Hz,6H),1.09(s,3H),1.05(d,J=6.9Hz,3H).13C NMR(125MHz,MeOD)δ171.72,171.28,170.02,169.53,157.73,156.01,155.89,139.06,138.26,136.37,133.30,130.10,129.82,129.08,128.19,128.08,127.61,127.40,127.11,126.39,125.74,114.90,114.76,83.58,80.13,71.49,69.71,60.50,60.49,58.39,58.15,54.93,54.10,42.11,37.56,37.29,32.38,30.82,26.85,24.72,13.84,13.80,10.72.HRMS ESI calcd.for[C52H61N3O10Na]+[M+Na]+:910.4255;found:910.4248.
实施例5
本发明实施例提供了一种Nannocystin A的类似物及其制备方法。其中,该Nannocystin A的类似物的分子结构式为下述Ⅰe所示。
该Nannocystin A的类似物Ⅰe制备方法包括如下步骤:
S1.化合物9e的合成:
Figure BDA0002739539460000191
0℃下,化合物6(117mg,0.4mmol)溶于DCM(4mL),PyAOP(521mg,1.0mmol)和DIPEA(0.35mL,2mmol)逐渐加入反应体系。随后脱完保护的酸(0.4mmol)溶于DCM(2mL)后加入到反应中;反应升到室温并继续搅拌12小时。饱和的NH4Cl溶液(20mL)淬灭反应。用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用饱和NaHCO3溶液(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物9e(255mg,95%)。[α]26D=-42.20(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.26(s,1H),7.26–7.23(m,1H),7.17(t,J=9.5Hz,3H),6.97(brs,2H),6.74(d,J=8.3Hz,2H),4.74(brs,1H),4.16(d,J=8.6Hz,2H),3.01(brs,2H),2.74(s,3H),2.56(brs,2H),2.40–2.17(m,1H),1.98–1.84(m,1H),1.50–1.35(m,9H),0.97(s,9H),0.96–0.91(m,2H),0.17(s,5H),0.04(s,9H).13C NMR(125MHz,CDCl3)δ171.41,170.55,156.90,154.78,141.10,140.91,130.21,128.42,126.04,120.12,80.56,77.29,63.66,57.69,53.23,37.19,32.26,29.86,29.37,28.32,25.67,18.16,17.45,-1.54,-4.42.HRMS ESI calcd.for[C36H58N2O6Si2Na]+[M+Na]+:693.3731;found:693.3691.
S2.化合物2e的合成:
Figure BDA0002739539460000192
化合物9e(200mg,0.3mmol)溶于DCM(3mL)中,TFA(0.44mL,6.0mmol)加入到反应体系中。室温搅拌30分钟。减压旋干后直接投入下一步反应。
所得胺溶于MeCN(3mL)中。DIPEA(0.26mL,1.5mmol)和BEP(163mg,0.6mmol)依次加入体系中。酸4(0.29mmol)溶于DCM(1.0mL)后加入反应体系中。随后,反应室温搅拌过夜。饱和NH4Cl溶液(20mL)淬灭反应。水相用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用饱和NaHCO3溶液(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物2e(117mg,两步产率47%)。[α]26D=-58.40(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.29–7.27(m,1H),7.26–7.24(m,1H),7.20–7.16(m,1H),7.15–7.11(m,2H),6.98(d,J=8.4Hz,2H),6.75(d,J=8.4Hz,2H),6.45(d,J=7.9Hz,1H),6.35(s,1H),4.91(t,J=7.6Hz,1H),4.67(dd,J=13.2,7.4Hz,1H),4.23–4.11(m,2H),3.88(t,J=6.7Hz,1H),3.22(s,3H),3.10–3.01(m,2H),2.95(s,3H),2.94–2.88(m,1H),2.59–2.50(m,1H),2.50–2.41(m,1H),2.32–2.21(m,1H),1.97–1.90(m,1H),1.86–1.81(m,2H),1.79(s,3H),1.46(s,3H),0.96(s,9H),0.94–0.80(m,2H),0.16(s,6H),0.04(s,9H).13C NMR(125MHz,CDCl3)δ171.47,171.39,169.46,154.77,146.72,140.83,130.18,128.51,128.39,126.18,120.21,83.61,80.33,63.77,60.37,59.26,56.52,56.23,53.44,37.08,32.78,32.25,30.55,29.71,28.83,25.70,18.84,18.19,17.41,15.02,-1.48,-4.39.HRMS ESI calcd.for[C41H63IN2O7Si2Na]+[M+Na]+:901.3116;found:901.3060.
