[go: up one dir, main page]

CN112280757B - Application of anthrax fatty acid hydroxylase CsSCS7 - Google Patents

Application of anthrax fatty acid hydroxylase CsSCS7 Download PDF

Info

Publication number
CN112280757B
CN112280757B CN202011194768.9A CN202011194768A CN112280757B CN 112280757 B CN112280757 B CN 112280757B CN 202011194768 A CN202011194768 A CN 202011194768A CN 112280757 B CN112280757 B CN 112280757B
Authority
CN
China
Prior art keywords
csscs7
fatty acid
acid hydroxylase
gene
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202011194768.9A
Other languages
Chinese (zh)
Other versions
CN112280757A (en
Inventor
林春花
龙熙平
缪卫国
刘文波
廖小淼
李潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN202011194768.9A priority Critical patent/CN112280757B/en
Publication of CN112280757A publication Critical patent/CN112280757A/en
Priority to PCT/CN2021/106781 priority patent/WO2022088770A1/en
Application granted granted Critical
Publication of CN112280757B publication Critical patent/CN112280757B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供一种炭疽菌脂肪酸羟化酶CsSCS7的应用及构建基因敲除载体、基因敲除突变体的方法,具体为炭疽菌脂肪酸羟化酶CsSCS7在降解杀菌剂中的应用,本发明通过构建CsSCS7基因敲除载体,获得CsSCS7基因敲除突变体,经过功能性实验,证实了该羟化酶对炭疽菌真菌菌丝生长极为重要,并参与调控真菌对咯菌腈的降解,可应用于对咯菌腈等吡咯类杀菌药剂降解的功能,具有良好的应用前景。

Figure 202011194768

The invention provides an application of Bacillus anthracis fatty acid hydroxylase CsSCS7 and a method for constructing a gene knockout vector and a gene knockout mutant, in particular to the application of Bacillus anthracis fatty acid hydroxylase CsSCS7 in degrading fungicides. The CsSCS7 gene knockout vector was obtained, and the CsSCS7 gene knockout mutant was obtained. After functional experiments, it was confirmed that the hydroxylase was very important for the growth of B. anthracis fungal hyphae, and was involved in regulating the degradation of fludioxonil by fungi. The function of degrading pyrrole fungicides such as fludioxonil has a good application prospect.

Figure 202011194768

Description

一种炭疽菌脂肪酸羟化酶CsSCS7的应用Application of a fatty acid hydroxylase CsSCS7 from Bacillus anthracis

技术领域technical field

本发明涉及生物技术领域,特别涉及一种炭疽菌脂肪酸羟化酶CsSCS7的应用及构建基因敲除载体、基因敲除突变体的方法。The invention relates to the field of biotechnology, in particular to an application of anthracis fatty acid hydroxylase CsSCS7 and a method for constructing a gene knockout vector and a gene knockout mutant.

背景技术Background technique

鞘脂质(sphingolipids)是真核生物细胞质膜的成分,广泛存在于动物、植物和真菌中。真菌中存在两种复杂的鞘脂质:肌醇磷酸神经酰胺(inositolphosphoceramides,IPC)和葡萄糖基神经酰胺(Glucosylceramide, GlcCer)。植物病原真菌中已有实验证明这两类复杂鞘脂参与多种真菌的生长以及致病过程。如灰霉病的IPC合成酶被抑制后严重影响孢子萌发以及菌丝生长;禾谷镰刀菌中神经酰胺合成酶FgBar1特异性接到GlcCer的合成,GlcCer的缺失或者甲基化修饰受到影响都会造成赤霉病致病性的丧失等。已有研究表明真菌鞘脂的羟基化状态参与钙离子水平稳态调控和抗真菌药物敏感性有关,对于维持多种逆境条件下细胞生长是重要的因素。Sphingolipids ( sphingolipids ) are components of eukaryotic cytoplasmic membranes and are widely present in animals, plants and fungi. There are two complex sphingolipids in fungi: inositolphosphoceramides (IPC) and glucosylceramides (GlcCer). Experiments in phytopathogenic fungi have demonstrated that these two complex sphingolipids are involved in the growth and pathogenic process of a variety of fungi. For example, the inhibition of IPC synthase in Botrytis cinerea will seriously affect spore germination and hyphal growth; the ceramide synthase FgBar1 in Fusarium graminearum is specifically connected to the synthesis of GlcCer, and the deletion of GlcCer or the influence of methylation modification will cause Loss of pathogenicity of scab, etc. Previous studies have shown that the hydroxylation state of fungal sphingolipids is involved in the regulation of calcium ion homeostasis and the sensitivity to antifungal drugs, and is an important factor in maintaining cell growth under various stress conditions.

SCS7是一种脂肪酸羟化酶,该蛋白含有一个类似细胞色素b5的结构域和一个羟化酶结构域,已知其在酵母菌中起着调节鞘脂羟基化的功能,是合成单羟基化的肌醇磷酸神经酰胺的关键酶。酵母中SCS7基因的消除可以抑制csg1和csg2突变体的钙敏感表型,但SCS7是否影响酵母对药物的敏感性并不知。SCS7 is a fatty acid hydroxylase. The protein contains a cytochrome b5-like domain and a hydroxylase domain. It is known to function in yeast to regulate the hydroxylation of sphingolipids. It is a synthetic monohydroxylation The key enzyme of inositol phosphoceramide. Deletion of the SCS7 gene in yeast suppressed the calcium-sensitive phenotype of csg1 and csg2 mutants, but whether SCS7 affects yeast susceptibility to drugs is unknown.

因此,根据现有研究未能证明SCS7参与菌体对药物的敏感性调控,目前未见炭疽菌中SCS7的相关功能研究。Therefore, according to the existing research, it has not been proved that SCS7 is involved in the regulation of the sensitivity of bacteria to drugs, and there is no related function study of SCS7 in anthracis.

