CN115960932B - Anthrax CsOxdC gene and its application - Google Patents
Anthrax CsOxdC gene and its application Download PDFInfo
- Publication number
- CN115960932B CN115960932B CN202211646902.3A CN202211646902A CN115960932B CN 115960932 B CN115960932 B CN 115960932B CN 202211646902 A CN202211646902 A CN 202211646902A CN 115960932 B CN115960932 B CN 115960932B
- Authority
- CN
- China
- Prior art keywords
- csoxdc
- gene
- sequence
- primer
- pcr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 43
- 241000193738 Bacillus anthracis Species 0.000 title claims abstract description 6
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000005781 Fludioxonil Substances 0.000 claims abstract description 11
- MUJOIMFVNIBMKC-UHFFFAOYSA-N fludioxonil Chemical compound C=12OC(F)(F)OC2=CC=CC=1C1=CNC=C1C#N MUJOIMFVNIBMKC-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000003814 drug Substances 0.000 claims abstract description 10
- 239000012634 fragment Substances 0.000 claims description 14
- 238000003209 gene knockout Methods 0.000 claims description 9
- 230000035945 sensitivity Effects 0.000 claims description 7
- 244000043261 Hevea brasiliensis Species 0.000 claims description 5
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 4
- 101000643378 Homo sapiens Serine racemase Proteins 0.000 claims description 4
- 238000012408 PCR amplification Methods 0.000 claims description 4
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- 210000001938 protoplast Anatomy 0.000 claims description 4
- 244000063299 Bacillus subtilis Species 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 2
- NSWAMPCUPHPTTC-UHFFFAOYSA-N chlorimuron-ethyl Chemical group CCOC(=O)C1=CC=CC=C1S(=O)(=O)NC(=O)NC1=NC(Cl)=CC(OC)=N1 NSWAMPCUPHPTTC-UHFFFAOYSA-N 0.000 claims 3
- 239000001963 growth medium Substances 0.000 claims 1
- 238000012216 screening Methods 0.000 claims 1
- 241000233866 Fungi Species 0.000 abstract description 14
- 229940079593 drug Drugs 0.000 abstract description 9
- 101001015517 Betula pendula Germin-like protein 1 Proteins 0.000 abstract description 4
- 108091092195 Intron Proteins 0.000 abstract description 2
- 238000012217 deletion Methods 0.000 abstract description 2
- 230000037430 deletion Effects 0.000 abstract description 2
- 238000002474 experimental method Methods 0.000 abstract description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 25
- 241000222199 Colletotrichum Species 0.000 description 11
- 235000006408 oxalic acid Nutrition 0.000 description 8
- 239000005496 Chlorsulfuron Substances 0.000 description 6
- VJYIFXVZLXQVHO-UHFFFAOYSA-N chlorsulfuron Chemical compound COC1=NC(C)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CC=2)Cl)=N1 VJYIFXVZLXQVHO-UHFFFAOYSA-N 0.000 description 5
- 101150108219 ILV1 gene Proteins 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108010068005 Oxalate decarboxylase Proteins 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- 239000000417 fungicide Substances 0.000 description 3
- 238000012224 gene deletion Methods 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- 241000228245 Aspergillus niger Species 0.000 description 2
- 240000006499 Flammulina velutipes Species 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 241000221696 Sclerotinia sclerotiorum Species 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 102100035717 Serine racemase Human genes 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 239000007376 cm-medium Substances 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003596 drug target Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000011293 Brassica napus Nutrition 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 241001639768 Colletotrichum siamense Species 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 101710192908 Oxalate decarboxylase OxdC Proteins 0.000 description 1
- 241000221662 Sclerotinia Species 0.000 description 1
- 230000006518 acidic stress Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920003211 cis-1,4-polyisoprene Polymers 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000021049 nutrient content Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000001086 yeast two-hybrid system Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明提供一种炭疽菌CsOxdC基因及应用,基因含有3个内含子,含有两个Cupin结构域。实验证实了该基因缺失可降低真菌对咯菌腈等吡咯类药剂抗性,说明CsOxdC基因可应用于调控真菌对吡咯类药剂的抗性,CsOxdC基因可以作为吡咯类药物靶标。
The invention provides an anthrax CsOxdC gene and its application. The gene contains three introns and two Cupin structural domains. Experiments have confirmed that the deletion of this gene can reduce the resistance of fungi to azole drugs such as fludioxonil, indicating that the CsOxdC gene can be used to regulate the resistance of fungi to azole drugs, and the CsOxdC gene can be used as a target of azole drugs.
Description
技术领域Technical field
本发明涉及生物技术领域,特别涉及一种炭疽菌CsOxdC基因及应用。The invention relates to the field of biotechnology, and in particular to an anthrax CsOxdC gene and its application.
背景技术Background technique
草酸脱羧酶(oxalatedecarboxylase,Oxdc)是一种包含Mn2+的均一聚合酶,属Cupin蛋白超家族;它可以在没有辅因子的条件下催化草酸转化为甲酸和CO2,而草酸是丝状真菌分泌的最常见的有机酸,可以抑制对酸度或草酸更敏感的真菌的生长,从而影响真菌物种之间的竞争。另一方面,许多真菌物种通过分泌草酸来耐受其环境中高浓度的有毒金属。草酸脱羧酶是植物、微生物中草酸代谢降解的主要催化酶之一,该酶最早发现于白腐菌中,它主要来源于黑曲霉、核盘菌、金针菇和褐腐菌等真菌。目前,研究最彻底的是来自枯草芽孢杆菌的细菌OxdC,OxdC是酸性胁迫条件下枯草芽孢杆菌中表达最丰富的细菌细胞壁蛋白之一,该酶通过草酸脱羧消耗质子来保护细菌细胞免受低pH胁迫的影响。与枯草芽孢杆菌一样,低pH诱导了担子菌Flammulinavelutipes、子囊菌核盘菌Sclerotiniasclerotiorum和黑曲霉Aspergillusniger的Oxdc活性。从金针菇菌F.velutipes中克隆出oxdc基因转入甘蓝型油菜,转基因植株具有明显的延迟和抵御菌核病侵染的能力;转入番茄后转基因番茄中草酸减少而营养成分含量所增加;转入烟草后转基因烟草中草酸的含量减少且对由草酸和NLP诱发的植物程序性死亡表现出明显的抗性。但目前在真菌中未见有关草酸脱羧酶OxdC参与吡咯类药剂敏感性调控功能方面的报道。Oxalate decarboxylase (Oxdc) is a homogeneous polymerase containing Mn 2+ and belongs to the Cupin protein superfamily; it can catalyze the conversion of oxalic acid into formic acid and CO 2 without cofactors, and oxalic acid is a filamentous fungus. The most common organic acids secreted can inhibit the growth of fungi that are more sensitive to acidity or oxalic acid, thereby affecting competition between fungal species. On the other hand, many fungal species tolerate high concentrations of toxic metals in their environment by secreting oxalic acid. Oxalate decarboxylase is one of the main catalytic enzymes for the metabolic degradation of oxalic acid in plants and microorganisms. This enzyme was first discovered in white rot fungi. It is mainly derived from fungi such as Aspergillus niger, Sclerotinia sclerotiorum, Enoki mushrooms and brown rot fungi. Currently, the most thoroughly studied is the bacterial OxdC from Bacillus subtilis. OxdC is one of the most abundant bacterial cell wall proteins expressed in B. subtilis under acidic stress conditions. This enzyme protects bacterial cells from low pH by consuming protons through decarboxylation of oxalate. Effects of coercion. Like Bacillus subtilis, low pH induced the Oxdc activity of the basidiomycete Flammulinavelutipes, the ascomycete Sclerotinia sclerotiorum and Aspergillusniger. The oxdc gene was cloned from F. velutipes and transferred into Brassica napus. The transgenic plants had obvious delay and ability to resist sclerotinia infection. After being transferred into tomatoes, the oxalic acid in the transgenic tomatoes was reduced and the nutrient content was increased; After being introduced into tobacco, the oxalic acid content in transgenic tobacco decreased and showed obvious resistance to plant programmed death induced by oxalic acid and NLP. However, there are currently no reports on the involvement of oxalate decarboxylase OxdC in the regulation of sensitivity to azole drugs in fungi.