S3.化合物12e的合成:
Figure BDA0002739539460000201
化合物2e(60mg,0.068mmol)溶于THF(1.4mL),,随后TASF(56mg,0.21mmol)加入反应体系中。反应搅拌12小时。饱和的NH4Cl溶液(10mL)淬灭反应。用二氯甲烷(3x 30mL)反复萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水Na2SO4干燥。旋干后直接投入下一步反应。
0℃下,NMM(0.1mL,0.19mmol)、HOBt(82mg,0.57mmol)和DIC(33ul,0.22mmol)依次加到脱保护的3(0.068mmol)的DMF(2mL)溶液中。酸(0.068mmol)溶在DCM(0.5mL)中加入体系中。反应搅拌过夜。饱和的NH4Cl溶液(10mL)淬灭反应。用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用NaHCO3饱和溶液(30mL)、水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物12e(35mg,两步产率49%)。[α]23D=-31.40(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.36–7.29(m,4H),7.27–7.23(m,3H),7.23–7.18(m,2H),7.13(d,J=7.0Hz,2H),7.07–7.03(m,1H),6.96–6.87(m,1H),6.77(d,J=7.7Hz,2H),6.35(s,1H),5.69(d,J=7.3Hz,1H),5.39(d,J=18.0Hz,1H),4.70(d,J=6.9Hz,1H),4.57(dd,J=19.0,7.8Hz,1H),4.51(t,J=9.2Hz,1H),4.11(d,J=6.7Hz,1H),3.92–3.84(m,1H),3.30–3.23(m,2H),3.22–3.13(m,3H),3.09(d,J=6.0Hz,2H),3.05–2.98(m,3H),2.92(d,J=13.2Hz,1H),2.53–2.44(m,2H),2.32–2.23(m,1H),1.81(s,2H),1.79(s,3H),1.48–1.42(m,2H),1.24(s,9H),1.15–1.11(m,5H),1.07(s,3H),1.01(d,J=6.7Hz,3H).13C NMR(125MHz,CDCl3)δ171.97,170.89,170.06,169.93,155.41,153.27,146.82,140.55,137.97,130.88,130.44,128.86,128.56,128.35,128.15,127.42,126.63,126.27,115.98,83.48,83.27,80.39,80.22,71.85,60.54,60.35,59.36,58.39,56.42,54.40,44.53,36.80,32.87,32.29,29.68,26.81,24.70,19.15,18.88,15.46,14.78.HRMS ESI calcd.for[C52H69BIN3O11Na]+[M+Na]+:1072.3968;found:1072.3960.
S4.化合物Ⅰe的合成:
Figure BDA0002739539460000202
Pd(PPh3)4(7.3mg,0.006mmol)和Ag2O(25mg,0.1mmol)溶于THF/H2O(23mL,v:v=10:1),化合物12e(22mg,0.02mmol)溶于THF(1mL)中后加入反应体系中。随后反应继续搅拌12小时。反应完全后,用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物Ⅰe(13mg,82%)。[α]27D=-32.60(c 1.0,CHCl3).1H NMR(400MHz,MeOD)δ7.45(d,J=7.4Hz,2H),7.35–7.29(m,2H),7.29–7.22(m,3H),7.17(t,J=7.3Hz,1H),7.10(d,J=7.0Hz,2H),7.05(d,J=8.4Hz,2H),6.67(d,J=8.5Hz,2H),6.43(dd,J=14.5,11.3Hz,1H),6.15(d,J=10.6Hz,1H),6.00(dd,J=15.2,5.9Hz,1H),5.91(s,1H),4.77(dd,J=8.8,5.5Hz,2H),4.58(s,1H),4.57(brs,1H),3.73(dd,J=9.7,3.0Hz,1H),3.21(s,3H),3.04(s,3H),3.00–2.96(m,1H),2.69(dd,J=13.7,9.3Hz,2H),2.47–2.26(m,2H),2.19–2.12(m,1H),2.05–1.81(m,2H),1.73(s,3H),1.68–1.58(m,1H),1.50(s,3H),1.21(s,3H),1.20–1.14(m,1H),1.10(s,3H),1.05(d,J=6.9Hz,3H).13C NMR(100MHz,MeOD)δ171.65,171.39,170.05,169.76,155.99,140.83,139.29,136.67,133.19,130.11,128.77,128.07,127.60,127.24,127.03,126.26,125.68,125.53,114.79,83.85,79.87,71.71,60.88,60.16,58.56,56.12,54.80,53.70,42.10,37.70,31.65,30.89,29.92,29.30,26.93,24.35,14.08,10.30,10.09.HRMS ESI calcd.for[C46H57N3O9Na]+[M+Na]+:818.3993;found:818.3982.
实施例6
本发明实施例提供了一种Nannocystin A的类似物及其制备方法。其中,该Nannocystin A的类似物的分子结构式为下述Ⅰf所示。
该Nannocystin A的类似物Ⅰf制备方法包括如下步骤:
S1.化合物5f的合成:
Figure BDA0002739539460000211
0℃下,将氢化钠(414mg,17.25mmol)和碘甲烷(1.5mL,24.26mmol)加入到化合物14(916mg,2.38mmol)的THF(30mL)溶液中,恢复至室温,搅拌反应24小时后,用饱和NH4Cl溶液(10mL)淬灭反应。减压旋走低沸点物质。加入乙醚(20mL)之后,用3M HCl水溶液调节pH值至3。用乙醚(3x30mL)反复萃取,依次用水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物5f(855mg,90%)。[α]26D=-12.60(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.43(d,J=7.3Hz,2H),7.39(dd,J=10.1,4.7Hz,2H),7.32(t,J=7.2Hz,1H),7.11(d,J=8.6Hz,2H),6.91(d,J=7.6Hz,2H),5.05(s,2H),4.55(dd,J=157.6,5.6Hz,1H),2.85(d,J=25.3Hz,3H),2.73–2.49(m,2H),2.32–1.97(m,2H),1.45(d,J=44.5Hz,9H).13C NMR(125MHz,CDCl3)δ157.35,156.73,137.21,135.25,129.41,128.71,128.57,127.91,127.45,115.01,80.68,70.15,58.30,31.61,31.30,30.67,28.34.HRMS ESI calcd.for[C23H29NO5Na]+[M+Na]+:422.1943;found:422.1941.
S2.化合物9f的合成:
Figure BDA0002739539460000212
0℃下,化合物5f(130mg,0.33mmol)溶于DCM(4mL),PyAOP(521mg,1.0mmol)和DIPEA(0.35mL,2mmol)逐渐加入反应体系。随后脱完保护的胺6(0.4mmol)溶于DCM(2mL)后加入到反应中。反应升到室温并继续搅拌12小时。饱和的NH4Cl溶液(20mL)淬灭反应。用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用饱和NaHCO3溶液(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物9f(218mg,85%)。[α]26D=-41.13(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.43(d,J=7.3Hz,2H),7.38(t,J=7.5Hz,2H),7.32(t,J=7.2Hz,1H),7.07(d,J=8.5Hz,2H),6.96(brs,2H),6.89(d,J=8.2Hz,2H),6.74(d,J=8.4Hz,2H),5.04(s,2H),4.73(s,1H),4.53(d,J=108.4Hz,1H),4.24–4.08(m,2H),3.00(brs,2H),2.73(d,J=20.6Hz,3H),2.49(brs,2H),2.33–1.81(m,2H),1.44(d,J=35.3Hz,9H),0.97(s,9H),0.96–0.91(m,2H),0.17(s,6H),0.03(s,9H).13C NMR(125MHz,CDCl3)δ171.44,170.66,170.59,157.25,156.77,154.78,140.67,137.27,130.20,129.35,128.54,127.87,127.44,120.13,114.91,70.13,63.72,58.40,57.62,53.23,37.22,31.39,29.70,29.58,28.33,25.67,18.17,17.45,-1.55,-4.42.HRMS ESI calcd.for[C43H64N2O7Si2Na]+[M+Na]+:799.4150;found:799.4115.
S3.化合物2f的合成:
Figure BDA0002739539460000221
化合物9f(150mg,0.2mmol)溶于DCM(2mL)中,TFA(0.28mL,3.86mmol)加入到反应体系中。室温搅拌30分钟。减压旋干后直接投入下一步反应。
所得胺溶于MeCN(2mL)中,DIPEA(0.2mL,1.0mmol)和BEP(110mg,0.4mmol)依次加入体系中。酸4(0.2mmol)溶于DCM(0.8mL)后加入反应体系中。随后,反应室温搅拌过夜。饱和NH4Cl溶液(20mL)淬灭反应。水相用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用饱和NaHCO3溶液(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物2f(95mg,两步产率50%)。[α]27D=-35.60(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.42(d,J=7.1Hz,2H),7.38(t,J=7.4Hz,2H),7.31(t,J=7.2Hz,1H),7.05(d,J=8.4Hz,2H),6.99(d,J=8.2Hz,2H),6.89(d,J=8.3Hz,2H),6.76(d,J=8.2Hz,2H),6.46(d,J=7.8Hz,1H),6.36(s,1H),5.03(s,2H),4.90(t,J=7.4Hz,1H),4.68(dd,J=13.0,7.1Hz,1H),4.24–4.12(m,2H),3.88(t,J=6.6Hz,1H),3.22(s,3H),3.11–3.02(m,2H),2.96(s,3H),2.55–2.35(m,2H),2.28–2.18(m,1H),1.93–1.81(m,4H),1.79(s,3H),1.47(s,3H),0.97(s,9H),0.88(d,J=5.9Hz,2H),0.17(s,6H),0.05(s,9H).13C NMR(125MHz,CDCl3)δ171.48,171.40,169.52,157.29,154.78,146.73,137.21,133.18,130.19,129.34,128.57,127.90,127.47,120.21,114.94,83.61,80.30,70.08,63.76,60.38,59.29,56.52,56.22,53.44,37.10,32.80,31.35,30.58,29.72,29.05,25.71,18.85,18.20,17.41,15.02,-1.48,-4.38.HRMS ESI calcd.for[C48H69IN2O8Si2Na]+[M+Na]+:1007.3535;found:1007.3517.
S4.化合物12f的合成:
Figure BDA0002739539460000222
化合物2f(60mg,0.06mmol)溶于THF(2mL),随后TASF(50mg,0.18mmol)加入反应体系中。反应搅拌12小时。饱和的NH4Cl溶液(10mL)淬灭反应。用二氯甲烷(3x 30mL)反复萃取。合并有机相,用饱和食盐水(30mL)洗涤,无水Na2SO4干燥。旋干后直接投入下一步反应。
0℃下,NMM(0.1mL,0.19mmol)、HOBt(68mg,0.18mmol)和DIC(28ul,0.18mmol)依次加到脱保护的化合物3(0.06mmol)的DMF(1.5mL)溶液中。酸(0.06mmol)溶在DCM(0.5mL)中加入体系中。反应搅拌过夜。饱和的NH4Cl溶液(10mL)淬灭反应。用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用NaHCO3饱和溶液(30mL)、水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物12f(31mg,两步产率45%)。[α]24D=-25.00(c 1.0,CHCl3).1H NMR(500MHz,CDCl3)δ7.42(d,J=7.2Hz,2H),7.38(t,J=7.4Hz,2H),7.30(dd,J=16.9,8.4Hz,3H),7.24(d,J=6.2Hz,3H),7.07–6.98(m,4H),6.89(d,J=8.1Hz,2H),6.75(d,J=8.1Hz,2H),6.47–6.40(m,1H),6.33(s,1H),5.67(d,J=7.2Hz,1H),5.37(d,J=17.9Hz,1H),5.03(s,2H),4.72–4.62(m,1H),4.58–4.44(m,2H),3.94–3.82(m,1H),3.28–3.21(m,1H),3.20–3.10(m,3H),3.09–3.02(m,2H),2.97(d,J=15.7Hz,3H),2.90(d,J=10.9Hz,1H),2.41(d,J=7.8Hz,2H),1.77(s,3H),1.38(d,J=8.4Hz,2H),1.26(s,3H),1.23(d,J=4.2Hz,12H),1.13–1.08(m,5H),1.05(s,3H).13C NMR(125MHz,CDCl3)δ171.91,170.82,170.07,170.03,157.37,155.30,155.28,153.29,146.84,137.98,137.22,132.91,130.47,129.31,128.56,128.15,127.89,127.45,127.40,126.64,115.97,115.81,115.07,83.50,83.28,80.35,80.19,71.87,70.15,60.53,59.37,58.31,56.42,54.36,44.54,36.75,32.89,32.05,31.38,29.68,27.09,26.81,24.70,18.88,15.43,14.77.HRMS ESI calcd.for[C59H75BIN3O12Na]+[M+Na]+:1178.4386;found:1178.4379.
S5.化合物Ⅰf的合成:
Figure BDA0002739539460000231
Pd(PPh3)4(6mg,0.005mmol)和Ag2O(20mg,0.09mmol)溶于THF/H2O(19mL,v:v=10:1),化合物12f(19mg,0.02mmol)溶于THF(1mL)中后加入反应体系中。随后反应继续搅拌12小时。反应完全后,用乙酸乙酯(3x 30mL)反复萃取。合并有机相,依次用水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥。过滤收集有机相并旋干,得到的粗产品进行柱层析分离纯化得到化合物Ⅰf(12.5mg,85%)。[α]29D=-31.40(c 1.0,CHCl3).1H NMR(500MHz,MeOD)δ8.13(d,J=9.3Hz,1H),7.58(d,J=8.4Hz,1H),7.45(t,J=7.3Hz,5H),7.38(t,J=7.6Hz,2H),7.33(t,J=7.5Hz,3H),7.30–7.25(m,1H),7.04(dd,J=12.8,8.5Hz,4H),6.92(d,J=8.5Hz,2H),6.69(d,J=8.4Hz,2H),6.49–6.39(m,1H),6.16(d,J=10.7Hz,1H),6.01(dd,J=14.9,6.0Hz,1H),5.93(s,1H),5.07(s,2H),4.75(t,J=7.3Hz,2H),4.60(d,J=9.2Hz,1H),3.75(d,J=6.6Hz,1H),3.22(s,3H),3.04(s,3H),3.03–2.96(m,2H),2.75–2.69(m,2H),2.44–2.24(m,2H),2.16(t,J=11.7Hz,1H),2.03–1.79(m,2H),1.75(s,3H),1.70–1.63(m,1H),1.51(s,3H),1.23(s,3H),1.12(s,3H),1.06(d,J=6.9Hz,3H).13C NMR(125MHz,MeOD)δ171.74,171.50,170.02,169.93,157.32,156.02,139.13,137.55,136.50,133.26,133.16,130.09,129.05,128.60,128.08,127.62,127.41,127.28,127.15,126.36,125.67,114.89,114.69,83.78,79.97,71.62,69.77,60.89,60.43,60.34,58.59,57.22,56.23,54.85,53.88,42.04,37.59,30.93,30.81,30.03,29.32,26.86,24.62,14.12,10.49.HRMSESI calcd.for[C53H63N3O10Na]+[M+Na]+:924.4411;found:924.4413.
2.Nannocystin A的类似物生物活性实施例
将上述实施例1至实施例6分别提供的Ⅰa-Ⅰf分别构建细胞活性测试实验。具体nannocystin类似物Ⅰa-Ⅰf分别的生物活性实验模型如下:
细胞培养:
结肠癌细胞株HT29和HCT116,肝癌细胞株Hep3B均来自于ATCC(Manassas,VA)。肝癌细胞株SMMC7721来自于上海药物研究所。HCT116和SMMC7721细胞株均培养在PRMI-1640培养基中,内含10%牛胎血清,盘尼西林/链霉素和L-谷酰胺。HT29和Hep3B培养在包含10%牛胎血清,盘尼西林/链霉素和L-谷酰胺的DMEM细胞培养基中。
类似物Ⅰa-Ⅰf分别的生物活性的测试:
将需要测试的细胞均匀接种到96孔板中,培养过夜使细胞充分贴壁。PBS洗两次后,将细胞在含有递增浓度的类似物的培养基中(1%FBS)进行培养72小时。类似物的浓度从0.128*10-3μM以5倍递增,最高浓度为10μM,每个浓度均重复4次。化合物的活性通过MTS比色实验(Promega Co.,Madison,WI)进行评估。根据生产商指标,将20μl CellTiter96水溶液加入所有含有100μl介质的孔中并在37℃孵化4小时后,在490nm下测量通过酶标仪(Enspire,PerkinElmer,Massachusetts,USA)检测吸光度,prism 5分析数据并且进行计算IC50。
Ⅰa-Ⅰf分别进行的细胞活性测试实验结果如下:
2.1化合物Ⅰa对肿瘤细胞的抑制活性结果如下表2和图2所示:
表2
Figure BDA0002739539460000241
利用N-甲基-L-苯丙氨酸替换Nannocystin A中的N-甲基-L-异亮氨酸可得到类似物Ⅰa,由表2中的实验数据和图2可知,相比于天然产物Nannocystin A对于结肠癌细胞链HCT116其抑制活性急剧下降。而对于其他三种细胞链而言,虽然在纳摩尔级别依旧有一定活性,但相较天然产物Nannocystin A而言依旧有所下降。
2.2化合物Ⅰb对肿瘤细胞的抑制活性结果如下表3和图3所示:
表3
Figure BDA0002739539460000242
利用4-叔丁基-N-甲基-L-苯丙氨酸替换Nannocystin A中的N-甲基-L-异亮氨酸得到类似物Ⅰb,由表3中的实验数据和图3可知,当在苯丙氨酸对位加上叔丁基时,对以上四条细胞链的抑制活性有所降低。
2.3化合物Ⅰc对肿瘤细胞的抑制活性结果如下表4和图4所示:
表4
Figure BDA0002739539460000243
利用N-甲基-L-高亮氨酸替换Nannocystin A中的N-甲基-L-异亮氨酸即可得到类似物Ⅰc,由表4中的实验数据和图4惊喜地发现,虽然对两张结肠癌细胞而言活性较天然产物Nannocystin A有所下降,但是对肝癌细胞SMMC7721和Hep3B活性相当甚至有所提升。
2.4化合物Ⅰd对肿瘤细胞的抑制活性结果如下表5和图5所示:
表5
Figure BDA0002739539460000244
Figure BDA0002739539460000251
利用N-甲基-O-苄基-L-酪氨酸代替Nannocystin A中的N-甲基-L-异亮氨酸即可得到类似物Ⅰd,由表5中的实验数据和图5可知,相比于天然产物,对于以上四条细胞链的抑制活性均下降。
2.5化合物Ⅰe对肿瘤细胞的抑制活性结果如下表6和图6所示:
表6
Figure BDA0002739539460000252
而N-甲基-L-高苯丙氨酸取代Nannocystin A中的N-甲基-L-异亮氨酸即可得到类似物Ⅰe,由表6中的实验数据和图6可知,对于肝癌细胞SMMC7721的抑制活性优于天然产物Nannocystin A,但是对于其他三种癌细胞链活性却有所下降。
2.6化合物Ⅰf对肿瘤细胞的抑制活性结果如下表7和图7所示:
表7
Figure BDA0002739539460000253
用N-甲基-O-苄基-L-高酪氨酸替换天然产物Nannocystin A中的N-甲基-L-异亮氨酸后得到类似物Ⅰf,由表7中的实验数据和图7可知,对于肝癌细胞Hep3B的活性最好,可达到6.3nM,而其他三条细胞链活性较天然产物而言均下降24倍以上。
由第2节中Nannocystin A的类似物生物活性实验和实验数据,可得到表8,对于结肠癌细胞而言,当增大天然产物Nannocystin A中N-甲基-L-异亮氨酸R基侧链时,对其抑制活性变得很差,甚至在一定浓度范围内没有抑制活性,但是随着R基侧链的增长,其活性有所提高。对于结肠癌细胞HT29而言,对比类似物Ⅰd、Ⅰe和Ⅰf的实验结果可知,随着R基侧链的增长其抑制活性有所提高,但是相比于天然产物而言,活性依旧有所下降。对于肝癌细胞SMMC7721和Hep3B而言,对比Ⅰa和Ⅰe,Ⅰd和Ⅰf,在取代基为芳环的情况下,延长侧链长度可使活性增加。而当R基取代基为烷基侧链时,相比于芳环取代基活性又有所增加,甚至优于天然产物。相比于其他类似物,化合物Ⅰb活性最差,其原因有可能是因为叔丁基取代基过大而难以进入靶点蛋白对应的疏水性口袋。
表8类似物与天然产物生物活性比较
Figure BDA0002739539460000254
Figure BDA0002739539460000261
由以上数据对比分析可知,对于天然产物Nannocystin A中的异亮氨酸片段而言,当R基团为烷基取代基时的活性比R基团为芳基取代基要好,而且对比天然产物Nannocystin A、类似物Ⅰc的活性数据,可知增长其碳链长度将有利于提高其活性。由此可得,下一步对于天然产物类似物的设计可有针对性地延长异亮氨酸片段R基碳链长度,以期获得活性更好的Nannocystins类似物。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种Nannocystin A的类似物,其分子结构式如下述通式Ⅰ所示:
Figure FDA0002739539450000011
其中,通式Ⅰ中的R为-H、C1-C15的烷基、芳基、C1-C15的烷氧基、卤素、羟基、氨基、硝基、氰基、巯基中的任一种。
2.根据权利要求1所述的类似物,其特征在于:所述C1-C15的烷基为C1-C15的直链或支链烷基、芳基中的任一种。
3.根据权利要求2所述的类似物,其特征在于:所述C1-C15的直链或支链烷基为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基、正己基、苄基中的任一种。
4.根据权利要求1-3任一项所述的类似物,其特征在于:所述R为如下a至h所示基团中的任一种:
Figure FDA0002739539450000012
5.一种Nannocystin A的类似物的制备方法,包括如下步骤:
将如下化合物A进行第一脱保护基团反应以脱除-TBS基团和-TMSE基团,生成化合物B;
将所述化合物B与化合物C进行第一酰胺化反应,生成关环前体D;
将所述关环前体D进行Suzuki偶联反应,生成目标产物Ⅰ;其中,所述目标产物Ⅰ为权利要求1-4任一项所述的Nannocystin A的类似物;
所述Nannocystin A的类似物的制备方法合成路线如下:
Figure FDA0002739539450000021
6.根据权利要求5所述的制备方法,其特征在于:所述第一脱保护基团反应是利用三(二甲氨基甲基)锍二氟三甲基氨酸硅酸盐将所述化合物A所含的-TBS基团和-TMSE基团脱除,生成化合物B;和/或
所述第一酰胺化反应是在HOBt和DIC存在的条件下,所述化合物B与化合物C进行所述第一酰胺化反应;和/或
所述Suzuki偶联反应是在Pd(PPh3)4、Ag2O存在的条件下进行。
7.根据权利要求5或6所述的制备方法,其特征在于:所述化合物A按照包括如下的合成步骤合成:
将如下化合物A1与化合物A2进行第二酰胺化反应,生成化合物A3;
将所述化合物A3进行第二脱保护基团反应以脱除-Boc基团,生成化合物A4;
将所述化合物A4与化合物A5进行第三酰胺化反应,生成所述化合物A;
所述化合物A的合成路线如下:
Figure FDA0002739539450000031
8.根据权利要求7所述的制备方法,其特征在于:
所述第二酰胺化反应是在PyAOP、DIPEA存在的条件下,所述化合物A1与化合物A2进行所述第二酰胺化反应;和/或
所述第二脱保护基团反应所述利用TFA将所述化合物A3所含的-Boc基团基团脱除;和/或
所述第三酰胺化反应是在BEP、DIPEA存在的条件下,所述化合物A4与化合物A5进行所述第三酰胺化反应。
9.根据权利要求1-4任一项所述的类似物和/或所述类似物的药学上可接受的盐在制备治疗癌症药物或治疗癌症的辅助药物中的应用。
10.根据权利要求9所述的应用,其特征在于:所述癌症包括结肠癌、肝癌中的至少一种。
CN202011145310.4A 2020-10-23 2020-10-23 Nannocystin A的类似物及其制备方法和应用 Pending CN112321677A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011145310.4A CN112321677A (zh) 2020-10-23 2020-10-23 Nannocystin A的类似物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011145310.4A CN112321677A (zh) 2020-10-23 2020-10-23 Nannocystin A的类似物及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112321677A true CN112321677A (zh) 2021-02-05

Family

ID=74311498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011145310.4A Pending CN112321677A (zh) 2020-10-23 2020-10-23 Nannocystin A的类似物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112321677A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115043902A (zh) * 2021-03-09 2022-09-13 南开大学 氮取代大环nannocystin类似物、及其制备方法和用途
CN115894607A (zh) * 2022-11-02 2023-04-04 四川大学 一种抗肿瘤的苯丙氨酸缬氨酰衍生物及其制备方法
CN116082436A (zh) * 2022-12-05 2023-05-09 吴正治 CyclotheonellazoleA结构类似物及其合成方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106083997A (zh) * 2016-07-05 2016-11-09 北京大学深圳研究生院 Nannocystin A及其结构类似物的合成
US20170320893A1 (en) * 2016-05-09 2017-11-09 The Research Foundation For The State University Of New York Nannocystin process and products
CN109280073A (zh) * 2017-07-19 2019-01-29 南开大学 Nannocystins衍生物及其用途
CN109796468A (zh) * 2019-03-26 2019-05-24 南开大学 大环nannocystin衍生物、及其制备方法和用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170320893A1 (en) * 2016-05-09 2017-11-09 The Research Foundation For The State University Of New York Nannocystin process and products
CN106083997A (zh) * 2016-07-05 2016-11-09 北京大学深圳研究生院 Nannocystin A及其结构类似物的合成
CN109280073A (zh) * 2017-07-19 2019-01-29 南开大学 Nannocystins衍生物及其用途
CN109796468A (zh) * 2019-03-26 2019-05-24 南开大学 大环nannocystin衍生物、及其制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LINPING LIAO ET AL: "Concise Total Synthesis of Nannocystin A", 《ANGEWANDTE CHEMIE INTERNATIONAL EDITION》 *
PHILIPP KRASTEL ET AL: "Nannocystin A: an Elongation Factor 1 Inhibitor from Myxobacteria with Differential Anti-Cancer Properties", 《ANGEWANDTE CHEMIE INTERNATIONAL EDITION》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115043902A (zh) * 2021-03-09 2022-09-13 南开大学 氮取代大环nannocystin类似物、及其制备方法和用途
CN115043902B (zh) * 2021-03-09 2024-02-20 南开大学 氮取代大环nannocystin类似物、及其制备方法和用途
CN115894607A (zh) * 2022-11-02 2023-04-04 四川大学 一种抗肿瘤的苯丙氨酸缬氨酰衍生物及其制备方法
CN115894607B (zh) * 2022-11-02 2024-01-30 四川大学 一种抗肿瘤的苯丙氨酸缬氨酰衍生物及其制备方法
CN116082436A (zh) * 2022-12-05 2023-05-09 吴正治 CyclotheonellazoleA结构类似物及其合成方法和应用
CN116082436B (zh) * 2022-12-05 2024-02-27 吴正治 Cyclotheonellazole A结构类似物及其合成方法和应用

Similar Documents

Publication Publication Date Title
CN112321677A (zh) Nannocystin A的类似物及其制备方法和应用
FI86421C (fi) Foerfarande foer framstaellning av terapeutiskt anvaendbara 9-amino-1,2,3,4-tetrahydroakridin-1-oler.
TWI468375B (zh) 製備經保護之l-丙胺酸衍生物之方法
JP7153705B2 (ja) Btk阻害剤を調製するプロセス
TR201810399T4 (tr) İndolamin 2,3-dioksijenaz (ıdo) inhibitörleri.
CN108727468B (zh) 环肽、包含其的医药或化妆品组成物及其制备方法
US20220185846A1 (en) Methods for synthesizing beta-homoamino acids
CA2885973C (en) Dolastatin-10 derivative, method of producing the same and anticancer drug composition containing the same
KR100490220B1 (ko) 4-옥소이미다졸리늄염의제조방법
CN106977415B (zh) 一种沙库必曲的中间体及其制备方法
CN106459150A (zh) 合成五肽的制造方法
AU2021314375A1 (en) Method for large-scale synthesis of tetrodotoxin
TWI835325B (zh) (s)-4-氯-2-胺基丁酸鹽酸鹽及(s)-4-氯-2-胺基丁酸酯的製備方法
CN109180681A (zh) 一种dna毒性二聚体化合物
CN110092760B (zh) 一种3-氟代烷氧基-2(1h)-喹喔啉酮及其合成方法
JP2002502378A (ja) グアニジル化試薬
AU2002256323B2 (en) Echinocandin process
AU739367B2 (en) Indolomorphinan derivative and agent for curing and preventing cerebral disorder
WO2020156522A1 (zh) 地佐辛衍生物及其医药用途
MX2013012161A (es) Compuesto intermedio de la sintesis de caspofungina y metodo de preparacion de la misma.
KR101331984B1 (ko) 카스포펀진 제조방법 및 그의 신규 중간체
CN110698442B (zh) 一种富马酸地洛昔醇的制备方法
CN112920053B (zh) 一种手性α-甲基芳乙胺的制备方法
CA2929283C (en) Intermediates and methods for synthesizing calicheamicin derivatives
JP2018177790A (ja) シクロペプチド、それを含む医薬または化粧用組成物、及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210205