发明内容SUMMARY OF THE INVENTION

鉴以此,本发明提出一种炭疽菌脂肪酸羟化酶CsSCS7的应用及构建基因敲除载体、基因敲除突变体的方法。In view of this, the present invention proposes an application of anthracis fatty acid hydroxylase CsSCS7 and a method for constructing a gene knockout vector and a gene knockout mutant.

本发明的技术方案是这样实现的:The technical scheme of the present invention is realized as follows:

本发明提供一种炭疽菌脂肪酸羟化酶CsSCS7在降解杀菌剂中的应用。The invention provides the application of anthrax fatty acid hydroxylase CsSCS7 in degrading fungicides.

进一步说明,所述炭疽菌脂肪酸羟化酶CsSCS7在调控真菌对吡咯类药剂降解方面的应用。To further illustrate, the application of the fatty acid hydroxylase CsSCS7 of B. anthracis in regulating the degradation of pyrroles by fungi.

进一步说明,所述炭疽菌脂肪酸羟化酶CsSCS7编码的蛋白、基因敲除载体和基因敲除突变体在调控真菌对吡咯类药剂降解方面的应用。It is further described that the protein encoded by the fatty acid hydroxylase CsSCS7 of B. anthracis, the gene knockout vector and the gene knockout mutant are used in regulating the degradation of pyrroles by fungi.

进一步说明,所述炭疽菌脂肪酸羟化酶CsSCS7的核苷酸序列如SEQ ID NO:1所示;炭疽菌脂肪酸羟化酶CsSCS7编码的蛋白的氨基酸序列如SEQ ID NO:2所示。To further illustrate, the nucleotide sequence of the fatty acid hydroxylase CsSCS7 of B. anthracis is shown in SEQ ID NO: 1; the amino acid sequence of the protein encoded by the fatty acid hydroxylase CsSCS7 of B. anthracis is shown in SEQ ID NO: 2.

一种炭疽菌脂肪酸羟化酶CsSCS7基因敲除载体的构建方法,包括如下步骤:A method for constructing a Bacillus anthracis fatty acid hydroxylase CsSCS7 gene knockout vector, comprising the following steps:

(1)在炭疽菌脂肪酸羟化酶CsSCS7基因编码阅读框架前后,设计引物对CsSCS7-U-F/CsSCS7-U-R和CsSCS7-D-F/CsSCS7-D-R;(1) Design primer pairs CsSCS7-U-F/CsSCS7-U-R and CsSCS7-D-F/CsSCS7-D-R before and after the coding reading frame of the fatty acid hydroxylase CsSCS7 gene of B. anthracis;

(2)利用PCR扩增获得炭疽菌脂肪酸羟化酶CsSCS7基因上臂序列和C端后的下臂序列,使用同源重组的方法,将上臂和下臂序列联入载体pCX62-S中,获得敲除载体。(2) The upper arm sequence and the lower arm sequence after the C-terminus of the fatty acid hydroxylase CsSCS7 gene of B. anthracis were obtained by PCR amplification, and the upper arm and lower arm sequence were combined into the vector pCX62-S by homologous recombination to obtain a knockout Remove the carrier.

进一步说明,所述引物CsSCS7-U-F的序列为:Further description, the sequence of the primer CsSCS7-U-F is:

5’-GTACCGGGCCCCCCCAGCTTCTCAGAATCCACATATCCAC-3’5’-GTACCGGGCCCCCCCAGCTTCTCAGAATCCACATATCCAC-3’

所述引物CsSCS7-U-R的序列为:The sequence of the primer CsSCS7-U-R is:

5’-CGATACCGTCGACCTCGAAGCTGCAGGTGGCGATCGTGAAT-3’5’-CGATACCGTCGACCTCGAAGCTGCAGGTGGCGATCGTGAAT-3’

所述引物CsSCS7-D-F的序列为:The sequence of the primer CsSCS7-D-F is:

5’-GCTCTCACCGCGGATCCTTCATCGACCAACGTTCATAC-3’5’-GCTCTCACCGCGGATCCTTCATCGACCAACGTTCATAC-3’

所述引物CsSCS7-D-R的序列为:The sequence of the primer CsSCS7-D-R is:

5’-CTAGAACTAGTGGATCTCTAGGCCGGACATGTTGACTG-3’。5'-CTAGAACTAGTGGATCTCTCTAGGCCGGACATGTTGACTG-3'.

一种炭疽菌脂肪酸羟化酶CsSCS7基因敲除突变体的构建方法,上述构建获得的敲除载体,导入橡胶树炭疽菌原生质体中,通过含氯嘧磺隆的DCM培养基进行筛选,经过PCR验证,得到炭疽菌脂肪酸羟化酶CsSCS7基因敲除突变体。A method for constructing a CsSCS7 gene knockout mutant of Bacillus anthracis fatty acid hydroxylase, the knockout vector obtained by the above construction is introduced into the protoplast of Bacillus anthracis, screened by a DCM medium containing chlorsulfuron, and verified by PCR , to obtain the CsSCS7 gene knockout mutant of B. anthracis fatty acid hydroxylase.

与现有技术相比,本发明的有益效果是:本发明通过克隆橡胶树炭疽菌脂肪酸羟化酶CsSCS7基因,并构建了CsSCS7基因敲除载体,获得CsSCS7基因敲除突变体,经过功能性实验,证实了该羟化酶对炭疽菌真菌菌丝生长极为重要,并参与调控真菌对咯菌腈的降解,表明了在真菌中表达CsSCS7,或者能激活表达CsSCS7的药物,均能够有效提高真菌对咯菌腈的降解,可应用于对咯菌腈等吡咯类杀菌药剂降解的功能,具有良好的应用前景。Compared with the prior art, the beneficial effects of the present invention are as follows: the present invention obtains a CsSCS7 gene knockout mutant by cloning the fatty acid hydroxylase CsSCS7 gene of the rubber tree anthracnose, and constructing a CsSCS7 gene knockout vector, and through functional experiments, It is confirmed that the hydroxylase is very important for the growth of mycelium of B. anthracis and participates in regulating the degradation of fludioxonil by fungi. The degradation of bactronil can be applied to the function of degrading pyrrole fungicides such as fludioxonil, and has a good application prospect.

附图说明Description of drawings

图1为本发明炭疽菌脂肪酸羟化酶CsSCS7基因敲除示意图;Fig. 1 is a schematic diagram of the gene knockout of fatty acid hydroxylase CsSCS7 of Bacillus anthracis of the present invention;

图2为本发明基因缺失突变体△CsSCS7的PCR验证;1号泳道为Marker,2号和3号泳道的验证引物为CsSCS7-F/CsSCS7-R,4号和5号泳道的验证引物为CsSCS7-Ou-F/ILV-R,6号和7号泳道的验证引物为ILV-R/CsSCS7-Ou-R;Figure 2 is the PCR verification of the gene deletion mutant ΔCsSCS7 of the present invention; the No. 1 lane is Marker, the verification primers of No. 2 and No. 3 lanes are CsSCS7-F/CsSCS7-R, and the verification primers of No. 4 and No. 5 lanes are CsSCS7 -Ou-F/ILV-R, the verification primers for lanes 6 and 7 are ILV-R/CsSCS7-Ou-R;

图3为野生型HN08菌株与基因缺失突变体ΔCsSCS7菌株在不同咯菌腈浓度的CM培养基的菌落生长形态图(7天);Figure 3 shows the colony growth morphology of wild-type HN08 strain and gene deletion mutant ΔCsSCS7 strain in CM medium with different fludioxonil concentrations (7 days);

图4为野生型HN08菌株与基因缺失突变体ΔCsSCS7菌株处理咯菌腈药剂后咯菌腈的残留情况。Figure 4 shows the residues of fludioxonil after the wild-type HN08 strain and the gene deletion mutant ΔCsSCS7 strain were treated with fludioxonil.

具体实施方式Detailed ways

为了更好理解本发明技术内容,下面提供具体实施例,对本发明做进一步的说明。In order to better understand the technical content of the present invention, specific embodiments are provided below to further illustrate the present invention.

本发明实施例所用的实验方法如无特殊说明,均为常规方法。The experimental methods used in the embodiments of the present invention are conventional methods unless otherwise specified.

本发明实施例所用的材料、试剂等,如无特殊说明,均可从商业途径得到。Materials, reagents, etc. used in the examples of the present invention can be obtained from commercial sources unless otherwise specified.

实施例1-橡胶树炭疽菌脂肪酸羟化酶CsSCS7基因的克隆Example 1 - Cloning of the fatty acid hydroxylase CsSCS7 gene of Bacillus anthracis

在NCBI数据库搜索获得炭疽菌CsSCS7基因序列,利用本地BLAST法在橡胶树炭疽菌(C.siamense)HN08转录组序列数据库(本实验室保存)中比对获得同源序列,设计引物对CsSCS7-F(5’-CGCGGATCCATGCCGTCGAGAACTCTCCCTA-The CsSCS7 gene sequence of C. anthracis was obtained by searching the NCBI database, and the homologous sequence was obtained by comparing the HN08 transcriptome sequence database of C. siamense (preserved in our laboratory) by the local BLAST method, and the primer pair CsSCS7-F ( 5'-CGCGGATCCATGCCGTCGAGAACTCTCCCTA-

3’)/CsSCS7-R(5’-CCCAAGCTTTTATTGCGTCTTGACAATGGGAG-3’)。分别以橡胶树炭疽菌(C.siamense)HN08的DNA和cDNA为模板进行扩增。根据序列分析显示:得到的序列包含完整的编码开放阅读框。DNA序列大小为1271bp,cDNA序列大小为1215bp,该基因含有1个内含子,编码404个氨基酸,含有一个CytB5结构域,一个低复杂度区域,1个跨膜区域,一个羟化酶,与酵母SCS7同源,将该基因命名为CsSCS7基因,是一种脂肪酸羟化酶。3')/CsSCS7-R(5'-CCCAAGCTTTTTATTGCGTCTTGACAATGGGAG-3'). The DNA and cDNA of C. siamense HN08 were used as templates for amplification, respectively. According to sequence analysis, it was shown that the obtained sequence contained a complete coding open reading frame. The size of the DNA sequence is 1271bp, and the size of the cDNA sequence is 1215bp. The gene contains an intron, encoding 404 amino acids, a CytB5 domain, a low-complexity region, a transmembrane region, a hydroxylase, and Saccharomyces cerevisiae SCS7 homology, the gene named CsSCS7 gene, is a fatty acid hydroxylase.

实施例2-炭疽菌脂肪酸羟化酶CsSCS7基因敲除载体的构建Example 2-Construction of Bacillus anthracis fatty acid hydroxylase CsSCS7 gene knockout vector

在炭疽菌脂肪酸羟化酶CsSCS7基因编码阅读框架前后,设计引物对CsSCS7-U-F/CsSCS7-U-R和CsSCS7-D-F/CsSCS7-D-R,利用PCR扩增获得CsSCS7基因上臂序列和C端后的下臂序列,使用同源重组的方法,将上臂和下臂序列联入载体pCX62-S中,获得敲除载体pCX62-S-CsSCS7,示意图详见图1。Before and after the coding reading frame of the fatty acid hydroxylase CsSCS7 gene of B. anthracis, the primer pairs CsSCS7-U-F/CsSCS7-U-R and CsSCS7-D-F/CsSCS7-D-R were designed, and the upper arm sequence and the lower arm sequence after the C-terminus of the CsSCS7 gene were obtained by PCR amplification , using the method of homologous recombination, the upper arm and lower arm sequences were combined into the vector pCX62-S to obtain the knockout vector pCX62-S-CsSCS7, the schematic diagram is shown in Figure 1.