发明内容Contents of the invention
鉴于现有技术的不足,本发明提供了一种炭疽菌CsOxdC基因及应用。In view of the shortcomings of the existing technology, the present invention provides a CsOxdC gene of Colletotrichum anthracis and its application.
本发明方案包括以下方面:The solution of the present invention includes the following aspects:
一种炭疽菌CsOxdC基因,所述基因含有SEQ ID NO:1所示的核苷酸序列。A Colletotrichum CsOxdC gene, which contains the nucleotide sequence shown in SEQ ID NO: 1.
一种CsOxdC基因敲除突变体,包括以下制备步骤:第一轮PCR,在CsOxdC基因编码阅读框架前后,设计引物对CsOxdC-UF/CsOxdC-UR和CsOxdC-DF/CsOxdC-DR,利用PCR扩增获得CsOxdC基因上臂序列和C端后的下臂序列,CsOxdC-UR和CsOxdC-DF分别含有氯嘧磺隆抗性基因接头序列,设计引物对S1F/S2R扩增得到氯嘧磺隆抗性基因ILV1;A CsOxdC gene knockout mutant includes the following preparation steps: the first round of PCR, designing primer pairs CsOxdC-UF/CsOxdC-UR and CsOxdC-DF/CsOxdC-DR before and after the CsOxdC gene coding reading frame, and using PCR amplification Obtain the upper arm sequence and the lower arm sequence after the C terminus of the CsOxdC gene. CsOxdC-UR and CsOxdC-DF respectively contain the chlorsulfuron resistance gene linker sequence. Design the primer pair S1F/S2R to amplify the chlorsulfuron resistance gene ILV1. ;
第二轮PCR,将第一轮PCR扩增得到的产物利用引物CsOxdC-UF/CsOxdC-UR进行融合;In the second round of PCR, the products amplified by the first round of PCR are fused using the primers CsOxdC-UF/CsOxdC-UR;
第三轮PCR,将第二轮PCR融合的产物利用引物CsOxdC-UF/CsOxdC-DR进行富集;将富集的片段导入橡胶树炭疽菌原生质体中,通过含氯嘧磺隆的培养基进行筛选,然后PCR验证,即得;In the third round of PCR, the fusion product of the second round of PCR was enriched using the primers CsOxdC-UF/CsOxdC-DR; the enriched fragments were introduced into the protoplasts of Colletotrichum anthracis of the rubber tree and screened through the medium containing chlorsulfuron , and then PCR verification is obtained;
所述CsOxdC基因的核苷酸序列如SEQ ID NO:1所示;The nucleotide sequence of the CsOxdC gene is shown in SEQ ID NO: 1;
引物CsOxdC-UF的序列为:5’-CCAACATGCCGTCGAAACC-3’The sequence of primer CsOxdC-UF is: 5’-CCAACATGCCGTCGAAACC-3’
引物CsOxdC-UR的序列为:The sequence of primer CsOxdC-UR is:
5’-AGATGTGGGGCACTGTGGCGTTGGCACGATGGGCGTGAAGTAGGAAGG-3’5’-AGATTGGGGCACTGTGGCGTTGGCACGATGGGCGTGAAGTAGGAAGG-3’
引物CsOxdC-DF的序列为:The sequence of primer CsOxdC-DF is:
5’-TATTGCACGGGAATTGCATGCTCTCACGGGAGCACTGCCACAATGGAA-3’5’-TATTGCACGGGAATTGCATGCTCTCACGGGAGCACTGCCACAATGGAA-3’
引物CsOxdC-DR的序列为:5’-CTGCTTCTAGTTCGAGAAGCG-3’The sequence of primer CsOxdC-DR is: 5’-CTGCTTCTAGTTCGAGAAGCG-3’
引物S1F的序列为:5’-GTGCCAACGCCACAGTGCCCCACA-3’The sequence of primer S1F is: 5’-GTGCCAACGCCACAGTGCCCCACA-3’
引物S2R的序列为:5’-GTGAGAGCATGCAATTCCCGTGCAATA-3’。The sequence of primer S2R is: 5’-GTGAGAGCATGCAATTCCCGTGCAATA-3’.
本发明还涉及所述的炭疽菌CsOxdC、所述的CsOxdC基因敲除突变体中在调控真菌对吡咯类药剂敏感性方面的应用。The present invention also relates to the application of the Colletotrichum CsOxdC and the CsOxdC gene knockout mutant in regulating the sensitivity of fungi to azole drugs.
进一步的,本发明涉及所述的炭疽菌CsOxdC在作为吡咯类药剂作用靶点方面的应用。Further, the present invention relates to the application of the CsOxdC of Colletotrichum anthracis as the target of azole drugs.
进一步的,本发明涉及所述的CsOxdC基因敲除突变体在降低真菌对吡咯类药剂敏感性方面的应用。Further, the present invention relates to the application of the CsOxdC gene knockout mutant in reducing the sensitivity of fungi to azole drugs.
进一步的,所述吡咯类药剂为咯菌腈。Further, the azole agent is fludioxonil.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明克隆了CsOxdC基因,构建了CsOxdC基因敲除突变体,经过功能性实验证实了该基因参与调控真菌对咯菌腈等吡咯类药剂的敏感性。因此,CsOxdC基因可以作为药物靶标,能抑制CsOxdC基因表达的药物,都可作为抑制真菌生长的杀菌剂。The present invention clones the CsOxdC gene and constructs a CsOxdC gene knockout mutant. Through functional experiments, it is confirmed that the gene is involved in regulating the sensitivity of fungi to azole agents such as fludioxonil. Therefore, the CsOxdC gene can be used as a drug target, and drugs that can inhibit the expression of the CsOxdC gene can be used as fungicides to inhibit the growth of fungi.
附图说明Description of the drawings
图1:CsOxdC基因敲除示意图。Figure 1: Schematic diagram of CsOxdC gene knockout.
图2:基因缺失突变体△CsOxdC的PCR验证结果图。Figure 2: PCR verification results of the gene deletion mutant ΔCsOxdC.
图3:野生型HN08菌株、突变体△CsOxdC菌株在不同咯菌腈浓度的CM培养基的菌落生长形态(5d)。Figure 3: Colony growth morphology of wild-type HN08 strain and mutant ΔCsOxdC strain in CM medium with different concentrations of fludioxonil (5d).
具体实施方式Detailed ways
为了便于技术人员理解本发明技术内容,下面结合具体实施例和附图对本发明做进一步的详细说明。In order to facilitate skilled persons to understand the technical content of the present invention, the present invention will be further described in detail below with reference to specific embodiments and drawings.
实施例1橡胶树炭疽菌CsOxdC基因的克隆Example 1 Cloning of Colletotrichum rubber tree CsOxdC gene
根据前期酵母双杂技术获得的序列片段,利用BLAST技术,在NCBI中搜索获得的暹罗炭疽菌(C.siamense)草酸脱羧酶CsOxdC的基因全长序列,设计引物对Based on the sequence fragments obtained by yeast two-hybrid technology in the early stage, we used BLAST technology to search the full-length gene sequence of C. siamense oxalate decarboxylase CsOxdC in NCBI and designed primer pairs.
CsOxdC-F(5’-ATGCATCTCCCGCTCCTCT-3’)/CsOxdC-R(5’-AAGTTCGTCGGTCTGAGTGC-3’)以橡胶树炭疽菌C.siamenseHN08的cDNA和DNA为模板,分别扩增获得目的条带。序列分析显示:所得到的序列包含完整的编码开放阅读框。DNA序列大小为1576bp,cDNA序列大小为1395bp,该基因含有3个内含子,含有两个Cupin结构域,说明CsOxdC为Cupin蛋白超家族中的基因。将该基因命名为CsOxdC。CsOxdC-F (5’-ATGCATCTCCCGCTCCTCT-3’)/CsOxdC-R (5’-AAGTTCGTCGGTCTGAGTGC-3’) used the cDNA and DNA of the rubber tree Colletotrichum C. siamenseHN08 as templates to amplify the target bands respectively. Sequence analysis showed that the obtained sequence contained the complete coding open reading frame. The DNA sequence size is 1576bp and the cDNA sequence size is 1395bp. The gene contains 3 introns and two Cupin domains, indicating that CsOxdC is a gene in the Cupin protein superfamily. This gene was named CsOxdC.
实施例2CsOxdC基因敲除突变体的获得Example 2 Obtaining CsOxdC gene knockout mutant
基于同源重组技术结合炭疽菌的生物学特性,在炭疽菌基因组数据库获得上下游片段序列。Based on homologous recombination technology and the biological characteristics of Colletotrichum, the upstream and downstream fragment sequences were obtained from the Colletotrichum genome database.
第一轮PCR,在CsOxdC基因编码阅读框架前后,设计引物对CsOxdC-UF/CsOxdC-UR和CsOxdC-DF/CsOxdC-DR,利用PCR扩增获得CsOxdC基因上臂序列和C端后的下臂序列,CsOxdC-UR和CsOxdC-DF分别含有氯嘧磺隆抗性基因接头序列,设计引物对S1F/S2R扩增得到氯嘧磺隆抗性基因(ILV1);In the first round of PCR, before and after the coding reading frame of the CsOxdC gene, the primer pair CsOxdC-UF/CsOxdC-UR and CsOxdC-DF/CsOxdC-DR was designed, and PCR amplification was used to obtain the upper arm sequence of the CsOxdC gene and the lower arm sequence after the C terminus. CsOxdC-UR and CsOxdC-DF respectively contain the chlorsulfuron resistance gene linker sequence, and the primer pair S1F/S2R was designed to amplify the chlorsulfuron resistance gene (ILV1);
第二轮PCR,将第一轮PCR扩增得到的CsOxdC上臂和下臂片段以及ILV1片段利用引物CsOxdC-UF/CsOxdC-DR进行融合;In the second round of PCR, the CsOxdC upper arm and lower arm fragments and the ILV1 fragment amplified by the first round of PCR were fused using the primers CsOxdC-UF/CsOxdC-DR;
第三轮PCR,将第二轮PCR融合的产物利用引物CsOxdC-UF/CsOxdC-DR进行富集(示意图见图1);利用PEG介导原生质体转化法将富集的片段导入橡胶树炭疽菌HN08原生质体中,通过含氯嘧磺隆(100μg/ml)的DCM培养基进行筛选。共转化1批次,获得转化子6个。In the third round of PCR, the fusion product of the second round of PCR was enriched using the primers CsOxdC-UF/CsOxdC-DR (see Figure 1 for a schematic diagram); the enriched fragments were introduced into Colletotrichum hevea HN08 using the PEG-mediated protoplast transformation method. Protoplasts were screened by DCM medium containing chlorsulfuron methyl (100 μg/ml). A total of 1 batch was transformed, and 6 transformants were obtained.
分批次提取6个转化子基因组DNA序列,采用PCR验证(见图2),转化子△CsOxdC-3符合预期,用引物对CsOxdC-OF/OR从HN08(泳道4)中扩增出CsOxdC基因编码序列的1576bp片段,而ΔCsOxdC不能(泳道8)。引物CsOxdC-UouF/S1R从ΔCsOxdC(泳道6)中扩增出2164bp片段,而HN08不能(泳道2)。引物S2F/CsOxdC-DouR从ΔCsOxdC(泳道7)中扩增出CsOxdC基因下游序列和ILV1基因部分2537bp片段,而HN08不能(泳道3)。用引物CsOxdC-UouF/CsOxdC-DouR从ΔCsOxdC(泳道5)扩增出4085bp片段,从HN08(泳道1)扩增出2844bp片段,证实CsOxdC基因1576bp片段被ILV1基因2817bp片段取代。PCR结果初步说明转化子△CsOxdC-3中的CsOxdC基因已经替换为ILV1基因。The genomic DNA sequences of 6 transformants were extracted in batches and verified by PCR (see Figure 2). Transformant △CsOxdC-3 was in line with expectations. The CsOxdC gene was amplified from HN08 (lane 4) using the primer pair CsOxdC-OF/OR. A 1576 bp fragment of the coding sequence, but not ΔCsOxdC (lane 8). Primer CsOxdC-UouF/S1R amplified a 2164 bp fragment from ΔCsOxdC (lane 6), but HN08 could not (lane 2). Primer S2F/CsOxdC-DouR amplified the downstream sequence of CsOxdC gene and the 2537bp fragment of ILV1 gene part from ΔCsOxdC (lane 7), but HN08 could not (lane 3). The primers CsOxdC-UouF/CsOxdC-DouR were used to amplify a 4085bp fragment from ΔCsOxdC (lane 5) and a 2844bp fragment from HN08 (lane 1), confirming that the 1576bp fragment of the CsOxdC gene was replaced by the 2817bp fragment of the ILV1 gene. The PCR results preliminarily showed that the CsOxdC gene in transformant △CsOxdC-3 has been replaced by the ILV1 gene.
利用CsOxdC-UouF/CsOxdC-DouR引物对(CsOxdC-UouF:GCGTCATCGCCATTCC;CsOxdC-DouR:CCGAGGTAGTGATCACGAACATG),扩增长为4085bp的条带,送华大基因公司测序,序列分析显示,目的基因CsOxdC已经被ILV1基因替换。证实转化子△CsOxdC-3为CsOxdC基因缺失突变体。Using the CsOxdC-UouF/CsOxdC-DouR primer pair (CsOxdC-UouF: GCGTCATCGCCATTCC; CsOxdC-DouR: CCGAGGTAGTGATCACGAACATG), a 4085bp long band was amplified and sent to BGI for sequencing. Sequence analysis showed that the target gene CsOxdC has been blocked by ILV1 Gene replacement. It was confirmed that the transformant △CsOxdC-3 was a CsOxdC gene deletion mutant.
实施例3CsOxdC基因调控真菌对杀菌剂咯菌腈的抗性Example 3 CsOxdC gene regulates fungal resistance to the fungicide fludioxonil
在含不同浓度咯菌腈的CM培养基中,随着咯菌腈浓度的升高,CsOxdC基因缺失突变体的生长速率逐渐降低,见图3。该结果说明CsOxdC能够实现真菌对咯菌腈等吡咯类药剂敏感性调控,该基因的缺失能够降低炭疽菌对咯菌腈等吡咯类药剂的抗性。因此,CsOxdC基因可以作为药物靶标,能抑制CsOxdC基因表达的药物,都可作为抑制真菌生长的杀菌剂。In CM medium containing fludioxonil at different concentrations, as the concentration of fludioxonil increased, the growth rate of the CsOxdC gene deletion mutant gradually decreased, as shown in Figure 3. This result shows that CsOxdC can regulate the sensitivity of fungi to azole agents such as fludioxonil, and the deletion of this gene can reduce the resistance of Colletotrichum to azole agents such as fludioxonil. Therefore, the CsOxdC gene can be used as a drug target, and drugs that can inhibit the expression of the CsOxdC gene can be used as fungicides to inhibit the growth of fungi.
以上所述仅为本发明的部分较佳实施例,并不用以限制本发明,本发明的保护范围并不限于上述内容。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only some preferred embodiments of the present invention and are not intended to limit the present invention. The protection scope of the present invention is not limited to the above contents. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211646902.3A CN115960932B (en) | 2022-12-21 | 2022-12-21 | Anthrax CsOxdC gene and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211646902.3A CN115960932B (en) | 2022-12-21 | 2022-12-21 | Anthrax CsOxdC gene and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115960932A CN115960932A (en) | 2023-04-14 |
CN115960932B true CN115960932B (en) | 2024-02-20 |
Family
ID=87352293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211646902.3A Active CN115960932B (en) | 2022-12-21 | 2022-12-21 | Anthrax CsOxdC gene and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115960932B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111548398A (en) * | 2020-05-25 | 2020-08-18 | 海南大学 | Anthrax bacterium transcription factor CsATF1 and application |
CN112280757A (en) * | 2020-10-31 | 2021-01-29 | 海南大学 | Application of anthrax fatty acid hydroxylase CsSCS7 and method for constructing gene knockout vector and gene knockout mutant |
-
2022
- 2022-12-21 CN CN202211646902.3A patent/CN115960932B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111548398A (en) * | 2020-05-25 | 2020-08-18 | 海南大学 | Anthrax bacterium transcription factor CsATF1 and application |
CN112280757A (en) * | 2020-10-31 | 2021-01-29 | 海南大学 | Application of anthrax fatty acid hydroxylase CsSCS7 and method for constructing gene knockout vector and gene knockout mutant |
Also Published As
Publication number | Publication date |
---|---|
CN115960932A (en) | 2023-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7546024B2 (en) | CAS9 Mutants and Methods of Use | |
CN107058348B (en) | A wheat gene for improving plant scab resistance and its application | |
US20160340658A1 (en) | Pteris vittata phytase nucleotide and amino acid sequences and methods of use | |
CN112280757A (en) | Application of anthrax fatty acid hydroxylase CsSCS7 and method for constructing gene knockout vector and gene knockout mutant | |
CN111548398A (en) | Anthrax bacterium transcription factor CsATF1 and application | |
CN110938637A (en) | Homologous gene of phytophthora resistance negative regulatory factor StMKK1 and application thereof | |
Sun et al. | CRISPR/Cas9-mediated disruption of Xylanase inhibitor protein (XIP) gene improved the dough quality of common wheat | |
CN115960932B (en) | Anthrax CsOxdC gene and its application | |
CN102115754A (en) | Application of rice phosphate transport protein gene ORYsa;Pht1;4 | |
CN101104859A (en) | Non-methanol-inducible Pichia pastoris protein expression system and its application | |
CN116515649B (en) | A transgenic method for improving the heat stress resistance of Beauveria bassiana | |
CN113429467B (en) | Application of NPF7.6 Protein in Regulating Nitrogen Tolerance of Legume Root Nodules | |
Warren et al. | Differential expression of pine and Cronartium quercuum f. sp. fusiforme genes in fusiform rust galls | |
CN106084016A (en) | A kind of mutant of signal peptide that can improve restructuring pullulanase expression and application thereof | |
CN117070530A (en) | Application of PIF4 gene in regulating arbuscular mycorrhizal symbiosis in tomato | |
CN1405303A (en) | Broad-spectrum, high-temperatur-resistant, high-specific-activity phytase, and its coding gene and expression | |
CN110698551B (en) | Application of soybean auxin response gene or protein thereof | |
CN115948426B (en) | Anthrax CsATLP gene and its application | |
CN101812433A (en) | Rubber tree sucrose invertase and application of coding gene thereof | |
CN116004670B (en) | Anthrax CsCyp51G1 gene and its application | |
CN101210250B (en) | Tea geometrid acetaldehyde dehydrogenase gene adh and application thereof | |
Wang et al. | Construction of the SHP-GLOX lignin regulation system and its application in rice straw | |
CN114790230B (en) | Application of protein TaARE1 in regulating plant tolerance to low nitrogen | |
CN115976074B (en) | Application of AsBgluc gene in improving drought tolerance of plants | |
Wang et al. | Construction of SHP-GLOX Straw Lignin Degulation System and Its Application Effect in Rice |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |