CN112226563A - Method and system for source management and control of sulfur dioxide emission in flue gas of iron-making hot blast furnace - Google Patents
Method and system for source management and control of sulfur dioxide emission in flue gas of iron-making hot blast furnace Download PDFInfo
- Publication number
- CN112226563A CN112226563A CN202011162983.0A CN202011162983A CN112226563A CN 112226563 A CN112226563 A CN 112226563A CN 202011162983 A CN202011162983 A CN 202011162983A CN 112226563 A CN112226563 A CN 112226563A
- Authority
- CN
- China
- Prior art keywords
- sulfur
- gas
- blast furnace
- hot blast
- sulfur dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 title claims abstract description 150
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims abstract description 49
- 239000003546 flue gas Substances 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 17
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 94
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 94
- 239000011593 sulfur Substances 0.000 claims abstract description 94
- 238000004364 calculation method Methods 0.000 claims abstract description 47
- 238000004458 analytical method Methods 0.000 claims abstract description 35
- 238000007726 management method Methods 0.000 claims abstract description 20
- 238000012544 monitoring process Methods 0.000 claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 claims abstract description 18
- 230000005540 biological transmission Effects 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims abstract description 14
- 239000002994 raw material Substances 0.000 claims abstract description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 79
- 239000007789 gas Substances 0.000 claims description 79
- 238000002485 combustion reaction Methods 0.000 claims description 48
- 229910052742 iron Inorganic materials 0.000 claims description 39
- 239000000463 material Substances 0.000 claims description 15
- 239000002893 slag Substances 0.000 claims description 15
- 239000000428 dust Substances 0.000 claims description 11
- 238000009838 combustion analysis Methods 0.000 claims description 7
- 238000010223 real-time analysis Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 239000003034 coal gas Substances 0.000 claims description 4
- 239000000571 coke Substances 0.000 claims description 4
- 238000006477 desulfuration reaction Methods 0.000 claims description 4
- 230000023556 desulfurization Effects 0.000 claims description 4
- 239000010802 sludge Substances 0.000 claims description 4
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 claims description 3
- 235000019738 Limestone Nutrition 0.000 claims description 3
- 229910000805 Pig iron Inorganic materials 0.000 claims description 3
- 238000003723 Smelting Methods 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000003245 coal Substances 0.000 claims description 3
- 239000010459 dolomite Substances 0.000 claims description 3
- 229910000514 dolomite Inorganic materials 0.000 claims description 3
- 239000006028 limestone Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 102000005298 Iron-Sulfur Proteins Human genes 0.000 claims description 2
- 108010081409 Iron-Sulfur Proteins Proteins 0.000 claims description 2
- 239000000446 fuel Substances 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 5
- 239000010959 steel Substances 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 abstract description 4
- 230000009467 reduction Effects 0.000 abstract description 2
- 230000033764 rhythmic process Effects 0.000 abstract description 2
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000007418 data mining Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- YPFNIPKMNMDDDB-UHFFFAOYSA-K 2-[2-[bis(carboxylatomethyl)amino]ethyl-(2-hydroxyethyl)amino]acetate;iron(3+) Chemical compound [Fe+3].OCCN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O YPFNIPKMNMDDDB-UHFFFAOYSA-K 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- XAQHXGSHRMHVMU-UHFFFAOYSA-N [S].[S] Chemical compound [S].[S] XAQHXGSHRMHVMU-UHFFFAOYSA-N 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B9/00—Stoves for heating the blast in blast furnaces
- C21B9/10—Other details, e.g. blast mains
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/006—Automatically controlling the process
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/24—Test rods or other checking devices
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/40—Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
- C21B2100/42—Sulphur removal
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2300/00—Process aspects
- C21B2300/04—Modeling of the process, e.g. for control purposes; CII
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Regulation And Control Of Combustion (AREA)
Abstract
本发明属于冶金钢铁节能减排技术领域,提出一种炼铁热风炉烟气二氧化硫排放源头管控方法与系统,旨在解决高炉炼铁工序中的源头硫元素管控问题,以实现热风炉烟气二氧化硫全时段达标排放的目的。本系统包括数据采集及传输模块、存储器、分析计算模块、数据监测模块、管控终端,数据采集及传输模块的输入端分别与数据监测模块及高炉本体自带的计量系统和成分检测系统相连接,其输出端分别与分析计算模块和管控终端相连接;数据采集及传输模块与存储器、分析计算模块与管控终端各自之间交互连接。本发明是从高炉原料及操作源头进行起源控制,具有管控动作少、时间短、节奏紧凑及生产效率高的特点。
The invention belongs to the technical field of energy saving and emission reduction of metallurgical steel, and proposes a source control method and system for the emission of sulfur dioxide in flue gas from an ironmaking hot blast furnace, aiming to solve the problem of source sulfur element control in a blast furnace ironmaking process, so as to realize the sulfur dioxide emission in hot blast furnace flue gas. The goal of meeting the emission standards at all times. The system includes a data acquisition and transmission module, a memory, an analysis and calculation module, a data monitoring module, and a management and control terminal. The input end of the data acquisition and transmission module is respectively connected with the data monitoring module and the measurement system and component detection system of the blast furnace body. The output ends are respectively connected with the analysis and calculation module and the management and control terminal; the data acquisition and transmission module and the memory, and the analysis and calculation module and the management and control terminal are respectively connected interactively. The invention controls the origin from the blast furnace raw material and the operation source, and has the characteristics of few control actions, short time, compact rhythm and high production efficiency.
Description
技术领域technical field
本发明属于冶金钢铁节能减排技术领域,具体涉及一种炼铁热风炉烟气二氧化硫排放源头管控方法与系统。The invention belongs to the technical field of energy saving and emission reduction of metallurgical iron and steel, and in particular relates to a method and a system for controlling the source of sulfur dioxide emission in flue gas of an ironmaking hot blast furnace.