引物CsSCS7-U-F的序列为:The sequence of primer CsSCS7-U-F is:

5’-GTACCGGGCCCCCCCAGCTTCTCAGAATCCACATATCCAC-3’5’-GTACCGGGCCCCCCCAGCTTCTCAGAATCCACATATCCAC-3’

引物CsSCS7-U-R的序列为:The sequence of primer CsSCS7-U-R is:

5’-CGATACCGTCGACCTCGAAGCTGCAGGTGGCGATCGTGAAT-3’5’-CGATACCGTCGACCTCGAAGCTGCAGGTGGCGATCGTGAAT-3’

引物CsSCS7-D-F的序列为:The sequence of primer CsSCS7-D-F is:

5’-GCTCTCACCGCGGATCCTTCATCGACCAACGTTCATAC-3’5’-GCTCTCACCGCGGATCCTTCATCGACCAACGTTCATAC-3’

引物CsSCS7-D-R的序列为:The sequence of primer CsSCS7-D-R is:

5’-CTAGAACTAGTGGATCTCTAGGCCGGACATGTTGACTG-3’。5'-CTAGAACTAGTGGATCTCTCTAGGCCGGACATGTTGACTG-3'.

实施例3-炭疽菌脂肪酸羟化酶CsSCS7基因敲除突变体的构建Example 3-Construction of B. anthracis fatty acid hydroxylase CsSCS7 gene knockout mutant

将由实施例2构建获得的敲除载体pCX62-S-CsSCS7,利用PEG介导原生质体转化法将其导入橡胶树炭疽菌(C.siamense)HN08原生质体中,通过含氯嘧磺隆(100μg/mL)的DCM培养基进行筛选,共转化6批次,获得转化子57个。The knockout vector pCX62-S-CsSCS7 obtained by the construction of Example 2 was introduced into the protoplast of rubber tree anthracnose ( C.siamense ) HN08 by using PEG-mediated protoplast transformation. ) DCM medium for screening, 6 batches were transformed, and 57 transformants were obtained.

分批次提取57个转化子基因组DNA序列,采用PCR验证,转化子△CsSCS7-51符合预期,CsSCS7基因的引物CsSCS7-F(5’-CGCGGATCCATGCCGTCGAGAACTCTCCCTA-3’)/CsSCS7-R(5’-CCCAAGCTTTTATTGCGTCTTGACAATGGGAG-3’),野生型能够扩增到一条大小为1200bp左右的目的条带而突变体没有扩增到该目的条带,CsSCS7基因上游引物CsSCS7-Ou-F(5’-TGCTTTTGCATTGCTGTGACC-3’)和氯嘧磺隆抗性基因ILV1内部引物ILV-R(5’-GTTCAACGCCGCCTTCCGACAAAAT-3’),突变体能扩增到一条大小为2700bp左右的目的条带,而野生型HN08没有扩增到条带;氯嘧磺隆抗性基因ILV1内部引物ILV-F(5’-GGCGGTGCTATCCTTCCCGTGTT-3’)和CsSCS7基因下游引物CsSCS7-Ou-R(5’-ATGCCTTGTGTTCTTCCGGT-3’),突变体可扩增到一条大小约3000bp左右的目的条带,野生型HN08中未扩增出该条带,如图2所示。因此,PCR结果初步说明转化子△CsSCS7-51中的CsSCS7基因已经替换为ILV1基因。The genomic DNA sequences of 57 transformants were extracted in batches and verified by PCR. The transformant △CsSCS7-51 was as expected. The primers of CsSCS7 gene CsSCS7-F(5'-CGCGGATCCATGCCGTCGAGAACTCTCCCTA-3')/CsSCS7-R(5'-CCCAAGCTTTTATTGCGTCTTGACAATGGGAG -3'), the wild type can amplify a target band with a size of about 1200bp, but the mutant does not amplify the target band. The upstream primer of CsSCS7 gene CsSCS7-Ou-F (5'-TGCTTTTGCATTGCTGTGACC-3') Using the internal primer ILV-R (5'-GTTCAACGCCGCCTTCCGACAAAAT-3') of the chlorsulfuron resistance gene ILV1, the mutant can amplify a target band with a size of about 2700bp, while the wild-type HN08 did not amplify to a band; The internal primer ILV-F (5'-GGCGGTGCTATCCTTCCCGTGTT-3') of the chlorsulfuron resistance gene ILV1 and the downstream primer CsSCS7-Ou-R (5'-ATGCCTTGTGTTCTTCCGGT-3') of the CsSCS7 gene, the mutant can be amplified to a size of one The target band of about 3000bp was not amplified in the wild-type HN08, as shown in FIG. 2 . Therefore, the PCR results preliminarily indicated that the CsSCS7 gene in the transformant ΔCsSCS7-51 had been replaced by the ILV1 gene.

实施例4-ΔCsSCS7基因缺失突变体菌株对杀菌剂咯菌腈的敏感性Example 4-Sensitivity of the ΔCsSCS7 gene deletion mutant strain to the fungicide fludioxonil

在ΔCsSCS7基因缺失突变体菌株对杀菌剂咯菌腈的敏感性实验中,在不含咯菌腈的培养基中,ΔCsSCS7基因缺失突变体的生长速率较野生型HN08低,随着咯菌腈浓度的升高,ΔCsSCS7基因缺失突变体的生长速率逐渐降低;而且随着咯菌腈浓度的升高至0.1μg/ml时,ΔCsSCS7基因缺失突变体的生长速率明显降低,如图3所示。该结果说明CsSCS7能够实现真菌对咯菌腈等吡咯类药剂敏感性调控,该基因的表达能够提高炭疽菌等真菌对咯菌腈等吡咯类药剂的抗药性。In the susceptibility test of the ΔCsSCS7 gene deletion mutant strain to the fungicide fludioxonil, in the medium without fludioxonil, the growth rate of the ΔCsSCS7 gene deletion mutant was lower than that of the wild-type HN08, and with the concentration of fludioxonil When the concentration of fludioxonil increased to 0.1 μg/ml, the growth rate of the ΔCsSCS7 gene deletion mutant decreased significantly, as shown in Figure 3. The results indicate that CsSCS7 can realize the regulation of the sensitivity of fungi to pyrroles such as fludioxonil, and the expression of this gene can improve the resistance of fungi such as anthracis to pyrroles such as fludioxonil.

实施例5-对咯菌腈等吡咯类杀菌药剂降解功能的测定Example 5 - Determination of the degradation function of pyrrole fungicides such as fludioxonil

进行野生型HN08菌株与基因缺失突变体ΔCsSCS7菌株处理咯菌腈药剂后咯菌腈的残留测定,本发明使用野生型HN08菌株与基因缺失突变体ΔCsSCS7菌株的孢子液接种到含有1.204µg/ml咯菌腈的CM液体培养基中培养3天后,使用液相色谱仪测量咯菌腈的药剂残留量,使用不加入孢子液的加入等量药剂的CM液体培养基作为对照,孢子液提前配置成105个/ml的浓度。结果表明含野生型HN08菌株与基因缺失突变体ΔCsSCS7菌株的培养基中的咯菌腈浓度明显降低,均能降解咯菌腈,ΔCsSCS7菌株的降解量较HN08菌株的降解量要少,如图4所示,该结果表明炭疽菌脂肪酸羟化酶CsSCS7基因的表达,能够提高炭疽菌对咯菌腈的降解量,可应用于对咯菌腈等吡咯类杀菌药剂降解的功能。To carry out the residual determination of fludioxonil after the wild-type HN08 strain and the gene deletion mutant ΔCsSCS7 strain are treated with fludioxonil, the present invention uses the spore fluid of the wild-type HN08 strain and the gene deletion mutant ΔCsSCS7 strain to inoculate the spore fluid containing 1.204µg/ml of fludioxonil After culturing for 3 days in the CM liquid medium of bacteriocin, use a liquid chromatograph to measure the residual amount of fludioxonil, and use the CM liquid medium without adding spore liquid to add the same amount of agent as a control, and the spore liquid is configured to 10 in advance. 5 /ml concentration. The results showed that the concentration of fludioxonil in the medium containing the wild-type HN08 strain and the gene deletion mutant ΔCsSCS7 strain was significantly reduced, and both could degrade fludioxonil. The degradation amount of the ΔCsSCS7 strain was less than that of the HN08 strain, as shown in Figure 4 The results show that the expression of the fatty acid hydroxylase CsSCS7 gene of B. anthracis can increase the amount of degraded fludioxonil by B. anthracis, and can be applied to the degradation of fludioxonil and other pyrrole fungicides.

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the scope of the present invention. within the scope of protection.

序列表 sequence listing

<110> 海南大学<110> Hainan University

<120> 一种炭疽菌脂肪酸羟化酶CsSCS7的应用及构建基因敲除载体、基因敲除突变体的方法<120> Application of anthracis fatty acid hydroxylase CsSCS7 and method for constructing gene knockout vector and gene knockout mutant

<160> 12<160> 12

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1271<211> 1271

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 1<400> 1

atgccgtcga gaactctccc taccttcacc cgcgccgagg tcgaggcaca taattcgaag 60atgccgtcga gaactctccc taccttcacc cgcgccgagg tcgaggcaca taattcgaag 60

aagtcctgtt atgttacgat tggcaaaaat gtctacgacg taaccgactt cgcccaggac 120aagtcctgtt atgttacgat tggcaaaaat gtctacgacg taaccgactt cgcccaggac 120

catcccggtg gcgccgacct cgtcttcgac tacggcggca aggacatcga atccatcctg 180catcccggtg gcgccgacct cgtcttcgac tacggcggca aggacatcga atccatcctg 180

cgcgatccga catcccaccc ccactccgag gctgcgtacg aagttctcga cgactccttg 240cgcgatccga catcccaccc ccactccgag gctgcgtacg aagttctcga cgactccttg 240

gttggattcg tcatttctca aaagtcaatc aatgggacgg ccaacaagcc caacggaaaa 300gttggattcg tcatttctca aaagtcaatc aatgggacgg ccaacaagcc caacggaaaa 300

gcgaatggac atgtgaacgg gaatgcgaac ggcaatggca acagcgctgc caagacccag 360gcgaatggac atgtgaacgg gaatgcgaac ggcaatggca acagcgctgc caagacccag 360

gagcatgagg acgagccaaa gatgaatgag aatggcgagc tctgggatgg tgagcgatgg 420gagcatgagg acgagccaaa gatgaatgag aatggcgagc tctgggatgg tgagcgatgg 420

gttcatcctc gcactggcat ggctagcgag gaggatttga gcaaggagac ggattacacc 480gttcatcctc gcactggcat ggctagcgag gaggatttga gcaaggac ggattacacc 480

aatgactaca agaaacacaa gttcctcgac ttgagccgcc cactgttccc tcagatctgg 540aatgactaca agaaacacaa gttcctcgac ttgagccgcc cactgttccc tcagatctgg 540

tacgggggct tcagcaagga gttctacctt gatcaggttc atcgccctcg ccattacaag 600tacgggggct tcagcaagga gttctacctt gatcaggttc atcgccctcg ccattacaag 600

ggcggcgagt ctgcaccact atttggaaac tttctcgagc ccctttccaa gacgccttgg 660ggcggcgagt ctgcaccact atttggaaac tttctcgagc ccctttccaa gacgccttgg 660

tgggttgtgc ctgtggcgtg gctcccccca gttgcatacg gtacctattt ggctagagag 720tgggttgtgc ctgtggcgtg gctcccccca gttgcatacg gtacctattt ggctagagag 720

ggcatggaca gcaccttcca ggaggtctgc tattgggggc tcggcttctt tctctggagc 780ggcatggaca gcaccttcca ggaggtctgc tattgggggc tcggcttctt tctctggagc 780

ttgatcgagt acatcttgca ccgcttcctc ttccaccttg acaagtaagc tgcccctatg 840ttgatcgagt acatcttgca ccgcttcctc ttccaccttg acaagtaagc tgcccctatg 840

atgtgctatg caattccaga taaccaacag cgaaaaccag gtggcttccg gacaaccgag 900atgtgctatg caattccaga taaccaacag cgaaaaccag gtggcttccg gacaaccgag 900

ttggcattac catgcatttc ctcctccacg gcatccatca ttacctgcct atggacaagt 960ttggcattac catgcatttc ctcctccacg gcatccatca ttacctgcct atggacaagt 960

atcgcctcgt catgcctcct acactctttg ttgttctcgc cacgccgttc tacaagctgg 1020atcgcctcgt catgcctcct acactctttg ttgttctcgc cacgccgttc tacaagctgg 1020

ctcattgggt tttttcgtac agctggcacg ccgctaccgc tgtttattgc ggaggcatct 1080ctcattgggt tttttcgtac agctggcacg ccgctaccgc tgtttattgc ggaggcatct 1080

ttggttacat ctgctacgac ttgacgcact acttccttca ccaccagaac ttgccgctct 1140ttggttacat ctgctacgac ttgacgcact acttccttca ccaccagaac ttgccgctct 1140

ggtacaagga attgaagaag taccaccttc agcaccactt ccttgactat gagcttggct 1200ggtacaagga attgaagaag taccaccttc agcaccactt ccttgactat gagcttggct 1200

ttggcgtcac cagccggttc tgggatagca ttttcggcac cgaactgcct cccattgtca 1260ttggcgtcac cagccggttc tgggatagca ttttcggcac cgaactgcct cccattgtca 1260

agacgcaata a 1271agacgcaata a 1271

<210> 2<210> 2

<211> 404<211> 404

<212> PRT<212> PRT

<213> Amino acid sequence<213> Amino acid sequence

<400> 2<400> 2

Met Pro Ser Arg Thr Leu Pro Thr Phe Thr Arg Ala Glu Val Glu AlaMet Pro Ser Arg Thr Leu Pro Thr Phe Thr Arg Ala Glu Val Glu Ala

1 5 10 151 5 10 15

His Asn Ser Lys Lys Ser Cys Tyr Val Thr Ile Gly Lys Asn Val TyrHis Asn Ser Lys Lys Lys Ser Cys Tyr Val Thr Ile Gly Lys Asn Val Tyr

20 25 30 20 25 30

Asp Val Thr Asp Phe Ala Gln Asp His Pro Gly Gly Ala Asp Leu ValAsp Val Thr Asp Phe Ala Gln Asp His Pro Gly Gly Ala Asp Leu Val

35 40 45 35 40 45

Phe Asp Tyr Gly Gly Lys Asp Ile Glu Ser Ile Leu Arg Asp Pro ThrPhe Asp Tyr Gly Gly Lys Asp Ile Glu Ser Ile Leu Arg Asp Pro Thr

50 55 60 50 55 60

Ser His Pro His Ser Glu Ala Ala Tyr Glu Val Leu Asp Asp Ser LeuSer His Pro His Ser Glu Ala Ala Tyr Glu Val Leu Asp Asp Ser Leu

65 70 75 8065 70 75 80

Val Gly Phe Val Ile Ser Gln Lys Ser Ile Asn Gly Thr Ala Asn LysVal Gly Phe Val Ile Ser Gln Lys Ser Ile Asn Gly Thr Ala Asn Lys

85 90 95 85 90 95

Pro Asn Gly Lys Ala Asn Gly His Val Asn Gly Asn Ala Asn Gly AsnPro Asn Gly Lys Ala Asn Gly His Val Asn Gly Asn Ala Asn Gly Asn

100 105 110 100 105 110

Gly Asn Ser Ala Ala Lys Thr Gln Glu His Glu Asp Glu Pro Lys MetGly Asn Ser Ala Ala Lys Thr Gln Glu His Glu Asp Glu Pro Lys Met

115 120 125 115 120 125

Asn Glu Asn Gly Glu Leu Trp Asp Gly Glu Arg Trp Val His Pro ArgAsn Glu Asn Gly Glu Leu Trp Asp Gly Glu Arg Trp Val His Pro Arg

130 135 140 130 135 140

Thr Gly Met Ala Ser Glu Glu Asp Leu Ser Lys Glu Thr Asp Tyr ThrThr Gly Met Ala Ser Glu Glu Asp Leu Ser Lys Glu Thr Asp Tyr Thr

145 150 155 160145 150 155 160

Asn Asp Tyr Lys Lys His Lys Phe Leu Asp Leu Ser Arg Pro Leu PheAsn Asp Tyr Lys Lys His Lys Phe Leu Asp Leu Ser Arg Pro Leu Phe

165 170 175 165 170 175

Pro Gln Ile Trp Tyr Gly Gly Phe Ser Lys Glu Phe Tyr Leu Asp GlnPro Gln Ile Trp Tyr Gly Gly Phe Ser Lys Glu Phe Tyr Leu Asp Gln

180 185 190 180 185 190

Val His Arg Pro Arg His Tyr Lys Gly Gly Glu Ser Ala Pro Leu PheVal His Arg Pro Arg His Tyr Lys Gly Gly Glu Ser Ala Pro Leu Phe

195 200 205 195 200 205

Gly Asn Phe Leu Glu Pro Leu Ser Lys Thr Pro Trp Trp Val Val ProGly Asn Phe Leu Glu Pro Leu Ser Lys Thr Pro Trp Trp Val Val Pro

210 215 220 210 215 220

Val Ala Trp Leu Pro Pro Val Ala Tyr Gly Thr Tyr Leu Ala Arg GluVal Ala Trp Leu Pro Pro Val Ala Tyr Gly Thr Tyr Leu Ala Arg Glu

225 230 235 240225 230 235 240

Gly Met Asp Ser Thr Phe Gln Glu Val Cys Tyr Trp Gly Leu Gly PheGly Met Asp Ser Thr Phe Gln Glu Val Cys Tyr Trp Gly Leu Gly Phe

245 250 255 245 250 255

Phe Leu Trp Ser Leu Ile Glu Tyr Ile Leu His Arg Phe Leu Phe HisPhe Leu Trp Ser Leu Ile Glu Tyr Ile Leu His Arg Phe Leu Phe His

260 265 270 260 265 270

Leu Asp Lys Trp Leu Pro Asp Asn Arg Val Gly Ile Thr Met His PheLeu Asp Lys Trp Leu Pro Asp Asn Arg Val Gly Ile Thr Met His Phe

275 280 285 275 280 285

Leu Leu His Gly Ile His His Tyr Leu Pro Met Asp Lys Tyr Arg LeuLeu Leu His Gly Ile His His Tyr Leu Pro Met Asp Lys Tyr Arg Leu

290 295 300 290 295 300

Val Met Pro Pro Thr Leu Phe Val Val Leu Ala Thr Pro Phe Tyr LysVal Met Pro Pro Thr Leu Phe Val Val Leu Ala Thr Pro Phe Tyr Lys

305 310 315 320305 310 315 320

Leu Ala His Trp Val Phe Ser Tyr Ser Trp His Ala Ala Thr Ala ValLeu Ala His Trp Val Phe Ser Tyr Ser Trp His Ala Ala Thr Ala Val

325 330 335 325 330 335

Tyr Cys Gly Gly Ile Phe Gly Tyr Ile Cys Tyr Asp Leu Thr His TyrTyr Cys Gly Gly Ile Phe Gly Tyr Ile Cys Tyr Asp Leu Thr His Tyr

340 345 350 340 345 350

Phe Leu His His Gln Asn Leu Pro Leu Trp Tyr Lys Glu Leu Lys LysPhe Leu His His Gln Asn Leu Pro Leu Trp Tyr Lys Glu Leu Lys Lys

355 360 365 355 360 365

Tyr His Leu Gln His His Phe Leu Asp Tyr Glu Leu Gly Phe Gly ValTyr His Leu Gln His His Phe Leu Asp Tyr Glu Leu Gly Phe Gly Val

370 375 380 370 375 380

Thr Ser Arg Phe Trp Asp Ser Ile Phe Gly Thr Glu Leu Pro Pro IleThr Ser Arg Phe Trp Asp Ser Ile Phe Gly Thr Glu Leu Pro Pro Ile

385 390 395 400385 390 395 400

Val Lys Thr GlnVal Lys Thr Gln

<210> 3<210> 3

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

gtaccgggcc cccccagctt ctcagaatcc acatatccac 40gtaccgggcc cccccagctt ctcagaatcc acatatccac 40

<210> 4<210> 4

<211> 41<211> 41

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

cgataccgtc gacctcgaag ctgcaggtgg cgatcgtgaa t 41cgataccgtc gacctcgaag ctgcaggtgg cgatcgtgaa t 41

<210> 5<210> 5

<211> 38<211> 38

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

gctctcaccg cggatccttc atcgaccaac gttcatac 38gctctcaccg cggatccttc atcgaccaac gttcatac 38

<210> 6<210> 6

<211> 38<211> 38

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

ctagaactag tggatctcta ggccggacat gttgactg 38ctagaactag tggatctcta ggccggacat gttgactg 38

<210> 7<210> 7

<211> 31<211> 31

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

cgcggatcca tgccgtcgag aactctccct a 31cgcggatcca tgccgtcgag aactctccct a 31

<210> 8<210> 8

<211> 32<211> 32

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

cccaagcttt tattgcgtct tgacaatggg ag 32cccaagcttt tattgcgtct tgacaatggg ag 32

<210> 9<210> 9

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 9<400> 9

tgcttttgca ttgctgtgac c 21tgcttttgca ttgctgtgac c 21

<210> 10<210> 10

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 10<400> 10

gttcaacgcc gccttccgac aaaat 25gttcaacgcc gccttccgac aaaat 25

<210> 11<210> 11

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 11<400> 11

ggcggtgcta tccttcccgt gtt 23ggcggtgcta tccttcccgt gtt 23

<210> 12<210> 12

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 12<400> 12

atgccttgtg ttcttccggt 20atgccttgtg ttcttccggt 20

Claims (3)

1. The application of the anthrax fatty acid hydroxylase CsSCS7 is characterized in that: the application of the anthrax fatty acid hydroxylase CsSCS7 in degrading pyrrole bactericide, wherein the nucleotide sequence of the anthrax fatty acid hydroxylase CsSCS7 is shown as SEQ ID NO: 1 is shown.
2. The use of the anthrax fatty acid hydroxylase CsSCS7 of claim 1, wherein: the anthrax fatty acid hydroxylase CsSCS7 is applied to positively regulating the degradation of the fungi to the pyrrole medicaments.
3. The use of the anthrax fatty acid hydroxylase CsSCS7 of claim 1, wherein: the amino acid sequence of the protein coded by the anthrax fatty acid hydroxylase CsSCS7 is shown as SEQ ID NO: 2, respectively.
CN202011194768.9A 2020-10-31 2020-10-31 Application of anthrax fatty acid hydroxylase CsSCS7 Expired - Fee Related CN112280757B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011194768.9A CN112280757B (en) 2020-10-31 2020-10-31 Application of anthrax fatty acid hydroxylase CsSCS7
PCT/CN2021/106781 WO2022088770A1 (en) 2020-10-31 2021-07-16 Application of anthrax fatty acid hydroxylase csscs7 and method for constructing gene knockout vector and gene knockout mutant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011194768.9A CN112280757B (en) 2020-10-31 2020-10-31 Application of anthrax fatty acid hydroxylase CsSCS7

Publications (2)

Publication Number Publication Date
CN112280757A CN112280757A (en) 2021-01-29
CN112280757B true CN112280757B (en) 2022-05-10

Family

ID=74352698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011194768.9A Expired - Fee Related CN112280757B (en) 2020-10-31 2020-10-31 Application of anthrax fatty acid hydroxylase CsSCS7

Country Status (2)

Country Link
CN (1) CN112280757B (en)
WO (1) WO2022088770A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112280757B (en) * 2020-10-31 2022-05-10 海南大学 Application of anthrax fatty acid hydroxylase CsSCS7
CN113881646B (en) * 2021-09-28 2023-08-04 北京市农林科学院 Related protein TaFAH1 involved in plant disease resistance and its gene and application
CN116004670B (en) * 2022-09-23 2024-02-20 海南大学 Anthrax CsCyp51G1 gene and its application
CN116024243B (en) * 2022-11-30 2024-02-20 海南大学 Anthrax CsMBLAC gene and its application
CN115948426B (en) * 2022-12-19 2024-02-20 海南大学 Anthrax CsATLP gene and its application
CN115960932B (en) * 2022-12-21 2024-02-20 海南大学 Anthrax CsOxdC gene and its application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328415A (en) * 1998-08-04 2001-12-26 嘉吉有限公司 Plant fatty acid desaturase promoters

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737531B2 (en) * 2005-12-05 2011-08-03 サントリーホールディングス株式会社 Method for producing ceramide using transformed yeast
JP5344517B2 (en) * 2007-03-30 2013-11-20 サントリーホールディングス株式会社 Method for producing ceramide in transformed cells using sphingolipid Δ4-desaturase with endoplasmic reticulum localization signal
WO2010046927A2 (en) * 2008-10-16 2010-04-29 Deepak Pranjivandas Shah Use of synergistic composition
CN109929856B (en) * 2019-04-11 2022-09-13 华中农业大学 Application of rice fatty acid hydroxylase gene OsFAH2
CN111534621A (en) * 2020-05-12 2020-08-14 海南大学 Primer and detection method for real-time fluorescence quantitative PCR detection of rubber gum spore anthracnose
CN111548398B (en) * 2020-05-25 2022-02-11 海南大学 An anthracis transcription factor CsATF1 and its application
CN112280757B (en) * 2020-10-31 2022-05-10 海南大学 Application of anthrax fatty acid hydroxylase CsSCS7

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328415A (en) * 1998-08-04 2001-12-26 嘉吉有限公司 Plant fatty acid desaturase promoters

Also Published As

Publication number Publication date
CN112280757A (en) 2021-01-29
WO2022088770A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
CN112280757B (en) Application of anthrax fatty acid hydroxylase CsSCS7
Liebmann et al. The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus
Hissen et al. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding l-ornithine N 5-oxygenase, is required for virulence
Vert et al. Arabidopsis IRT2 gene encodes a root‐periphery iron transporter
Ochiai et al. Characterization of mutations in the two‐component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os‐1 mutants of Neurospora crassa
Waterham et al. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter
Scholtmeijer et al. Surface modifications created by using engineered hydrophobins
Culotta et al. CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae.
Terao et al. Gene dosage effect of L-proline biosynthetic enzymes on L-proline accumulation and freeze tolerance in Saccharomyces cerevisiae
Avram et al. SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae
Shimoi et al. The AWA1 gene is required for the foam-forming phenotype and cell surface hydrophobicity of sake yeast
WO2021238875A1 (en) Colletotrichum transcription factor csatf1 and use thereof
De Miccolis Angelini et al. Selection, characterization and genetic analysis of laboratory mutants of Botryotinia fuckeliana (Botrytis cinerea) resistant to the fungicide boscalid
Reid et al. Identification and partial characterization of extracellular aspartic protease genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384
Davis et al. Amino acid catabolism by an areA-regulated gene encoding an L-amino acid oxidase with broad substrate specificity in Aspergillus nidulans
Zhou et al. ABC protein CgABCF2 is required for asexual and sexual development, appressorial formation and plant infection in Colletotrichum gloeosporioides
Kimura et al. Isolation and nucleotide sequences of the genes encoding killer toxins from Hansenula mrakii and H. saturnus
EP2132318B1 (en) Compositions and methods for reducing h2s levels in fermented beverages
Lu et al. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea
Barhoom et al. Functional characterization of CgCTR2, a putative vacuole copper transporter that is involved in germination and pathogenicity in Colletotrichum gloeosporioides
Wangsanut et al. Grf10 and Bas1 regulate transcription of adenylate and one-carbon biosynthesis genes and affect virulence in the human fungal pathogen Candida albicans
PT827541E (en) Nucleic acid sequence coding for a malate permease from s. pombe and uses thereof
Garcera et al. Identification and study of a Candida albicans protein homologous to Saccharomyces cerevisiae Ssr1p, an internal cell-wall protein
Monteiro et al. Regulation of mitochondrial thioredoxin peroxidase I expression by two different pathways: one dependent on cAMP and the other on heme
CN112626039B (en) An oxidoreductase GliT and its application in resisting mycotoxins

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220510

CF01 Termination of patent right due to non-payment of annual fee