背景技术Background technique
高炉炼铁单元污染物SO2排放的主要环节是在热风炉,其加热燃烧含H2S等硫化物的高炉煤气或者混合煤气时,产生的烟气中将排放出SO2。而高炉煤气中的硫化物又来源于高炉入炉的原辅材料中的S量,称之为入炉S负荷。也就是说,高炉单元入炉S负荷影响着高炉煤气中的S含量,也影响着热风炉排放的SO2的浓度和产生量。The main link of pollutant SO 2 emission in blast furnace ironmaking unit is in the hot blast furnace. When the blast furnace gas or mixed gas containing sulfides such as H 2 S is heated and burned, SO 2 will be emitted from the flue gas generated. The sulfide in the blast furnace gas comes from the amount of S in the raw and auxiliary materials fed into the blast furnace, which is called the S load in the furnace. That is to say, the S load of the blast furnace unit into the furnace affects the S content in the blast furnace gas, and also affects the concentration and production of SO 2 emitted by the hot blast stove.
2019年4月,由国家生态环境部、发改委等五部委发布《关于推进实施钢铁行业超低排放的意见》,其中要求全国新建(含搬迁)项目炼铁热风炉排放的污染物SO2的排放浓度限值为50mg/m3,是目前执行的国家标准《炼铁工业大气污染物排放标准》GB(28663-2012)炼铁热风炉(新建、现有及特别地区)排放限值100mg/m3的一半。目前的钢铁厂存在热风炉燃烧排放的SO2不能全时段稳定满足超低排放要求的现象。因此,有必要设置一套从高炉原料进行源头管控的系统,来帮助高炉进行源头S元素的管控,以减少入炉S负荷。In April 2019, five ministries and commissions including the National Ministry of Ecology and Environment and the National Development and Reform Commission issued the "Opinions on Promoting the Implementation of Ultra-Low Emissions in the Iron and Steel Industry", which requires the emission of pollutant SO 2 from iron-making hot blast stoves in new (including relocation) projects across the country The concentration limit is 50mg/m 3 , which is the current implementation of the national standard "Air Pollutant Emission Standard for Ironmaking Industry" GB(28663-2012). 3 half. At present, there is a phenomenon that the SO 2 emitted from the combustion of the hot blast stove cannot stably meet the ultra-low emission requirements at all times in the current iron and steel plants. Therefore, it is necessary to set up a source control system from the blast furnace raw materials to help the blast furnace to control the source S elements in order to reduce the S load of the furnace.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的在于提供一种炼铁热风炉烟气二氧化硫排放源头管控方法与系统,旨在解决高炉炼铁工序中的源头硫元素的管控问题。In view of this, the purpose of the present invention is to provide a source control method and system for sulfur dioxide emission in the flue gas of an ironmaking hot blast furnace, aiming to solve the problem of source sulfur control in the blast furnace ironmaking process.
本发明是通过以下技术方案来实现的:The present invention is achieved through the following technical solutions:
本发明提供的一种炼铁热风炉烟气二氧化硫排放源头管控系统,包括数据采集及传输模块、存储器、分析计算模块、数据监测模块、管控终端,数据采集及传输模块的输入端分别与数据监测模块及高炉本体自带的计量系统和成分检测系统相连接,其输出端分别与分析计算模块和管控终端相连接;数据采集及传输模块与存储器之间、分析计算模块与管控终端之间各自交互连接。The invention provides a source management and control system for the emission of sulfur dioxide in flue gas from an iron-smelting hot blast stove, including a data acquisition and transmission module, a memory, an analysis and calculation module, a data monitoring module, and a control terminal. The input ends of the data acquisition and transmission module are respectively connected with the data monitoring module The module is connected to the metering system and the component detection system that comes with the blast furnace body, and its output terminals are respectively connected to the analysis and calculation module and the control terminal; the data acquisition and transmission module and the memory, and between the analysis and calculation module and the control terminal respectively interact. connect.
进一步,分析计算模块包括有用于计算出高炉煤气中含硫浓度值CBFG的高炉煤气硫浓度计算子模块,其计算公式为:Further, the analysis and calculation module includes a blast furnace gas sulfur concentration calculation sub-module for calculating the sulfur concentration value C BFG in the blast furnace gas, and its calculation formula is:
CBFG=[(1-η1-η2)×Lt-L尘泥]/Gbfg;C BFG = [(1-η 1 -η 2 )×L t -L dust sludge ]/G bfg ;
其中,in,
Lt=Ltotal/Piron;L t =L total /P iron ;
Ltotal=∑Wi·υi;L total =∑W i ·υ i ;
η1为硫元素在铁水中的分配比;η2为硫元素在炉渣中的分配比;Lt为单位铁水的硫负荷值;Gbfg为单位铁水的高炉煤气发生量;L尘泥为取样高炉煤气除尘灰及出铁场除尘灰数据后计算得出的固定值;Piron为生铁产量;Ltotal为入炉总硫负荷值,是根据计量系统提供的高炉计量数据来计算,Wi为物料i入炉的质量,kg;υi为物料i中含硫元素的质量占比。η 1 is the distribution ratio of sulfur in molten iron; η 2 is the distribution ratio of sulfur in slag; L t is the sulfur load value per unit of molten iron; G bfg is the blast furnace gas generation per unit of molten iron; L is the sampling Fixed value calculated from blast furnace gas dust removal and iron yard dust removal data; P iron is the output of pig iron; L total is the total sulfur load value in the furnace, which is calculated according to the blast furnace metering data provided by the metering system, and Wi is The mass of the material i into the furnace, kg; υ i is the mass proportion of the sulfur element in the material i.
进一步,硫元素分别在铁水和炉渣中的分配比率值是根据成分检测系统提供的成分检测数据来计算,且成分检测数据包括有铁水产量及其中的含硫量、炉渣产量及其中的含硫量。Further, the distribution ratio value of sulfur element in molten iron and slag, respectively, is calculated according to the component detection data provided by the component detection system, and the component detection data includes molten iron output and its sulfur content, slag output and its sulfur content. .
进一步,高炉计量数据中的物料i包括有:焦炭入炉量、煤粉入炉量、混矿入炉量、石灰石及白云石入炉量。Further, the material i in the blast furnace measurement data includes: the amount of coke entering the furnace, the amount of pulverized coal entering the furnace, the amount of mixed ore entering the furnace, and the amount of limestone and dolomite entering the furnace.
进一步,分析计算模块还包括有根据二氧化硫排放模型计算出当前生产操作条件下满足热风炉烟气排放中二氧化硫排放标准浓度值C标的单位铁水的入炉硫负荷高值Lmax的热风炉燃烧分析计算子模块。Further, the analysis and calculation module also includes a hot blast stove combustion analysis for calculating the high value L max of the sulfur load per unit of molten iron that meets the standard concentration value C of sulfur dioxide emission in the flue gas emission of the hot blast stove under the current production and operating conditions according to the sulfur dioxide emission model. Computational submodule.
进一步,二氧化硫排放模型是以高炉煤气中含硫浓度值CBFG及热风炉燃烧参数计算出热风炉燃烧烟气中的二氧化硫浓度值CSO2与数据监测模块实际监测到的烟气中的二氧化硫浓度值进行量化建立,其计算公式为:Further, the sulfur dioxide emission model is based on the sulfur concentration value C BFG in the blast furnace gas and the combustion parameters of the hot blast stove to calculate the sulfur dioxide concentration value C SO2 in the combustion flue gas of the hot blast stove and the sulfur dioxide concentration value in the flue gas actually monitored by the data monitoring module. The quantitative establishment is carried out, and its calculation formula is:
其中:in:
为煤气总硫含量,mg:CBFG为高炉煤气中含硫浓度值,mg/Nm3;Vbfg为热风炉燃烧所用高炉煤气的体积,Nm3;Vi为热风炉燃烧耗用高炉煤气以外的其他每种煤气的体积,Nm3;α为过剩空气系数;为煤气燃烧的理论氧气需求量,Nm3/Nm3煤气;为理论空气量, Nm3/Nm3煤气;Ci为燃用的其他煤气含硫浓度,mg/Nm3;Vy为单位煤气产生的实际烟气量, Nm3/Nm3煤气;为单位煤气产生的理论烟气量,Nm3/Nm3煤气。 is the total sulfur content of the gas, mg: C BFG is the sulfur concentration value in the blast furnace gas, mg/Nm 3 ; V bfg is the volume of the blast furnace gas used for the combustion of the hot blast stove, Nm 3 ; Vi is the consumption of the blast furnace gas other than the blast furnace gas for the combustion of the hot blast stove The volume of each other gas, Nm 3 ; α is the excess air coefficient; is the theoretical oxygen demand for gas combustion, Nm 3 /Nm 3 gas; is the theoretical air volume, Nm 3 /Nm 3 gas; Ci is the sulfur concentration of other coal gas used for combustion, mg/Nm 3 ; V y is the actual amount of flue gas produced by unit gas, Nm 3 /Nm 3 gas; It is the theoretical flue gas volume produced by unit gas, Nm 3 /Nm 3 gas.
进一步,管控终端包括与高炉煤气硫浓度计算子模块关联的入炉硫负荷实时分析管控子模块、与热风炉燃烧分析计算子模块关联的热风炉燃烧管控分析子模块。Further, the management and control terminal includes a real-time analysis and control sub-module of incoming sulfur sulfur load associated with the blast furnace gas sulfur concentration calculation sub-module, and a hot-blast stove combustion control and analysis sub-module associated with the hot-blast stove combustion analysis and calculation sub-module.
本发明还提供一种炼铁热风炉烟气二氧化硫排放源头管控方法,采用上述的系统,包括以下步骤:The present invention also provides a source control method for the emission of sulfur dioxide in flue gas from an iron-smelting hot blast stove, which adopts the above-mentioned system and includes the following steps:
S1:采集高炉的实时监测值,并将其传输给分析计算模块和管控终端;S1: Collect the real-time monitoring value of the blast furnace and transmit it to the analysis and calculation module and the control terminal;
S2:分析计算模块计算出入炉总硫负荷值Ltotal、单位铁水的硫负荷值Lt及高炉煤气中含硫浓度值CBFG;S2: The analysis and calculation module calculates the total sulfur load value L total entering and leaving the furnace, the sulfur load value L t per unit of molten iron, and the sulfur concentration value C BFG in the blast furnace gas;
S3:以高炉煤气中含硫浓度值CBFG及热风炉燃烧参数对热风炉燃烧烟气中的二氧化硫浓度值CSO2进行分析计算;S3: Analyze and calculate the sulfur dioxide concentration value C SO2 in the combustion flue gas of the hot blast stove with the sulfur concentration value C BFG in the blast furnace gas and the combustion parameters of the hot blast stove;
S4:建立基于入炉硫负荷值的热风炉烟气二氧化硫排放模型;S4: Establish a hot blast furnace flue gas sulfur dioxide emission model based on the sulfur load value of the furnace;
S5:根据二氧化硫排放模型计算出当前生产操作条件下满足热风炉烟气排放中二氧化硫排放标准浓度值C标的单位铁水的入炉硫负荷高值Lmax;S5: Calculate, according to the sulfur dioxide emission model, the high value L max of the sulfur load per unit of molten iron that meets the standard concentration value C of sulfur dioxide emission in the flue gas emission of the hot blast furnace under the current production and operating conditions;
S6:系统自动设定Lmax为阈值,并判断实时单位铁水的入炉硫负荷值Lt与阀值Lmax的关系,并根据系统提示进行热风炉燃烧参数调整或者入炉原料调整。S6: The system automatically sets L max as the threshold value, and judges the relationship between the real-time unit molten iron sulfur load value L t and the threshold value L max , and adjusts the combustion parameters of the hot blast stove or the incoming raw materials according to the system prompts.
优选的,步骤S6包括如下分步:Preferably, step S6 includes the following steps:
S61:判断Lt与Lmax的关系,若Lt<Lmax,则维持现有参数设置及操作不变;S61: Determine the relationship between L t and L max , if L t <L max , keep the existing parameter settings and operations unchanged;
S62:若Lt≥Lmax,则进行报警提示,通过管控终端的界面调整热风炉燃烧参数,系统根据调整后的参数用二氧化硫排放模型预测出排放烟气中的二氧化硫浓度值CSO2,并判断与二氧化硫排放标准浓度值C标的关系;S62: If L t ≥ L max , an alarm prompt will be given, and the combustion parameters of the hot blast stove will be adjusted through the interface of the management and control terminal. The relationship with the standard concentration value C of sulfur dioxide emission;
S63:若CSO2<C标,则系统建议按调整后的热风炉燃烧参数进行设置;若CSO2≥C标,系统发出指令,提示是否改进入炉原燃料品质?如果选择否,则进入脱硫模式,系统自动计算出满足全时段达标的最低脱硫效率;如果选择是,则进入源头控制模式,系统自动提出,按照提示调整入炉原料,降低入炉总硫负荷Ltotal,再进行步骤S61。S63: If C SO2 < C standard , the system recommends setting according to the adjusted combustion parameters of the hot blast stove; if C SO2 ≥ C standard , the system will issue a command to prompt whether to improve the quality of the raw fuel into the furnace? If you choose No, it will enter desulfurization mode, and the system will automatically calculate the minimum desulfurization efficiency that meets the standard for the whole time; total , and then go to step S61.
采用上述方案,本发明的炼铁热风炉烟气二氧化硫排放源头管控方法与系统,为钢铁企业提供了一套从原料及操作源头控制热风炉燃烧排放二氧化硫的系统及方法,通过对接现有的检测分析和成分分析系统,计算出特定条件下满足炼铁热风炉二氧化硫排放标准浓度的最佳入炉硫负荷值,从而对进入高炉的含硫原辅材料进行源头管控,以实现对个别时段超限的边界参数进行精准控制,实现全时段达标排放。By adopting the above-mentioned scheme, the method and system for controlling the source of sulfur dioxide emission in the flue gas of an iron-making hot blast stove of the present invention provide iron and steel enterprises with a system and method for controlling the combustion and discharge of sulfur dioxide from a hot blast stove from raw materials and operation sources. The analysis and composition analysis system calculates the optimal sulfur load value that meets the sulfur dioxide emission standard concentration of iron-making hot blast furnace under specific conditions, so as to control the source of sulfur-containing raw and auxiliary materials entering the blast furnace, so as to realize the exceeding limit of individual time periods. The boundary parameters are precisely controlled to achieve full-time compliance.
本发明的优点在于:本发明是从高炉原料及操作源头进行起源控制,实现了热风炉烟气中二氧化硫全时段达标排放的目的。具有管控动作少、时间短、节奏紧凑及生产效率高的特点。The advantages of the present invention are: the present invention controls the origin from the blast furnace raw materials and operation sources, and realizes the purpose of discharging sulfur dioxide in the flue gas of the hot blast furnace up to the standard at all times. It has the characteristics of few control actions, short time, compact rhythm and high production efficiency.
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。Other advantages, objects, and features of the present invention will be set forth in the description that follows, and will be apparent to those skilled in the art based on a study of the following, to the extent that is taught in the practice of the present invention. The objectives and other advantages of the present invention may be realized and attained by the following description.
附图说明Description of drawings
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中:In order to make the objects, technical solutions and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with the accompanying drawings, wherein:
图1为本发明的源头管控系统框架图。FIG. 1 is a frame diagram of the source management and control system of the present invention.
图2为本发明的源头管控系统结构图。FIG. 2 is a structural diagram of the source control system of the present invention.
图3为本发明的源头管控系统流程图。FIG. 3 is a flow chart of the source control system of the present invention.
附图标记:数据采集及传输模块1、存储器2、分析计算模块3、数据监测模块4、管控终端5、计量系统6、成分检测系统7;高炉煤气硫浓度计算子模块31、热风炉燃烧分析计算子模块32;入炉硫负荷实时分析管控子模块51、热风炉燃烧管控分析子模块52。Reference numerals: data acquisition and transmission module 1,
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that the drawings provided in the following embodiments are only used to illustrate the basic idea of the present invention in a schematic manner, and the following embodiments and features in the embodiments can be combined with each other without conflict.
如图1、2所示,本实施例中提及的针对高炉炼铁工序热风炉烟气排放的二氧化硫进行源头管控的系统,包括有数据采集及传输模块1、存储器2、分析计算模块3、数据监测模块 4、管控终端5。其中,数据采集及传输模块1的输入端分别与数据监测模块4及高炉本体自带的计量系统6和成分检测系统7相连接,其输出端分别与分析计算模块3和管控终端5相连接;数据采集及传输模块1与存储器2之间、分析计算模块3与管控终端5之间各自交互连接。这样,通过采集热风炉燃烧排放的二氧化硫的浓度值和烟气量中的二氧化硫浓度值的实时监测,并将从高炉系统自带的计量系统6、成分检测系统7得到的高炉计量数据和成分检测数据通过数据采集及传输模块1传输到本系统,再通过分析计算模块3和管控终端5分别进行分析计算和可视化显示,同时也将数据储存在存储器2中。分析计算模块3可以与管控终端5进行交互,分为高炉煤气硫浓度计算子模块31和热风炉燃烧分析计算子模块32,并根据系统从数据监控模块4中获取的监测数据以及管控终端5的交互信息进行分析计算,且计算结果在管控终端5进行可视化显示。管控终端5则通过构建计算机软件系统,分为入炉硫负荷实时分析管控子模块51和热风炉燃烧管控分析子模块52。As shown in Figures 1 and 2, the system for source control of sulfur dioxide emitted by hot blast furnace flue gas in blast furnace ironmaking process mentioned in this embodiment includes a data acquisition and transmission module 1, a
操作时,根据高炉输入端的入炉原辅材料含硫量、入炉量数据,以及输出端的铁水含硫量、炉渣含硫量以及产生量等在高炉工序生产周期内相关的完整数据,建立数学模型进行计算分析,预测热风炉排放的烟气中的二氧化硫浓度。再根据数据监测模块得出的热风炉烟气中实际排放的二氧化硫浓度和产生量,与预测数据进行比对分析,并通过数据挖掘和机器学习进行迭代,找出可量化的影响关系并建立基于高炉入炉负荷参数的热风炉烟气二氧化硫排放模型,再根据此二氧化硫排放模型,在生产操作因素不变的情况下,计算出满足炼铁热风炉二氧化硫排放标准浓度下的最佳入炉硫负荷,即原辅材料含硫量可选择按照最佳入炉硫负荷进行调控,从而对进入高炉的含硫原辅材料进行源头管控。During operation, according to the sulfur content of raw and auxiliary materials entering the blast furnace and the data of the incoming furnace, as well as the sulfur content of molten iron, the sulfur content of slag and the production amount of the output end of the blast furnace, the relevant complete data in the production cycle of the blast furnace process are established to establish mathematics. The model performs calculation analysis to predict the sulfur dioxide concentration in the flue gas emitted by the hot blast stove. Then, according to the actual concentration and production of sulfur dioxide emitted in the flue gas of the hot blast stove obtained by the data monitoring module, compare and analyze the predicted data, and iterate through data mining and machine learning to find out the quantifiable influence relationship and establish a basis for it. The hot blast furnace flue gas sulfur dioxide emission model of the blast furnace charging load parameters, and then according to this sulfur dioxide emission model, under the condition of unchanged production and operation factors, calculate the optimal charging sulfur load that meets the sulfur dioxide emission standard concentration of iron-making hot blast furnace , that is, the sulfur content of raw and auxiliary materials can be adjusted according to the optimal sulfur load into the furnace, so as to control the source of sulfur-containing raw and auxiliary materials entering the blast furnace.
具体的,系统首先对接高炉的计量系统和成分检测系统,并从中采集到焦炭入炉量及含硫量,煤粉入炉量及含硫量、混矿入炉量及含硫量、石灰石和白云石入炉量及含硫量,及铁水产量、铁水含硫量、炉渣产量、炉渣含硫量、高炉煤气发生量等参数,利用高炉煤气硫浓度计算子模块来计算出高炉煤气中含硫浓度值CBFG,先按照本系统计算公式计算出入炉总硫负荷值Ltotal及单位铁水的硫负荷值Lt,即:Ltotal=∑Wi·υi,Lt=Ltotal/Piron,其中Wi为物料i入炉的质量,kg;υi为物料i中含硫元素的质量占比;Piron为生铁产量。由于高炉生产过程中产生高炉煤气、炉渣、铁水以及高炉煤气除尘灰,在稳定的操作条件下,硫元素在铁水和炉渣中的分配比率基本保持不变。η1为硫元素在铁水中的分配比,η2为硫元素在炉渣中的分配比,则可计算出高炉煤气中含硫浓度值:CBFG=[(1-η1-η2)×Lt-L尘泥]/Gbfg,其中,Gbfg为单位铁水的高炉煤气发生量;L尘泥为取样高炉煤气除尘灰、出铁场除尘灰等数据后计算得出的固定值,手动输入。Specifically, the system first connects to the blast furnace metering system and composition detection system, and collects the coke and sulfur content, the coal powder and the sulfur content, the mixed ore and the sulfur content, the limestone and the sulfur content. The amount of dolomite entering the furnace and its sulfur content, as well as the production of molten iron, sulfur content of molten iron, slag production, sulfur content of slag, blast furnace gas generation and other parameters, using the blast furnace gas sulfur concentration calculation sub-module to calculate the sulfur content in blast furnace gas For the concentration value C BFG , first calculate the total sulfur load value L total entering and leaving the furnace and the sulfur load value L t per unit of molten iron according to the calculation formula of this system, namely: L total =∑W i ·υ i , L t =L total /P iron , where Wi is the mass of material i into the furnace, kg; υ i is the mass proportion of sulfur-containing elements in material i; P iron is the output of pig iron. Since blast furnace gas, slag, molten iron and blast furnace gas dust are generated during blast furnace production, the distribution ratio of sulfur in molten iron and slag remains basically unchanged under stable operating conditions. η 1 is the distribution ratio of sulfur element in molten iron, η 2 is the distribution ratio of sulfur element in slag, then the sulfur concentration value in blast furnace gas can be calculated: C BFG = [(1-η 1 -η 2 )× L t -L dust sludge ]/G bfg , where G bfg is the blast furnace gas generation per unit of molten iron; L dust sludge is a fixed value calculated after sampling data such as blast furnace gas dust removal, iron dust removal dust, etc. enter.
热风炉燃烧分析计算子模块可根据计算得到的CBFG值,根据输入的热风炉燃烧参数和燃烧介质类型、用量、燃烧介质组分及其比例,计算出热风炉燃烧烟气中的二氧化硫浓度值C SO2。计算方法为:其中: The combustion analysis and calculation sub-module of the hot blast stove can calculate the sulfur dioxide concentration value in the combustion flue gas of the hot blast stove according to the calculated C BFG value, according to the input combustion parameters of the hot blast stove, the type, amount of combustion medium, the composition of the combustion medium and its proportion. CSO2 . The calculation method is: in:
为煤气总硫含量,mg:CBFG为高炉煤气中含硫浓度值,mg/Nm3;Vbfg为热风炉燃烧所用高炉煤气的体积,Nm3;Vi为热风炉燃烧耗用的高炉煤气以外的其他每种煤气的体积,Nm3;α为过剩空气系数;为煤气燃烧的理论氧气需求量,Nm3/Nm3煤气;为理论空气量,Nm3/Nm3煤气;Ci为燃用的其他煤气含硫浓度,mg/Nm3;Vy为单位煤气产生的实际烟气量,Nm3/Nm3煤气;为单位煤气产生的理论烟气量,Nm3/Nm3煤气。CO、C2H4,O2等分别代表煤气中相应气体的体积分数,%。并通过数据监测模块实际监测到的烟气中二氧化硫的浓度,与理论计算出的二氧化硫浓度进行数据挖掘和机器学习,找出可量化的影响关系,建立基于高炉入炉负荷参数的热风炉烟气二氧化硫排放模型,且以此来计算出该生产操作条件下满足炼铁热风炉二氧化硫排放标准浓度的单位铁水的入炉硫负荷高值Lmax。 is the total sulfur content of the gas, mg: C BFG is the sulfur concentration value in the blast furnace gas, mg/Nm 3 ; V bfg is the volume of the blast furnace gas used for the combustion of the hot blast stove, Nm 3 ; Vi is the blast furnace gas other than the blast furnace gas consumed by the hot blast stove combustion The volume of each other gas, Nm 3 ; α is the excess air coefficient; is the theoretical oxygen demand for gas combustion, Nm 3 /Nm 3 gas; is the theoretical air volume, Nm 3 /Nm 3 gas; Ci is the sulfur concentration of other coal gas used for combustion, mg/Nm 3 ; V y is the actual amount of flue gas produced by unit gas, Nm 3 /Nm 3 gas; It is the theoretical flue gas volume produced by unit gas, Nm 3 /Nm 3 gas. CO, C 2 H 4 , O 2 , etc. represent the volume fraction, %, of the corresponding gas in the coal gas, respectively. And the concentration of sulfur dioxide in the flue gas actually monitored by the data monitoring module is used for data mining and machine learning with the theoretically calculated concentration of sulfur dioxide to find out the quantifiable influence relationship, and establish a hot blast furnace flue gas based on blast furnace load parameters. The sulfur dioxide emission model is used to calculate the high value L max of the sulfur load per unit of molten iron that meets the sulfur dioxide emission standard concentration of the iron-making hot blast furnace under the production operating conditions.
入炉硫负荷实时分析管控子模块通过构建图、表等可视化界面展示进入高炉的不同含硫物料的名称、入炉量及其对应的入炉硫负荷的占比,计算单位铁水的硫负荷Lt;系统自动设定计算得到的Lmax为阈值,若Lt≥Lmax,则进行报警提示。The real-time analysis and control sub-module of sulfur load into the furnace displays the names of different sulfur-containing materials entering the blast furnace, the amount of sulfur-containing materials and the corresponding proportion of sulfur load into the furnace through the construction of graphs, tables and other visual interfaces, and calculates the sulfur load Lt per unit of molten iron. ; The system automatically sets the calculated L max as the threshold, and if L t ≥ L max , an alarm will be prompted.
热风炉燃烧管控分析子模块通过构建交互界面,引导用户输入热风炉燃用的煤气类型(如高炉煤气、转炉煤气、焦炉煤气)和不同类型用量的占比以及除高炉煤气之外的其他煤气的组分含量、含硫量、空气过剩系数、理论燃烧温度等的预设分析条件,链接入炉硫负荷实时分析管控子模块中计算得到的Lt值,通过二氧化硫排放模型预测热风炉烟气中二氧化硫的排放浓度值CSO2,并通过计算机显示界面以表格形式进行结果展示,同时展示出CSO2与二氧化硫排放标准浓度值C标的大小关系。其热风炉燃烧参数在系统中均设置合理的范围区间,这个范围区间根据热风炉理论燃烧温度进行自动设置,如果输入的燃烧参数超过系统计算得出的合理的范围区间,则系统显示“不能满足燃烧要求”,不参与后续计算。By building an interactive interface, the hot blast stove combustion control analysis sub-module guides the user to input the type of gas (such as blast furnace gas, converter gas, coke oven gas) used in the hot blast stove, the proportion of different types of consumption, and other gases except blast furnace gas. The preset analysis conditions such as component content, sulfur content, air excess coefficient, theoretical combustion temperature, etc., are linked to the L t value calculated in the real-time analysis and control sub-module of furnace sulfur load, and the hot blast furnace flue gas is predicted through the sulfur dioxide emission model. The emission concentration value C SO2 of medium sulfur dioxide is displayed in the form of a table through the computer display interface, and the relationship between C SO2 and the standard concentration value C standard of sulfur dioxide emission is also displayed. The combustion parameters of the hot blast stove are set within a reasonable range in the system. This range is automatically set according to the theoretical combustion temperature of the hot blast stove. If the input combustion parameters exceed the reasonable range calculated by the system, the system will display "Cannot meet the Combustion requirements", do not participate in subsequent calculations.
再结合图3所示,下面详细介绍下本发明针对高炉炼铁工序中热风炉烟气排放的二氧化硫进行源头管控的方法,具体包括以下步骤:Referring to Fig. 3 again, the method for source control of sulfur dioxide emitted by the hot blast furnace flue gas in the blast furnace ironmaking process of the present invention will be described in detail below, which specifically includes the following steps:
S1:采集高炉的实时监测值,并将其传输给分析计算模块和管控终端;S1: Collect the real-time monitoring value of the blast furnace and transmit it to the analysis and calculation module and the control terminal;
S2:分析计算模块根据采集获取的高炉计量系统的铁水、炉渣、高炉煤气等产出量和含硫量数据进行计算,计算入炉总硫负荷Ltotal,还通过采集铁水产量、铁水含硫量、炉渣产量、炉渣含硫量、高炉煤气发生量等参数,计算出高炉煤气中含硫浓度CBFG;S2: The analysis and calculation module calculates the output and sulfur content data of the blast furnace metering system, such as molten iron, slag, and blast furnace gas, and calculates the total sulfur load L total in the furnace. , slag output, slag sulfur content, blast furnace gas generation and other parameters, calculate the sulfur concentration C BFG in blast furnace gas;
S3:通过获取或者输入热风炉燃烧介质、空气过剩系数等燃烧条件参数,实现热风炉排放的烟气中二氧化硫浓度的分析;S3: By obtaining or inputting the combustion conditions parameters such as the combustion medium and air excess coefficient of the hot blast stove, the analysis of the sulfur dioxide concentration in the flue gas emitted by the hot blast stove is realized;
S4:建立基于高炉入炉硫负荷参数的热风炉烟气中的二氧化硫排放模型;S4: Establish a sulfur dioxide emission model in hot blast furnace flue gas based on blast furnace sulfur load parameters;
S5:根据二氧化硫排放模型计算出该生产操作条件下满足热风炉二氧化硫排放标准浓度值C标的单位铁水的最高的入炉硫负荷高值Lmax;S5: according to the sulfur dioxide emission model, calculate the highest sulfur load high value L max of the unit molten iron that meets the standard concentration value C of sulfur dioxide emission of the hot blast furnace under the production and operating conditions;
S6:系统自动设定Lmax为阈值,并判断计算得出的高炉实时单位铁水的入炉硫负荷值Lt与Lmax的关系,系统进行提示,如果Lt超过阈值,则按系统提示进行热风炉燃烧参数调整或者入炉原料调整。S6: The system automatically sets L max as the threshold value, and judges the relationship between the calculated real-time unit molten iron sulphur load value L t and L max of the blast furnace, and the system prompts. If L t exceeds the threshold value, proceed according to the system prompt. Adjustment of combustion parameters of hot blast stove or adjustment of incoming raw materials.
进一步,S6的具体步骤包括:Further, the specific steps of S6 include:
S61:判断Lt与Lmax的关系,若Lt<Lmax,则维持现有参数设置及操作不变;S61: Determine the relationship between Lt and Lmax , if Lt< Lmax , keep the existing parameter settings and operations unchanged;
S62:若Lt≥Lmax,则进行报警提示,通过管控系统的界面,在一定范围内调整热风炉燃烧参数,根据调整后的参数用模型预测,系统自动输入预测出排放的二氧化硫浓度值CSO2,并判断其与排放标准C标的关系;S62: If L t ≥ L max , an alarm will be given, and the combustion parameters of the hot blast stove are adjusted within a certain range through the interface of the management and control system. According to the adjusted parameters, the model is used to predict, and the system automatically inputs the predicted sulfur dioxide concentration value C. SO2 , and judge its relationship with emission standard C;
S63:若CSO2<C标,则系统建议按调整后的热风炉燃烧参数进行设置;若CSO2≥C标,系统发出指令,按照提示调整入炉原料,降低入炉总硫负荷Ltotal,再进行步骤S61。S63: If C SO2 < C standard , the system recommends setting according to the adjusted combustion parameters of the hot blast stove; if C SO2 ≥ C standard , the system sends an instruction to adjust the raw materials into the furnace according to the prompts to reduce the total sulfur load L total , Go to step S61 again.
上所述仅为本发明的优选实施例,并不用于限制本发明,显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011162983.0A CN112226563B (en) | 2020-10-27 | 2020-10-27 | A method and system for controlling the source of sulfur dioxide emissions from flue gas in ironmaking hot blast furnaces |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011162983.0A CN112226563B (en) | 2020-10-27 | 2020-10-27 | A method and system for controlling the source of sulfur dioxide emissions from flue gas in ironmaking hot blast furnaces |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112226563A true CN112226563A (en) | 2021-01-15 |
CN112226563B CN112226563B (en) | 2025-01-24 |
Family
ID=74109527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011162983.0A Active CN112226563B (en) | 2020-10-27 | 2020-10-27 | A method and system for controlling the source of sulfur dioxide emissions from flue gas in ironmaking hot blast furnaces |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112226563B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113421618A (en) * | 2021-06-29 | 2021-09-21 | 鞍钢股份有限公司 | Method for predicting sulfur content in blast furnace gas |
CN114686630A (en) * | 2022-04-02 | 2022-07-01 | 武汉钢铁有限公司 | Reduce SO in blast furnace hot blast stove flue gas2Burning process of discharged hot blast stove |
CN114686629A (en) * | 2022-04-02 | 2022-07-01 | 武汉钢铁有限公司 | A method for reducing SO2 emission in flue gas of blast furnace hot blast stove |
CN115976294A (en) * | 2023-02-09 | 2023-04-18 | 中冶赛迪工程技术股份有限公司 | Process and System for Reducing SOx Emission from Blast Furnace Hot Blast Stove |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000144268A (en) * | 1998-11-09 | 2000-05-26 | Nkk Corp | Operating method of flue gas desulfurization equipment for production of high-mixed sintered ore with high crystal water content |
CN102690916A (en) * | 2012-06-19 | 2012-09-26 | 冶金自动化研究设计院 | Real-time monitoring system and method of CO2 discharging amount of blast furnace |
JP2013189688A (en) * | 2012-03-14 | 2013-09-26 | Jfe Steel Corp | Method for removing sulfur from desulfurization slag |
CN104988264A (en) * | 2015-05-28 | 2015-10-21 | 北京科技大学 | Treatment and utilization method for sintering flue gas |
CN110387270A (en) * | 2019-08-09 | 2019-10-29 | 中冶赛迪技术研究中心有限公司 | Blast furnace gas dry desulphurization system and method |
CN213951241U (en) * | 2020-10-27 | 2021-08-13 | 中冶赛迪工程技术股份有限公司 | System for controlling emission source of sulfur dioxide in flue gas of iron-making hot blast stove |
-
2020
- 2020-10-27 CN CN202011162983.0A patent/CN112226563B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000144268A (en) * | 1998-11-09 | 2000-05-26 | Nkk Corp | Operating method of flue gas desulfurization equipment for production of high-mixed sintered ore with high crystal water content |
JP2013189688A (en) * | 2012-03-14 | 2013-09-26 | Jfe Steel Corp | Method for removing sulfur from desulfurization slag |
CN102690916A (en) * | 2012-06-19 | 2012-09-26 | 冶金自动化研究设计院 | Real-time monitoring system and method of CO2 discharging amount of blast furnace |
CN104988264A (en) * | 2015-05-28 | 2015-10-21 | 北京科技大学 | Treatment and utilization method for sintering flue gas |
CN110387270A (en) * | 2019-08-09 | 2019-10-29 | 中冶赛迪技术研究中心有限公司 | Blast furnace gas dry desulphurization system and method |
CN213951241U (en) * | 2020-10-27 | 2021-08-13 | 中冶赛迪工程技术股份有限公司 | System for controlling emission source of sulfur dioxide in flue gas of iron-making hot blast stove |
Non-Patent Citations (1)
Title |
---|
邬纳新等: "马钢热风炉残氧分析与优化燃烧技术", 自动化仪表, no. 7, 20 July 2008 (2008-07-20), pages 43 - 45 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113421618A (en) * | 2021-06-29 | 2021-09-21 | 鞍钢股份有限公司 | Method for predicting sulfur content in blast furnace gas |
CN113421618B (en) * | 2021-06-29 | 2024-04-16 | 鞍钢股份有限公司 | A method for predicting sulfur content in blast furnace gas |
CN114686630A (en) * | 2022-04-02 | 2022-07-01 | 武汉钢铁有限公司 | Reduce SO in blast furnace hot blast stove flue gas2Burning process of discharged hot blast stove |
CN114686629A (en) * | 2022-04-02 | 2022-07-01 | 武汉钢铁有限公司 | A method for reducing SO2 emission in flue gas of blast furnace hot blast stove |
CN114686629B (en) * | 2022-04-02 | 2023-08-18 | 武汉钢铁有限公司 | Reduce SO in blast furnace hot-blast furnace flue gas 2 Method of venting |
CN115976294A (en) * | 2023-02-09 | 2023-04-18 | 中冶赛迪工程技术股份有限公司 | Process and System for Reducing SOx Emission from Blast Furnace Hot Blast Stove |
Also Published As
Publication number | Publication date |
---|---|
CN112226563B (en) | 2025-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112226563A (en) | Method and system for source management and control of sulfur dioxide emission in flue gas of iron-making hot blast furnace | |
An et al. | Potential of energy savings and CO2 emission reduction in China’s iron and steel industry | |
Yang et al. | Multi-objective analysis of the co-mitigation of CO2 and PM2. 5 pollution by China's iron and steel industry | |
Worrell et al. | Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector | |
CN114854929B (en) | Converter blowing CO 2 Method for dynamically predicting molten steel components and temperature in real time | |
Sun et al. | A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry | |
CN116822714A (en) | Steel product carbon footprint management method and system based on life cycle evaluation | |
CN1403593A (en) | Blast furnace smelt controlling method with intelligent control system | |
CN115293453B (en) | A root cause analysis and optimization method for energy efficiency of thermal system in steel plant | |
CN1207399C (en) | Intelligent blast furnace smelt controlling system | |
US20150337404A1 (en) | Method and device for predicting, controlling and/or regulating steelworks processes | |
CN109307437A (en) | A kind of the optimization combustion control system and its method of heat accumulating type industrial heating furnace | |
CN102703626B (en) | Intelligent optimal control system for CO2 emission of blast furnace | |
CN116090128A (en) | Multi-target energy-saving carbon reduction optimization method considering carbon-based energy efficiency optimization | |
WO2024092727A1 (en) | Carbon emission evaluation model, evaluation method and evaluation system for long-procedure iron and steel enterprise | |
CN109086949B (en) | Blast furnace gas generation amount and heat value prediction method based on gas component change | |
CN116049299A (en) | A visual carbon flow analysis method for iron and steel production process | |
CN116203901A (en) | Blast furnace production control method and system for stabilizing carbon circulation, electronic equipment and storage medium | |
CN213951241U (en) | System for controlling emission source of sulfur dioxide in flue gas of iron-making hot blast stove | |
Biermann et al. | Economic modelling of a ferrochrome furnace | |
CN113961865B (en) | A method for accurately controlling the amount of temperature control agent added in the TSC stage of a large converter | |
CN107177713A (en) | Flue fan linkage coal-gas recovering method based on combined blown converter molten pool character | |
CN113652518B (en) | Converter and prediction method and prediction system for gas reserves of converter gas holder of converter | |
CN113667781B (en) | Method for reducing fuel ratio of blast furnace | |
CN116823295A (en) | A method, system, equipment and medium for measuring carbon emissions in the steel industry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |