[go: up one dir, main page]

CN112151381B - Semiconductor structure and forming method thereof - Google Patents

Semiconductor structure and forming method thereof Download PDF

Info

Publication number
CN112151381B
CN112151381B CN201910577121.5A CN201910577121A CN112151381B CN 112151381 B CN112151381 B CN 112151381B CN 201910577121 A CN201910577121 A CN 201910577121A CN 112151381 B CN112151381 B CN 112151381B
Authority
CN
China
Prior art keywords
layer
initial
work function
forming
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910577121.5A
Other languages
Chinese (zh)
Other versions
CN112151381A (en
Inventor
张城龙
崔龙
涂武涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201910577121.5A priority Critical patent/CN112151381B/en
Publication of CN112151381A publication Critical patent/CN112151381A/en
Application granted granted Critical
Publication of CN112151381B publication Critical patent/CN112151381B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/017Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/517Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0135Manufacturing their gate conductors
    • H10D84/0142Manufacturing their gate conductors the gate conductors having different shapes or dimensions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A semiconductor structure and a method for forming the same, the method for forming the same includes: providing a substrate, forming an interlayer dielectric layer on the substrate, forming an opening in the interlayer dielectric layer, and forming an initial gate structure in the opening, wherein the initial gate structure comprises an initial gate dielectric layer positioned at the bottom and on the side wall of the opening, an initial work function layer conformally covering the initial gate dielectric layer and an initial gate electrode layer positioned in the residual opening exposed by the initial work function layer; etching the initial gate electrode layer with partial thickness, and taking the rest initial gate electrode layer as a gate electrode layer; after forming the gate electrode layer, etching the initial work function layer and the initial gate dielectric layer with partial height on the side wall of the opening, wherein the remaining initial work function layer is used as a work function layer, and the remaining initial gate dielectric layer is used as a gate dielectric layer; forming a first protective layer on top of the gate electrode layer; and forming a second protective layer on top of the work function layer and the gate dielectric layer. The embodiment of the invention is beneficial to improving the performance of the semiconductor structure.

Description

半导体结构及其形成方法Semiconductor structure and method of forming the same

技术领域Technical Field

本发明实施例涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。The embodiments of the present invention relate to the field of semiconductor manufacturing, and in particular to a semiconductor structure and a method for forming the same.

背景技术Background Art

随着MOSFET器件等比例缩小,器件需要高介电常数(高k)作为栅极绝缘层以及金属作为栅极导电层的堆叠结构,以抑制由于多晶硅栅极耗尽问题带来的高栅极泄漏以及栅极电容减小等问题。As MOSFET devices scale down, the devices require a stacked structure with a high dielectric constant (high-k) as the gate insulating layer and a metal as the gate conductive layer to suppress problems such as high gate leakage and reduced gate capacitance caused by polysilicon gate depletion.

为了更有效控制栅极堆叠的形貌(profile),业界目前普遍采用后栅(gate last)工艺,也即通常先在衬底上沉积多晶硅等材质的伪栅极,沉积层间介质层(ILD)之后去除伪栅极,随后在留下的栅极沟槽中填充高k金属栅(HK/MG)层的堆叠。之后,刻蚀ILD形成暴露源漏掺杂区的接触孔,在接触孔中沉积金属材质形成接触孔插塞(plug)。In order to more effectively control the profile of the gate stack, the industry currently generally adopts the gate last process, that is, usually first depositing a dummy gate made of polysilicon or other materials on the substrate, depositing an interlayer dielectric layer (ILD), removing the dummy gate, and then filling the remaining gate trench with a stack of high-k metal gate (HK/MG) layers. After that, the ILD is etched to form a contact hole that exposes the source and drain doping regions, and a metal material is deposited in the contact hole to form a contact hole plug.

然而,随着器件集成度的提高,器件特征尺寸持续缩减,栅极长度与源漏区的尺寸都在等比例缩减,这给接触(contact)工艺带来了巨大挑战。However, as the integration of devices increases, the feature size of devices continues to shrink, and the gate length and the size of the source and drain regions are reduced in proportion, which brings great challenges to the contact process.

发明内容Summary of the invention

本发明实施例解决的问题是提供一种半导体结构及其形成方法,提升半导体结构的性能。The problem solved by the embodiments of the present invention is to provide a semiconductor structure and a method for forming the same, so as to improve the performance of the semiconductor structure.

为解决上述问题,本发明实施例提供一种半导体结构的形成方法,包括:提供基底,所述基底上形成有层间介质层,所述层间介质层内形成有露出所述基底的开口,所述开口内形成有初始栅极结构,所述初始栅极结构包括位于所述开口底部和侧壁上的初始栅介质层、保形覆盖所述初始栅介质层的初始功函数层以及位于所述初始功函数层露出的剩余所述开口中的初始栅电极层;刻蚀部分厚度的所述初始栅电极层,剩余所述初始栅电极层作为栅电极层;形成所述栅电极层后,刻蚀所述开口侧壁上的部分高度的所述初始功函数层和初始栅介质层,剩余所述初始功函数层作为功函数层,剩余所述初始栅介质层作为栅介质层;在所述栅电极层的顶部形成第一保护层;在所述功函数层和栅介质层的顶部形成第二保护层。To solve the above problems, an embodiment of the present invention provides a method for forming a semiconductor structure, comprising: providing a substrate, an interlayer dielectric layer is formed on the substrate, an opening is formed in the interlayer dielectric layer to expose the substrate, an initial gate structure is formed in the opening, the initial gate structure includes an initial gate dielectric layer located on the bottom and side walls of the opening, an initial work function layer conformally covering the initial gate dielectric layer, and an initial gate electrode layer located in the remaining opening exposed by the initial work function layer; etching a portion of the thickness of the initial gate electrode layer, and the remaining initial gate electrode layer serves as a gate electrode layer; after forming the gate electrode layer, etching a portion of the height of the initial work function layer and the initial gate dielectric layer on the side walls of the opening, and the remaining initial work function layer serves as a work function layer, and the remaining initial gate dielectric layer serves as a gate dielectric layer; forming a first protective layer on top of the gate electrode layer; and forming a second protective layer on top of the work function layer and the gate dielectric layer.

相应的,本发明实施例还提供一种半导体结构,包括:基底;层间介质层,位于所述基底上,所述层间介质层内形成有露出所述基底的开口;初始栅介质层,位于所述开口的底部和侧壁上;初始功函数层,保形覆盖于所述初始栅介质层上;栅电极层,位于所述初始功函数层露出的剩余所述开口中,所述栅电极层的顶部低于所述初始栅介质层和初始功函数层的顶部。Correspondingly, an embodiment of the present invention also provides a semiconductor structure, comprising: a substrate; an interlayer dielectric layer located on the substrate, an opening exposing the substrate being formed in the interlayer dielectric layer; an initial gate dielectric layer located on the bottom and side walls of the opening; an initial work function layer conformally covering the initial gate dielectric layer; a gate electrode layer located in the remaining opening exposed by the initial work function layer, the top of the gate electrode layer being lower than the tops of the initial gate dielectric layer and the initial work function layer.

与现有技术相比,本发明实施例的技术方案具有以下优点:Compared with the prior art, the technical solution of the embodiment of the present invention has the following advantages:

本发明实施例刻蚀部分厚度的所述初始栅电极层后,剩余所述初始栅电极层作为栅电极层,再刻蚀所述开口侧壁上的部分高度的所述初始功函数层和初始栅介质层,剩余所述初始功函数层作为功函数层,剩余所述初始栅介质层作为栅介质层,通过进行两次刻蚀工艺分别刻蚀所述初始功函数层和初始栅介质层、以及所述初始栅电极层,从而防止刻蚀所述初始栅电极层的工艺对刻蚀所述初始功函数层和初始栅电极层的工艺产生影响,有利于提高对所述初始功函数层和初始栅介质层的刻蚀速率的均一性,进而提高所述功函数层和栅介质层的高度均一性,且有利于精确控制对初始功函数层和初始栅介质层的刻蚀量,防止出现功函数层和栅介质层的高度过小的问题,进而降低因功函数层和栅介质层的顶部与所述基底的距离过近而出现漏电流、击穿等问题的概率,提升了半导体结构的性能。According to the embodiment of the present invention, after etching a partial thickness of the initial gate electrode layer, the remaining initial gate electrode layer is used as the gate electrode layer, and then the partial height of the initial work function layer and the initial gate dielectric layer on the side wall of the opening are etched, and the remaining initial work function layer is used as the work function layer, and the remaining initial gate dielectric layer is used as the gate dielectric layer. The initial work function layer, the initial gate dielectric layer, and the initial gate electrode layer are etched respectively by performing two etching processes, thereby preventing the process of etching the initial gate electrode layer from affecting the process of etching the initial work function layer and the initial gate electrode layer, which is beneficial to improving the uniformity of the etching rate of the initial work function layer and the initial gate dielectric layer, and further improving the height uniformity of the work function layer and the gate dielectric layer, and is beneficial to accurately control the etching amount of the initial work function layer and the initial gate dielectric layer, preventing the problem of the work function layer and the gate dielectric layer being too small in height, thereby reducing the probability of leakage current, breakdown, and other problems due to the close distance between the top of the work function layer and the gate dielectric layer and the substrate, thereby improving the performance of the semiconductor structure.

可选方案中,所述基底包括用于形成第一器件的第一器件区和用于形成第二器件的第二器件区,沿垂直于所述初始栅极结构侧壁的方向,所述第二器件区的初始栅电极层宽度大于所述第一器件区的初始栅电极层宽度,与所述第一器件区相比,所述第二器件区的初始栅电极层露出的面积更大,在刻蚀所述初始栅电极层的步骤中,对所述第二器件区的初始栅电极层的刻蚀速率更快,与在同一步骤中刻蚀所述初始栅电极层、初始功函数层和初始栅介质层的方案相比,本发明实施例通过进行两次刻蚀工艺分别刻蚀所述初始功函数层和初始栅介质层、以及所述初始栅电极层,有利于防止因不同器件区的初始栅电极层的被刻蚀速率不同,而导致剩余初始栅电极层所露出的初始功函数层和初始栅介质层侧壁的面积不同的问题,从而避免出现不同器件区所述初始功函数层和初始栅介质层的被刻蚀速率不同的问题;因此,本发明实施例用于提高对所述初始功函数层和初始栅介质层的刻蚀速率的均一性的效果较为显著,从而能够显著提高不同器件的功函数层和栅介质层的高度均一性。In an optional solution, the substrate includes a first device region for forming a first device and a second device region for forming a second device. In a direction perpendicular to the sidewall of the initial gate structure, the width of the initial gate electrode layer in the second device region is greater than the width of the initial gate electrode layer in the first device region. Compared with the first device region, the exposed area of the initial gate electrode layer in the second device region is larger. In the step of etching the initial gate electrode layer, the etching rate of the initial gate electrode layer in the second device region is faster. Compared with the solution of etching the initial gate electrode layer, the initial work function layer and the initial gate dielectric layer in the same step, the embodiment of the present invention performs two steps. The secondary etching process etches the initial work function layer and the initial gate dielectric layer, as well as the initial gate electrode layer, respectively, which is beneficial to preventing the problem of different areas of the initial work function layer and the initial gate dielectric layer side walls exposed by the remaining initial gate electrode layer due to different etching rates of the initial gate electrode layer in different device areas, thereby avoiding the problem of different etching rates of the initial work function layer and the initial gate dielectric layer in different device areas; therefore, the embodiment of the present invention is more effective in improving the uniformity of the etching rates of the initial work function layer and the initial gate dielectric layer, thereby significantly improving the height uniformity of the work function layer and the gate dielectric layer of different devices.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1至图3是一种半导体结构的形成方法中各步骤对应的结构示意图;1 to 3 are schematic structural diagrams corresponding to various steps in a method for forming a semiconductor structure;

图4至图9是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图;4 to 9 are schematic structural diagrams corresponding to the steps in an embodiment of a method for forming a semiconductor structure of the present invention;

图10至图13是本发明半导体结构的形成方法另一实施例中各步骤对应的结构示意图;10 to 13 are schematic structural diagrams corresponding to steps in another embodiment of a method for forming a semiconductor structure of the present invention;

图14是本发明半导体结构一实施例的结构示意图。FIG. 14 is a schematic structural diagram of an embodiment of a semiconductor structure of the present invention.

具体实施方式DETAILED DESCRIPTION

目前所形成的器件仍有性能不佳的问题。现结合一种半导体结构的形成方法分析器件性能不佳的原因。The devices currently formed still have the problem of poor performance. The reasons for the poor performance of the devices are now analyzed in combination with a method for forming a semiconductor structure.

参考图1至图3,示出了一种半导体结构的形成方法中各步骤对应的结构示意图。1 to 3 , schematic structural diagrams corresponding to various steps in a method for forming a semiconductor structure are shown.

参考图1,提供基底1,所述基底1上形成有层间介质层2,所述层间介质层2内形成有露出所述基底1的开口(未标示),所述开口内形成有初始栅极结构6,所述初始栅极结构6包括位于所述开口底部和侧壁上的初始栅介质层3、保形覆盖所述初始栅介质层3的初始功函数层4、以及位于所述初始功函数层4露出的剩余所述开口中的初始栅电极层5。Referring to Figure 1, a substrate 1 is provided, on which an interlayer dielectric layer 2 is formed, an opening (not marked) exposing the substrate 1 is formed in the interlayer dielectric layer 2, an initial gate structure 6 is formed in the opening, and the initial gate structure 6 includes an initial gate dielectric layer 3 located on the bottom and sidewalls of the opening, an initial work function layer 4 conformally covering the initial gate dielectric layer 3, and an initial gate electrode layer 5 located in the remaining opening exposed by the initial work function layer 4.

参考图2,刻蚀部分厚度的所述初始栅电极层5、以及所述开口侧壁上的部分高度的所述初始功函数层4和初始栅介质层3,剩余所述初始栅电极层5作为栅电极层9,剩余所述初始功函数层4作为所述功函数层8,剩余所述初始栅介质层3作为栅介质层7,所述栅电极层9、功函数层8、栅介质层7构成栅极结构10。Referring to Figure 2, a partial thickness of the initial gate electrode layer 5 and a partial height of the initial work function layer 4 and the initial gate dielectric layer 3 on the side wall of the opening are etched, and the remaining initial gate electrode layer 5 serves as the gate electrode layer 9, the remaining initial work function layer 4 serves as the work function layer 8, and the remaining initial gate dielectric layer 3 serves as the gate dielectric layer 7. The gate electrode layer 9, the work function layer 8, and the gate dielectric layer 7 constitute a gate structure 10.

参考图3,在所述栅极结构10的顶部上形成保护层11。3 , a protection layer 11 is formed on top of the gate structure 10 .

所述形成方法中在同一步骤中刻蚀所述初始栅电极层5、所述初始功函数层4、以及初始栅介质层3,但是,刻蚀所述初始栅电极层5的工艺步骤对刻蚀所述初始功函数层4和初始栅介质层3的工艺影响较大,例如:当对初始栅电极层5的刻蚀速率均一性较差时,在刻蚀所述初始栅电极层5的步骤中,剩余所述初始栅电极层5所露出的初始功函数层4和初始栅介质层3侧壁的面积也会有差异。In the formation method, the initial gate electrode layer 5, the initial work function layer 4, and the initial gate dielectric layer 3 are etched in the same step. However, the process step of etching the initial gate electrode layer 5 has a greater impact on the process of etching the initial work function layer 4 and the initial gate dielectric layer 3. For example, when the etching rate uniformity of the initial gate electrode layer 5 is poor, in the step of etching the initial gate electrode layer 5, the area of the side walls of the initial work function layer 4 and the initial gate dielectric layer 3 exposed by the remaining initial gate electrode layer 5 will also be different.

具体地,沿垂直于所述初始栅极结构6侧壁的方向,当初始栅电极层6的宽度越宽时,对初始栅电极层5的刻蚀速率较快,剩余所述初始栅电极层5所露出的初始功函数层4和初始栅介质层3侧壁的面积则越大,对初始功函数层4和初始栅介质层3的刻蚀速率相应也越快。Specifically, along the direction perpendicular to the side wall of the initial gate structure 6, when the width of the initial gate electrode layer 6 is wider, the etching rate of the initial gate electrode layer 5 is faster, and the area of the side walls of the initial work function layer 4 and the initial gate dielectric layer 3 exposed by the remaining initial gate electrode layer 5 is larger, and the etching rate of the initial work function layer 4 and the initial gate dielectric layer 3 is correspondingly faster.

因此,当剩余所述初始栅电极层5所露出的初始功函数层4和初始栅介质层3侧壁的面积有差异时,这容易导致对所述初始功函数层4和初始栅介质层3的刻蚀速率均一性较差,从而导致所述功函数层8和栅介质层7的高度均一性较差;而且,这还容易导致难以精确控制对所述初始功函数层4和初始栅介质层3的刻蚀量,从而容易出现功函数层8和栅介质层7的高度过小的问题,进而导致出现因功函数层8和栅介质层7的顶部与所述基底1的距离过近而出现漏电流、击穿等问题的概率较高,所形成半导体结构的性能较差。Therefore, when there is a difference in the area of the side walls of the initial work function layer 4 and the initial gate dielectric layer 3 exposed by the remaining initial gate electrode layer 5, this will easily lead to poor uniformity in the etching rate of the initial work function layer 4 and the initial gate dielectric layer 3, thereby resulting in poor uniformity in the height of the work function layer 8 and the gate dielectric layer 7; moreover, this will easily lead to difficulty in accurately controlling the etching amount of the initial work function layer 4 and the initial gate dielectric layer 3, thereby easily resulting in the problem of the height of the work function layer 8 and the gate dielectric layer 7 being too small, and further resulting in a high probability of leakage current, breakdown and other problems due to the top of the work function layer 8 and the gate dielectric layer 7 being too close to the substrate 1, and the performance of the formed semiconductor structure is poor.

为了解决所述技术问题,本发明实施例提供一种半导体结构的形成方法,包括:提供基底,所述基底上形成有层间介质层,所述层间介质层内形成有露出所述基底的开口,所述开口内形成有初始栅极结构,所述初始栅极结构包括位于所述开口底部和侧壁上的初始栅介质层、保形覆盖所述初始栅介质层的初始功函数层以及位于所述初始功函数层露出的剩余所述开口中的初始栅电极层;刻蚀部分厚度的所述初始栅电极层,剩余所述初始栅电极层作为栅电极层;形成所述栅电极层后,刻蚀所述开口侧壁上的部分高度的所述初始功函数层和初始栅介质层,剩余所述初始功函数层作为功函数层,剩余所述初始栅介质层作为栅介质层;在所述栅电极层的顶部形成第一保护层;在所述功函数层和栅介质层的顶部形成第二保护层。In order to solve the technical problem, an embodiment of the present invention provides a method for forming a semiconductor structure, comprising: providing a substrate, an interlayer dielectric layer is formed on the substrate, an opening is formed in the interlayer dielectric layer to expose the substrate, an initial gate structure is formed in the opening, the initial gate structure includes an initial gate dielectric layer located on the bottom and side walls of the opening, an initial work function layer conformally covering the initial gate dielectric layer, and an initial gate electrode layer located in the remaining opening exposed by the initial work function layer; etching a portion of the thickness of the initial gate electrode layer, and the remaining initial gate electrode layer serves as a gate electrode layer; after forming the gate electrode layer, etching a portion of the height of the initial work function layer and the initial gate dielectric layer on the side walls of the opening, and the remaining initial work function layer serves as a work function layer, and the remaining initial gate dielectric layer serves as a gate dielectric layer; forming a first protective layer on top of the gate electrode layer; and forming a second protective layer on top of the work function layer and the gate dielectric layer.

本发明实施例刻蚀部分厚度的所述初始栅电极层后,剩余所述初始栅电极层作为栅电极层,再刻蚀所述开口侧壁上的部分高度的所述初始功函数层和初始栅介质层,剩余所述初始功函数层作为功函数层,剩余所述初始栅介质层作为栅介质层,通过进行两次刻蚀工艺分别刻蚀所述初始功函数层和初始栅介质层、以及所述初始栅电极层,从而防止刻蚀所述初始栅电极层的工艺对刻蚀所述初始功函数层和初始栅电极层的工艺产生影响,有利于提高对所述初始功函数层和初始栅介质层的刻蚀速率的均一性,进而提高所述功函数层和栅介质层的高度均一性,且有利于精确控制对初始功函数层和初始栅介质层的刻蚀量,防止出现功函数层和栅介质层的高度过小的问题,进而降低因功函数层和栅介质层的顶部与所述基底的距离过近而出现漏电流、击穿等问题的概率,提升了半导体结构的性能。According to the embodiment of the present invention, after etching a partial thickness of the initial gate electrode layer, the remaining initial gate electrode layer is used as the gate electrode layer, and then the partial height of the initial work function layer and the initial gate dielectric layer on the side wall of the opening are etched, and the remaining initial work function layer is used as the work function layer, and the remaining initial gate dielectric layer is used as the gate dielectric layer. The initial work function layer, the initial gate dielectric layer, and the initial gate electrode layer are etched respectively by performing two etching processes, thereby preventing the process of etching the initial gate electrode layer from affecting the process of etching the initial work function layer and the initial gate electrode layer, which is beneficial to improving the uniformity of the etching rate of the initial work function layer and the initial gate dielectric layer, and further improving the height uniformity of the work function layer and the gate dielectric layer, and is beneficial to accurately control the etching amount of the initial work function layer and the initial gate dielectric layer, preventing the problem of the work function layer and the gate dielectric layer being too small in height, thereby reducing the probability of leakage current, breakdown, and other problems due to the close distance between the top of the work function layer and the gate dielectric layer and the substrate, thereby improving the performance of the semiconductor structure.

为使本发明实施例的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above-mentioned purposes, features and advantages of the embodiments of the present invention more obvious and understandable, specific embodiments of the present invention are described in detail below with reference to the accompanying drawings.

图4至图9是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。4 to 9 are schematic structural diagrams corresponding to the steps in an embodiment of a method for forming a semiconductor structure of the present invention.

参考图4,提供基底100,所述基底100上形成有层间介质层110,所述层间介质层110内形成有露出所述基底100的开口(未标示),所述开口内形成有初始栅极结构120,所述初始栅极结构120包括位于所述开口底部和侧壁上的初始栅介质层121、保形覆盖所述初始栅介质层121的初始功函数层122以及位于所述初始功函数层122露出的剩余所述开口中的初始栅电极层123。Referring to Figure 4, a substrate 100 is provided, on which an interlayer dielectric layer 110 is formed, an opening (not marked) exposing the substrate 100 is formed in the interlayer dielectric layer 110, an initial gate structure 120 is formed in the opening, and the initial gate structure 120 includes an initial gate dielectric layer 121 located on the bottom and sidewalls of the opening, an initial work function layer 122 conformally covering the initial gate dielectric layer 121, and an initial gate electrode layer 123 located in the remaining opening exposed by the initial work function layer 122.

所述基底100用于为后续工艺制程提供工艺平台。The substrate 100 is used to provide a process platform for subsequent process steps.

本实施例中,以所述形成的半导体结构为平面型晶体管为例,所述基底100相应仅包括衬底(未标示)。在其他实施例中,当所形成的半导体结构为鳍式场效应晶体管(FinFET)时,基底应包括衬底以及凸出于衬底的鳍部。In this embodiment, the semiconductor structure formed is a planar transistor as an example, and the substrate 100 accordingly only includes a substrate (not shown). In other embodiments, when the semiconductor structure formed is a fin field effect transistor (FinFET), the substrate should include a substrate and a fin protruding from the substrate.

本实施例中,衬底的材料为硅。在其他实施例中,衬底的材料还可以为锗、碳化硅、砷化镓或镓化铟,衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, the material of the substrate is silicon. In other embodiments, the material of the substrate may also be germanium, silicon carbide, gallium arsenide or indium gallium, and the substrate may also be a silicon on insulator substrate or a germanium on insulator substrate.

本实施例中,所述基底包括用于形成第一器件的第一器件区I和用于形成第二器件的第二器件区I,沿垂直于所述初始栅极结构120侧壁的方向,所述第二器件区II的初始栅电极层123宽度大于所述第一器件区I的初始栅电极层123宽度。也就是说,所述第二器件的关键尺寸(Critical Dimension,CD)大于所述第一器件的关键尺寸。In this embodiment, the substrate includes a first device region I for forming a first device and a second device region I for forming a second device, and along a direction perpendicular to the sidewall of the initial gate structure 120, the width of the initial gate electrode layer 123 of the second device region II is greater than the width of the initial gate electrode layer 123 of the first device region I. In other words, the critical dimension (Critical Dimension, CD) of the second device is greater than the critical dimension of the first device.

本实施例中,所述基底还包括位于所述第一器件区I和第二器件区II之间的隔离区(未标示),所述隔离区用于实现相邻器件区之间的隔离。In this embodiment, the substrate further includes an isolation region (not shown) located between the first device region I and the second device region II, and the isolation region is used to achieve isolation between adjacent device regions.

相应地,所述隔离区的基底100内还形成有隔离结构103。所述隔离结构103的材料为介电材料。具体的,所述隔离结构103的材料包括氮化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。本实施例中,所述隔离结构103的材料包括氧化硅。Correspondingly, an isolation structure 103 is also formed in the substrate 100 of the isolation region. The material of the isolation structure 103 is a dielectric material. Specifically, the material of the isolation structure 103 includes one or more of silicon nitride, silicon carbonitride, silicon carbonitride oxide, silicon nitride oxide, boron nitride and boron carbonitride. In this embodiment, the material of the isolation structure 103 includes silicon oxide.

本实施例中,所述隔离结构103为浅沟槽隔离结构(Shallow Trench Isolation,STI)。In this embodiment, the isolation structure 103 is a shallow trench isolation (STI) structure.

层间介质层110用于对相邻器件之间起到隔离作用。因此,层间介质层110的材料为绝缘材料,例如氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。本实施例中,层间介质层110的材料为氧化硅。The interlayer dielectric layer 110 is used to isolate adjacent devices. Therefore, the material of the interlayer dielectric layer 110 is an insulating material, such as one or more of silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride, and silicon carbon nitride oxide. In this embodiment, the material of the interlayer dielectric layer 110 is silicon oxide.

所述开口用于为形成所述初始栅极结构120提供空间位置。The opening is used to provide a spatial location for forming the initial gate structure 120 .

所述初始栅极结构120用于后续形成栅极结构。The initial gate structure 120 is used for subsequently forming a gate structure.

本实施例中,所述初始栅极结构120通过后栅工艺(gate last)形成,所述初始栅极结构120为金属栅结构(metal gate)。In this embodiment, the initial gate structure 120 is formed by a gate last process, and the initial gate structure 120 is a metal gate structure.

所述初始栅介质层121用于经后续刻蚀工艺后,形成栅介质层;所述初始功函数层122用于经后续刻蚀工艺后,形成功函数层;所述初始栅电极层123用于经后续刻蚀工艺后,形成栅电极层。The initial gate dielectric layer 121 is used to form a gate dielectric layer after a subsequent etching process; the initial work function layer 122 is used to form a work function layer after a subsequent etching process; and the initial gate electrode layer 123 is used to form a gate electrode layer after a subsequent etching process.

本实施例中,所述初始栅介质层121的材料为高k介质材料;其中,高k介质材料是指相对介电常数大于氧化硅相对介电常数的介质材料。具体地,所述初始栅介质层121的材料为HfO2。在其他实施例中,所述初始栅介质层的材料还可以选自ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO或Al2O3等。In this embodiment, the material of the initial gate dielectric layer 121 is a high-k dielectric material; wherein the high-k dielectric material refers to a dielectric material having a relative dielectric constant greater than that of silicon oxide. Specifically, the material of the initial gate dielectric layer 121 is HfO 2 . In other embodiments, the material of the initial gate dielectric layer may also be selected from ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO or Al 2 O 3 , etc.

另一些实施例中,所述初始栅介质层可以包括位于所述开口底部的栅氧化层、以及位于所述栅氧化层上和所述开口侧壁上的初始高k介质层。所述栅氧化层的材料可以为氧化硅或氮氧化硅。In some other embodiments, the initial gate dielectric layer may include a gate oxide layer located at the bottom of the opening and an initial high-k dielectric layer located on the gate oxide layer and on the sidewalls of the opening. The gate oxide layer may be made of silicon oxide or silicon oxynitride.

当形成NMOS晶体管时,所述初始功函数层122的材料包括铝化钛、碳化钽、铝或者碳化钛中的一种或多种;当形成PMOS晶体管时,所述初始功函数层122的材料包括氮化钛、氮化钽、碳化钛、氮化硅钽、氮化硅钛和碳化钽中的一种或多种。When an NMOS transistor is formed, the material of the initial work function layer 122 includes one or more of titanium aluminide, tantalum carbide, aluminum or titanium carbide; when a PMOS transistor is formed, the material of the initial work function layer 122 includes one or more of titanium nitride, tantalum nitride, titanium carbide, tantalum silicon nitride, titanium silicon nitride and tantalum carbide.

本实施例中,所述初始栅电极层123的材料为钨。其他实施例中,所述初始栅电极层的材料还可以为镁钨合金、Al、Cu、Ag、Au、Pt、Ni或Ti等。In this embodiment, the material of the initial gate electrode layer 123 is tungsten. In other embodiments, the material of the initial gate electrode layer can also be magnesium tungsten alloy, Al, Cu, Ag, Au, Pt, Ni or Ti.

本实施例中,所述初始栅极结构120的侧壁上还形成有侧墙101。所述侧墙101用于对所述初始栅极结构120的侧壁起到保护作用,所述侧墙101还用于定义源漏掺杂区的形成区域。In this embodiment, a sidewall 101 is formed on the sidewall of the initial gate structure 120. The sidewall 101 is used to protect the sidewall of the initial gate structure 120, and is also used to define the formation area of the source and drain doping regions.

所述侧墙101的材料可以为氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮氧化硅、碳氧化硅、氮化硼和碳氮化硼中的一种或多种,侧墙101可以为单层结构或叠层结构。本实施例中,侧墙101为单层结构,侧墙101的材料为氮化硅。The material of the sidewall 101 can be one or more of silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride oxide, silicon oxycarbide, boron nitride and boron carbonitride, and the sidewall 101 can be a single-layer structure or a stacked structure. In this embodiment, the sidewall 101 is a single-layer structure, and the material of the sidewall 101 is silicon nitride.

本实施例中,所述初始栅极结构120两侧的基底100内还形成有源漏掺杂区125。相应地,所述层间介质层110还覆盖所述源漏掺杂区125。In this embodiment, source-drain doped regions 125 are further formed in the substrate 100 on both sides of the initial gate structure 120 . Accordingly, the interlayer dielectric layer 110 also covers the source-drain doped regions 125 .

当形成NMOS晶体管时,所述源漏掺杂区125包括掺杂有N型离子的应力层,所述应力层的材料为Si或SiC,所述应力层为NMOS晶体管的沟道区提供拉应力作用,从而有利于提高NMOS晶体管的载流子迁移率,其中,所述N型离子为P离子、As离子或Sb离子;当形成PMOS晶体管时,所述源漏掺杂区125包括掺杂有P型离子的应力层,所述应力层的材料为Si或SiGe,所述应力层为PMOS晶体管的沟道区提供压应力作用,从而有利于提高PMOS晶体管的载流子迁移率,其中,所述P型离子为B离子、Ga离子或In离子。When an NMOS transistor is formed, the source-drain doped region 125 includes a stress layer doped with N-type ions, the material of the stress layer is Si or SiC, and the stress layer provides tensile stress for the channel region of the NMOS transistor, thereby facilitating the improvement of the carrier mobility of the NMOS transistor, wherein the N-type ions are P ions, As ions or Sb ions; when a PMOS transistor is formed, the source-drain doped region 125 includes a stress layer doped with P-type ions, the material of the stress layer is Si or SiGe, and the stress layer provides compressive stress for the channel region of the PMOS transistor, thereby facilitating the improvement of the carrier mobility of the PMOS transistor, wherein the P-type ions are B ions, Ga ions or In ions.

本实施例中,所述基底100上还形成有接触孔刻蚀阻挡层(contact etch stoplayer)102,保形覆盖所述源漏掺杂区125、所述隔离结构103、以及侧墙101侧壁。所述层间介质层110覆盖所述接触孔刻蚀阻挡层102。In this embodiment, a contact etch stop layer 102 is formed on the substrate 100 to conformally cover the source/drain doped regions 125 , the isolation structure 103 , and the sidewalls of the spacer 101 . The interlayer dielectric layer 110 covers the contact etch stop layer 102 .

所述接触孔刻蚀阻挡层102用于定义后续接触孔刻蚀工艺中的刻蚀停止位置,从而减小接触孔刻蚀工艺对源漏掺杂区125的损伤。The contact hole etching barrier layer 102 is used to define an etching stop position in a subsequent contact hole etching process, thereby reducing damage to the source-drain doped region 125 caused by the contact hole etching process.

本实施例中,接触孔刻蚀阻挡层102的材料为氮化硅。氮化硅材料的致密度较大,硬度较高,从而保证所述接触孔刻蚀阻挡层102能够起到定义后续接触孔刻蚀工艺中刻蚀停止位置的作用。In this embodiment, the material of the contact hole etching stop layer 102 is silicon nitride. Silicon nitride has a high density and hardness, thereby ensuring that the contact hole etching stop layer 102 can play a role in defining the etching stop position in the subsequent contact hole etching process.

参考图5,刻蚀部分厚度的所述初始栅电极层123(如图4所示),剩余所述初始栅电极层123作为栅电极层133。5 , a portion of the initial gate electrode layer 123 (as shown in FIG. 4 ) is etched, and the remaining initial gate electrode layer 123 serves as a gate electrode layer 133 .

所述栅电极层133用于将栅极结构的电性引出,从而实现后续栅极结构与外部电路或其他互连结构的电连接。The gate electrode layer 133 is used to electrically lead out the gate structure, thereby achieving subsequent electrical connection between the gate structure and an external circuit or other interconnection structures.

通过先刻蚀部分厚度的所述初始栅电极层123,后续再刻蚀所述开口侧壁上的部分高度的所述初始功函数层122和初始栅介质层121,剩余所述初始功函数层122作为功函数层,剩余所述初始栅介质层121作为栅介质层,从而将刻蚀所述初始栅电极层123的步骤、与刻蚀所述初始功函数层122和初始栅介质层121的步骤分开,防止刻蚀所述初始栅电极层123的工艺对刻蚀所述初始功函数层122和初始栅电极层121的工艺产生影响,例如:防止对所述初始栅电极层123的刻蚀速率不同,而出现剩余初始栅电极层123侧壁露出的初始功函数层122和初始栅介质121的面积不同的问题,从而有利于提高后续对所述初始功函数层122和初始栅介质层121的刻蚀速率的均一性,进而提高功函数层和栅介质层的高度均一性。By first etching a partial thickness of the initial gate electrode layer 123, and then etching a partial height of the initial work function layer 122 and the initial gate dielectric layer 121 on the side wall of the opening, the remaining initial work function layer 122 is used as the work function layer, and the remaining initial gate dielectric layer 121 is used as the gate dielectric layer, thereby separating the step of etching the initial gate electrode layer 123 from the step of etching the initial work function layer 122 and the initial gate dielectric layer 121, and preventing the process of etching the initial gate electrode layer 123 from affecting the process of etching the initial work function layer 122 and the initial gate electrode layer 121, for example: preventing the problem of different areas of the initial work function layer 122 and the initial gate dielectric 121 exposed on the side wall of the remaining initial gate electrode layer 123 due to different etching rates of the initial gate electrode layer 123, thereby facilitating improving the uniformity of the subsequent etching rates of the initial work function layer 122 and the initial gate dielectric layer 121, and further improving the height uniformity of the work function layer and the gate dielectric layer.

而且,本实施例通过先刻蚀部分厚度的所述初始栅电极层123,有利于精确控制对初始功函数层122和初始栅介质层121的刻蚀量,防止出现功函数层和栅介质层的高度过小的问题,从而降低因功函数层和栅介质层的顶部与所述基底100的距离过近而出现漏电流、击穿等问题的概率,进而提升了半导体结构的性能。Moreover, this embodiment helps to accurately control the etching amount of the initial work function layer 122 and the initial gate dielectric layer 121 by first etching a portion of the thickness of the initial gate electrode layer 123, thereby preventing the problem of the work function layer and the gate dielectric layer being too small in height, thereby reducing the probability of leakage current, breakdown and other problems caused by the top of the work function layer and the gate dielectric layer being too close to the substrate 100, thereby improving the performance of the semiconductor structure.

本实施例中,所述基底100包括第一器件区I和第二器件区I,沿垂直于所述开口侧壁的方向,所述第二器件区II的初始栅电极层123宽度大于所述第一器件区II的初始栅电极层123宽度。In this embodiment, the substrate 100 includes a first device region I and a second device region II. Along a direction perpendicular to the sidewall of the opening, the width of the initial gate electrode layer 123 of the second device region II is greater than the width of the initial gate electrode layer 123 of the first device region II.

与所述第一器件区I相比,所述第二器件区II的初始栅电极层123露出的面积更大,在刻蚀所述初始栅电极层123的步骤中,对所述第二器件区II的初始栅电极层123的刻蚀速率更快,本实施例通过进行两次刻蚀工艺分别刻蚀所述初始功函数层122和初始栅介质层121、以及所述初始栅电极层123,有利于防止因不同器件区的初始栅电极层123的被刻蚀速率不同,而导致剩余初始栅电极层123所露出的初始功函数层122和初始栅介质层121侧壁的面积不同的问题,从而避免出现不同器件区所述初始功函数层122和初始栅介质层121的被刻蚀速率不同的问题;因此,本实施例提高对所述初始功函数层122和初始栅介质层121的刻蚀速率的均一性的效果较为显著,从而显著提高不同器件的功函数层和栅介质层的高度均一性。Compared with the first device area I, the initial gate electrode layer 123 of the second device area II is exposed in a larger area. In the step of etching the initial gate electrode layer 123, the etching rate of the initial gate electrode layer 123 of the second device area II is faster. This embodiment performs two etching processes to respectively etch the initial work function layer 122 and the initial gate dielectric layer 121, as well as the initial gate electrode layer 123, which is beneficial to prevent the problem of different areas of the side walls of the initial work function layer 122 and the initial gate dielectric layer 121 exposed by the remaining initial gate electrode layer 123 due to the different etching rates of the initial gate electrode layer 123 in different device areas, thereby avoiding the problem of different etching rates of the initial work function layer 122 and the initial gate dielectric layer 121 in different device areas; therefore, this embodiment has a more significant effect on improving the uniformity of the etching rates of the initial work function layer 122 and the initial gate dielectric layer 121, thereby significantly improving the height uniformity of the work function layer and the gate dielectric layer of different devices.

本实施例中,采用干法刻蚀工艺刻蚀部分厚度的所述初始栅电极层123。干法刻蚀工艺为半导体工艺中常用于刻蚀金属材料的工艺,且干法刻蚀工艺的剖面控制性较好,同时,采用干法刻蚀工艺还有利于提高对初始栅电极层123的刻蚀效率、以及精确控制对初始栅电极层123的刻蚀量。In this embodiment, a dry etching process is used to etch a portion of the thickness of the initial gate electrode layer 123. The dry etching process is a process commonly used in semiconductor processes for etching metal materials, and the dry etching process has good cross-section controllability. At the same time, the use of the dry etching process is also conducive to improving the etching efficiency of the initial gate electrode layer 123 and accurately controlling the etching amount of the initial gate electrode layer 123.

本实施例中,所述初始栅电极层123的材料为钨,所述干法刻蚀工艺的刻蚀气体包括CF4和Cl2In this embodiment, the material of the initial gate electrode layer 123 is tungsten, and the etching gas of the dry etching process includes CF 4 and Cl 2 .

CF4和Cl2为半导体工艺中刻蚀初始栅电极层123的常用刻蚀气体,工艺兼容性较高,且在所述干法刻蚀工艺的过程中,易于通过调整所述干法刻蚀工艺中的刻蚀气体比例、工艺压强、工艺温度等参数,使得对所述初始栅电极层123和所述初始栅介质层121的刻蚀选择比、以及对所述初始栅电极层123和所述初始功函数层122的刻蚀选择比均较大,从而可以采用无掩膜刻蚀的方式刻蚀初始栅电极层123,同时对初始栅介质层121和初始功函数层122的损伤小。 CF4 and Cl2 are commonly used etching gases for etching the initial gate electrode layer 123 in semiconductor processes, and have high process compatibility. In the process of the dry etching process, it is easy to adjust the etching gas ratio, process pressure, process temperature and other parameters in the dry etching process so that the etching selectivity ratio between the initial gate electrode layer 123 and the initial gate dielectric layer 121, and the etching selectivity ratio between the initial gate electrode layer 123 and the initial work function layer 122 are both large, so that the initial gate electrode layer 123 can be etched in a maskless etching manner, and at the same time, the damage to the initial gate dielectric layer 121 and the initial work function layer 122 is small.

参考图6至图7,在所述栅电极层133的顶部形成第一保护层112(如图7所示)。6 and 7 , a first protection layer 112 is formed on the top of the gate electrode layer 133 (as shown in FIG. 7 ).

所述第一保护层112用于对所述栅电极层133的顶部起到保护作用,在后续形成露出所述源漏掺杂区125的接触孔的自对准刻蚀工艺中,所述第一保护层112还能够起到定义自对准刻蚀工艺的停止位置的作用,从而防止所述刻蚀工艺对所述栅电极层133产生损耗,进而在后续形成接触孔插塞后,防止所述接触孔插塞与所述栅电极层133产生桥接的问题。The first protective layer 112 is used to protect the top of the gate electrode layer 133. In the subsequent self-aligned etching process for forming contact holes to expose the source and drain doping regions 125, the first protective layer 112 can also define the stop position of the self-aligned etching process, thereby preventing the etching process from causing damage to the gate electrode layer 133, and further preventing the contact hole plug from bridging the gate electrode layer 133 after the subsequent formation of the contact hole plug.

本实施例中,在刻蚀所述开口侧壁上的部分高度的所述初始功函数层122和初始栅介质层121之前,形成所述第一保护层112。In this embodiment, the first protection layer 112 is formed before etching a portion of the height of the initial work function layer 122 and the initial gate dielectric layer 121 on the sidewall of the opening.

本实施例中,在所述栅电极层133的顶部形成第一保护层112的步骤中,所述第一保护层112露出所述初始功函数层122和初始栅介质层121的顶部,且所述第一保护层112覆盖所述栅电极层133露出的初始功函数层122的侧壁,从而使所述第一保护层112能够作为后续刻蚀所述初始功函数层122和初始栅介质层121的刻蚀掩膜,有利于简化工艺流程,提高工艺整合度。In the present embodiment, in the step of forming the first protective layer 112 on the top of the gate electrode layer 133, the first protective layer 112 exposes the top of the initial work function layer 122 and the initial gate dielectric layer 121, and the first protective layer 112 covers the side walls of the initial work function layer 122 exposed by the gate electrode layer 133, so that the first protective layer 112 can be used as an etching mask for subsequent etching of the initial work function layer 122 and the initial gate dielectric layer 121, which is beneficial to simplify the process flow and improve process integration.

而且,在形成所述第一保护层112后,所述第一保护层112覆盖所述栅电极层133露出的初始功函数层122的侧壁,所述第一器件区I和第二器件区II的第一保护层112所露出的初始功函数层122、初始栅介质层121的面积相同,从而显著提高后续对不同器件区的初始功函数层122和初始栅介质层121的刻蚀速率均一性。Moreover, after forming the first protective layer 112, the first protective layer 112 covers the side walls of the initial work function layer 122 exposed by the gate electrode layer 133, and the areas of the initial work function layer 122 and the initial gate dielectric layer 121 exposed by the first protective layer 112 in the first device area I and the second device area II are the same, thereby significantly improving the subsequent uniformity of the etching rate of the initial work function layer 122 and the initial gate dielectric layer 121 in different device areas.

本实施例中,所述第一保护层112的材料为氮化硅。氮化硅的硬度和致密度均比较大,有利于提高所述第一保护层112对所述栅电极层133的保护作用。In this embodiment, the material of the first protective layer 112 is silicon nitride. Silicon nitride has relatively high hardness and density, which is beneficial to improving the protective effect of the first protective layer 112 on the gate electrode layer 133.

在其他实施例中,所述第一保护层的材料还可以为氧化硅或多晶硅。In other embodiments, the material of the first protective layer may also be silicon oxide or polysilicon.

本实施例中,形成所述第一保护层112的步骤包括:如图6所示,形成覆盖所述栅电极层133、初始功函数层122和初始栅介质层的121的第一保护材料层111;如图7所示,采用平坦化工艺,去除高于所述初始功函数层122和初始栅介质层121顶部的第一保护材料层111,位于所述栅电极层133顶部的剩余所述第一保护材料层111作为所述第一保护层112。In this embodiment, the step of forming the first protective layer 112 includes: as shown in Figure 6, forming a first protective material layer 111 covering the gate electrode layer 133, the initial work function layer 122 and the initial gate dielectric layer 121; as shown in Figure 7, using a planarization process to remove the first protective material layer 111 above the top of the initial work function layer 122 and the initial gate dielectric layer 121, and the remaining first protective material layer 111 located on the top of the gate electrode layer 133 is used as the first protective layer 112.

本实施例中,采用原子层沉积(atomic layer deposition,ALD)工艺形成所述第一保护材料层111。In this embodiment, the first protective material layer 111 is formed by an atomic layer deposition (ALD) process.

原子层沉积工艺的间隙填充性能和阶梯覆盖能力较好,从而提高所述第一保护材料层111的覆盖能力,而且,原子层沉积工艺包括进行多次的原子层沉积循环,以形成所需厚度的膜层,有利于提高所述第一保护材料层111的厚度均一性和致密度,同时使所述第一保护材料层111的厚度能够得到精确控制,相应有利于提高第一保护层112的形成质量、精确控制第一保护层112的厚度。The atomic layer deposition process has good gap filling performance and step coverage capability, thereby improving the coverage capability of the first protective material layer 111. Moreover, the atomic layer deposition process includes multiple atomic layer deposition cycles to form a film layer of desired thickness, which is beneficial to improving the thickness uniformity and density of the first protective material layer 111, while enabling the thickness of the first protective material layer 111 to be precisely controlled, which is correspondingly beneficial to improving the formation quality of the first protective layer 112 and precisely controlling the thickness of the first protective layer 112.

原子层沉积工艺的阶梯覆盖能力较好,因此,本实施中,所述第一保护材料层111保形覆盖所述栅电极层133、层间介质层110、以及初始栅介质层121和初始功函数层122的顶部。The atomic layer deposition process has good step coverage capability. Therefore, in this embodiment, the first protective material layer 111 conformally covers the gate electrode layer 133 , the interlayer dielectric layer 110 , and the top of the initial gate dielectric layer 121 and the initial work function layer 122 .

具体地,所述第一器件区I的栅电极层133的宽度较小,在形成所述第一保护材料层111的步骤中,随着沉积材料厚度的增加,位于所述第一器件区I初始功函数层132侧壁上的第一保护材料层111逐渐接触,从而能够将第一器件区I所述栅电极层133露出的剩余开口填充满。Specifically, the width of the gate electrode layer 133 of the first device area I is relatively small. In the step of forming the first protective material layer 111, as the thickness of the deposited material increases, the first protective material layer 111 located on the side wall of the initial work function layer 132 of the first device area I gradually contacts, thereby being able to fill the remaining opening exposed by the gate electrode layer 133 of the first device area I.

本实施例中,所述第二器件区II的栅电极层133的宽度较大,在形成所述第一保护材料层111的步骤中,位于所述第二器件区II初始功函数层132侧壁上的第一保护材料层111难以逐渐接触,因此,本实施例中,所形成的第一保护材料层111的厚度较大,从而使位于所述第二器件区II栅电极层133顶部上的第一保护材料层111能将剩余开口填满,为后续平坦化工艺做准备。In the present embodiment, the width of the gate electrode layer 133 of the second device region II is relatively large. In the step of forming the first protective material layer 111, the first protective material layer 111 located on the side wall of the initial work function layer 132 in the second device region II is difficult to gradually contact. Therefore, in the present embodiment, the thickness of the formed first protective material layer 111 is relatively large, so that the first protective material layer 111 located on the top of the gate electrode layer 133 in the second device region II can fill the remaining opening to prepare for the subsequent planarization process.

所述平坦化工艺可以为化学机械研磨工艺或干法刻蚀工艺。本实施例中,采用干法刻蚀工艺进行所述平坦化工艺。干法刻蚀工艺的工艺控制性和剖面控制性较好,有利于精确控制对所述第一保护材料层111的刻蚀量,同时还有利于提高刻蚀效率。The planarization process may be a chemical mechanical polishing process or a dry etching process. In this embodiment, the planarization process is performed by a dry etching process. The dry etching process has good process controllability and profile controllability, which is conducive to accurately controlling the etching amount of the first protective material layer 111 and also helps to improve the etching efficiency.

本实施例中,以所述第一保护层112将栅电极层133露出的剩余开口填满为例。在其他实施例中,根据实际工艺,所述第一保护层也可以不用将剩余开口填满,仅需露出初始功函数层和初始栅介质层的顶部,且覆盖栅电极层露出的初始功函数层侧壁即可。In this embodiment, the first protective layer 112 is used as an example to fill the remaining opening exposed by the gate electrode layer 133. In other embodiments, according to the actual process, the first protective layer may not fill the remaining opening, but only needs to expose the top of the initial work function layer and the initial gate dielectric layer, and cover the side wall of the initial work function layer exposed by the gate electrode layer.

在另一些实施例中,还可以在刻蚀所述开口侧壁上的部分高度的初始功函数层和初始栅介质层之后,在所述栅电极层的顶部形成第一保护层。In some other embodiments, after etching a portion of the height of the initial work function layer and the initial gate dielectric layer on the sidewalls of the opening, a first protection layer may be formed on top of the gate electrode layer.

参考图8,形成所述栅电极层133后,刻蚀所述开口侧壁上的部分高度的所述初始功函数层122和初始栅介质层121,剩余所述初始功函数层122作为功函数层132,剩余所述初始栅介质层121作为栅介质层131。Referring to Figure 8, after the gate electrode layer 133 is formed, the initial work function layer 122 and the initial gate dielectric layer 121 are etched to a partial height on the side wall of the opening, and the remaining initial work function layer 122 serves as the work function layer 132, and the remaining initial gate dielectric layer 121 serves as the gate dielectric layer 131.

所述功函数层132用于调节器件的功函数值,进而调节器件的阈值电压;所述栅介质层131用于对栅极结构和基底100起到隔离作用。The work function layer 132 is used to adjust the work function value of the device, and further adjust the threshold voltage of the device; the gate dielectric layer 131 is used to isolate the gate structure and the substrate 100.

所述栅介质层131、功函数层132和栅电极层133构成栅极结构130,所述栅极结构130用于在器件工作时控制导电沟道的开启或关断。The gate dielectric layer 131 , the work function layer 132 and the gate electrode layer 133 form a gate structure 130 , and the gate structure 130 is used to control the opening or closing of the conductive channel when the device is working.

通过进行两次刻蚀工艺分别刻蚀所述初始功函数层122和初始栅介质层121、以及所述初始栅电极层123,从而防止刻蚀初始栅电极层123的工艺步骤对刻蚀初始功函数层122和初始栅电极层121的工艺产生影响,有利于提高对所述初始功函数层122和初始栅介质层121的刻蚀速率的均一性,进而提高功函数层132和栅介质层131的高度均一性,且有利于精确控制对初始功函数层122和初始栅介质层121的刻蚀量,防止出现功函数层132和栅介质层131的高度过小的问题,进而降低因功函数层132和栅介质层131的顶部与基底100的距离过近而出现漏电流、击穿等问题的概率,提升了半导体结构的性能。By performing two etching processes to respectively etch the initial work function layer 122 and the initial gate dielectric layer 121, and the initial gate electrode layer 123, the process step of etching the initial gate electrode layer 123 is prevented from affecting the process of etching the initial work function layer 122 and the initial gate electrode layer 121, which is beneficial to improving the uniformity of the etching rate of the initial work function layer 122 and the initial gate dielectric layer 121, thereby improving the height uniformity of the work function layer 132 and the gate dielectric layer 131, and is beneficial to accurately control the etching amount of the initial work function layer 122 and the initial gate dielectric layer 121, preventing the problem of the work function layer 132 and the gate dielectric layer 131 being too small, thereby reducing the probability of leakage current, breakdown and other problems caused by the top of the work function layer 132 and the gate dielectric layer 131 being too close to the substrate 100, thereby improving the performance of the semiconductor structure.

本实施例中,所述基底100包括第一器件区I和第二器件区II,沿垂直于所述开口侧壁的方向,所述第二器件区II的初始栅电极层123宽度大于所述第一器件区II的初始栅电极层123宽度,因此,本实施例能够显著提高对所述初始功函数层122和初始栅介质层121的刻蚀速率的均一性,从而显著提高不同器件的功函数层132和栅介质层131的高度均一性。In this embodiment, the substrate 100 includes a first device region I and a second device region II. Along the direction perpendicular to the side wall of the opening, the width of the initial gate electrode layer 123 of the second device region II is greater than the width of the initial gate electrode layer 123 of the first device region II. Therefore, this embodiment can significantly improve the uniformity of the etching rate of the initial work function layer 122 and the initial gate dielectric layer 121, thereby significantly improving the height uniformity of the work function layer 132 and the gate dielectric layer 131 of different devices.

具体地,所述第一保护层112露出所述初始功函数层122和初始栅介质层121的顶部,且覆盖所述栅电极层133露出的初始功函数层122侧壁,因此,刻蚀所述开口侧壁上部分高度的初始功函数层122和初始栅介质层121的步骤中,所露出的初始功函数层122和初始栅介质层121的面积相同,从而保证对初始功函数层122和初始栅介质层121刻蚀速率均一性较好。Specifically, the first protective layer 112 exposes the top of the initial work function layer 122 and the initial gate dielectric layer 121, and covers the side walls of the initial work function layer 122 exposed by the gate electrode layer 133. Therefore, in the step of etching the initial work function layer 122 and the initial gate dielectric layer 121 at a partial height of the upper side walls of the opening, the exposed areas of the initial work function layer 122 and the initial gate dielectric layer 121 are the same, thereby ensuring that the etching rates of the initial work function layer 122 and the initial gate dielectric layer 121 are uniform.

本实施例中,在所述栅电极层133的顶部形成所述第一保护层112后,刻蚀所述开口侧壁上的初始功函数层122和初始栅介质层121。In this embodiment, after the first protection layer 112 is formed on the top of the gate electrode layer 133 , the initial work function layer 122 and the initial gate dielectric layer 121 on the sidewalls of the opening are etched.

因此,以所述第一保护层112为掩膜,刻蚀所述开口侧壁上部分高度的初始功函数层122和初始栅介质层121。Therefore, the initial work function layer 122 and the initial gate dielectric layer 121 are etched to a certain height of the upper sidewall of the opening using the first protection layer 112 as a mask.

相应地,形成所述栅极结构130后,所述栅极结构130与所述第一保护层112、层间介质层110围成凹槽200。Correspondingly, after the gate structure 130 is formed, the gate structure 130 , the first protection layer 112 , and the interlayer dielectric layer 110 form a groove 200 .

本实施例中,采用干法刻蚀工艺刻蚀所述初始功函数层122和初始栅介质层121。干法刻蚀工艺的工艺控制性和剖面控制性较好,有利于精确控制对初始功函数层122和初始栅介质层121的刻蚀量,使所述功函数层132和栅介质层131的高度满足工艺要求,同时还有利于提高刻蚀效率。In this embodiment, a dry etching process is used to etch the initial work function layer 122 and the initial gate dielectric layer 121. The dry etching process has good process controllability and profile controllability, which is conducive to accurately controlling the etching amount of the initial work function layer 122 and the initial gate dielectric layer 121, so that the height of the work function layer 132 and the gate dielectric layer 131 meets the process requirements, and is also conducive to improving the etching efficiency.

具体地,采用干法刻蚀工艺刻蚀所述初始功函数层122和初始栅介质层121。所述干法刻蚀工艺的主刻蚀气体包括CF4和Cl2Specifically, a dry etching process is used to etch the initial work function layer 122 and the initial gate dielectric layer 121. The main etching gas of the dry etching process includes CF 4 and Cl 2 .

干法刻蚀工艺易于实现各向异性的刻蚀,从而在刻蚀部分高度的所述初始功函数层122和初始栅介质层121的过程中,降低对其他膜层结构(例如:栅电极层133)产生消耗的概率,而且,在所述干法刻蚀工艺中,也易于通过调整刻蚀气体的比例、工艺压强、以及工艺温度等工艺参数,增大对初始功函数层122和初始栅介质层121与栅电极层133的刻蚀选择比;此外,采用干法刻蚀工艺还有利于精确控制对初始功函数层122和初始栅介质层121的刻蚀量、以及提高刻蚀效率,从而使功函数层132和栅介质层131的高度满足工艺需求。The dry etching process is easy to achieve anisotropic etching, thereby reducing the probability of consuming other film layer structures (for example, the gate electrode layer 133) during the process of etching the initial work function layer 122 and the initial gate dielectric layer 121 of a partial height. Moreover, in the dry etching process, it is also easy to increase the etching selectivity of the initial work function layer 122 and the initial gate dielectric layer 121 to the gate electrode layer 133 by adjusting process parameters such as the proportion of etching gas, process pressure, and process temperature. In addition, the use of the dry etching process is also conducive to accurately controlling the etching amount of the initial work function layer 122 and the initial gate dielectric layer 121, and improving the etching efficiency, so that the height of the work function layer 132 and the gate dielectric layer 131 meets the process requirements.

本实施例中,以所述功函数层132和栅介质层131的顶部低于所述栅电极层133的顶部为例。在另一些实施例中,根据工艺需求,所述功函数层和栅介质层的顶部还可以与栅电极层的顶部相齐平。In this embodiment, the top of the work function layer 132 and the gate dielectric layer 131 is taken as an example to be lower than the top of the gate electrode layer 133. In other embodiments, according to process requirements, the top of the work function layer and the gate dielectric layer may also be flush with the top of the gate electrode layer.

参考图9,在所述功函数层132和栅介质层131的顶部形成第二保护层113。9 , a second protection layer 113 is formed on top of the work function layer 132 and the gate dielectric layer 131 .

所述第二保护层113用于对所述功函数层132和栅介质层131的顶部起到保护作用,在后续形成露出所述源漏掺杂区125的接触孔的自对准刻蚀工艺中,所述第二保护层113与第一保护层112共同起到定义自对准刻蚀工艺的停止位置的作用,从而防止所述刻蚀工艺对栅极结构130产生损耗,在后续形成接触孔插塞后,防止所述接触孔插塞与所述栅极结构130产生桥接的问题。The second protective layer 113 is used to protect the work function layer 132 and the top of the gate dielectric layer 131. In the subsequent self-aligned etching process for forming contact holes to expose the source and drain doped regions 125, the second protective layer 113 and the first protective layer 112 jointly define the stop position of the self-aligned etching process, thereby preventing the etching process from causing damage to the gate structure 130, and preventing the contact hole plug from bridging the gate structure 130 after the subsequent formation of the contact hole plug.

本实施例中,所述第二保护层113的材料为氮化硅。In this embodiment, the material of the second protection layer 113 is silicon nitride.

本实施例中,所述栅极结构130与所述第一保护层112、层间介质层110围成凹槽200(如图8所示),因此,填充所述凹槽200,形成位于所述功函数层132和栅介质层131的顶部的第二保护层113。In this embodiment, the gate structure 130 and the first protective layer 112 and the interlayer dielectric layer 110 form a groove 200 (as shown in Figure 8), so the groove 200 is filled to form a second protective layer 113 located on top of the work function layer 132 and the gate dielectric layer 131.

具体地,形成所述第二保护层113的步骤包括:在所述凹槽200中形成第二保护材料层(图未示),所述第二保护材料层还覆盖所述第一保护层112;采用平坦化工艺去除高于所述第一保护层112顶部的所述第二保护材料层,剩余所述第二保护材料层作为所述第二保护层113。Specifically, the step of forming the second protective layer 113 includes: forming a second protective material layer (not shown) in the groove 200, and the second protective material layer also covers the first protective layer 112; using a planarization process to remove the second protective material layer above the top of the first protective layer 112, and the remaining second protective material layer serves as the second protective layer 113.

本实施例中,采用原子层沉积工艺形成所述第二保护材料层。原子层沉积工艺的间隙填充性能和阶梯覆盖能力较好,从而提高所述第二保护材料层在所述凹槽200底部和侧壁的覆盖能力,而且,原子层沉积工艺包括进行多次的原子层沉积循环,以形成所需厚度的膜层,有利于提高所述第二保护材料层的厚度均一性和致密度,同时使所述第二保护材料层的厚度能够得到精确控制,相应有利于提高第二保护层113的形成质量、精确控制第二保护层113的厚度。In this embodiment, the second protective material layer is formed by an atomic layer deposition process. The atomic layer deposition process has good gap filling performance and step coverage, thereby improving the coverage of the second protective material layer at the bottom and sidewall of the groove 200. Moreover, the atomic layer deposition process includes performing multiple atomic layer deposition cycles to form a film layer of the desired thickness, which is beneficial to improving the thickness uniformity and density of the second protective material layer, and at the same time enables the thickness of the second protective material layer to be accurately controlled, which is correspondingly beneficial to improving the formation quality of the second protective layer 113 and accurately controlling the thickness of the second protective layer 113.

所述凹槽200的开口宽度较小,在沉积所述第二保护材料层的步骤中,随着沉积材料厚度的增加,位于所述凹槽200侧壁上的第二保护材料层逐渐接触,从而使第二保护材料层填充满所述凹槽200。The opening width of the groove 200 is small. In the step of depositing the second protective material layer, as the thickness of the deposited material increases, the second protective material layer on the side wall of the groove 200 gradually contacts, so that the second protective material layer fills the groove 200.

本实施例中,采用化学机械研磨工艺进行所述平坦化工艺,有利于提高第二保护层113的顶面平坦度。具体地,采用终点检测(EPD)的方式,以所述第二保护层113的顶部作为研磨停止位置。In this embodiment, the planarization process is performed using a chemical mechanical polishing process, which is beneficial to improving the flatness of the top surface of the second protective layer 113. Specifically, an endpoint detection (EPD) method is used, with the top of the second protective layer 113 as the polishing stop position.

在其他实施例中,也可以采用干法刻蚀工艺进行所述平坦化工艺。In other embodiments, a dry etching process may also be used to perform the planarization process.

本实施例中,以在形成第一保护层112之后,刻蚀所述开口侧壁上的部分高度的所述初始功函数层122和初始栅介质层121为例,因此,在形成第一保护层112之后,形成所述第二保护层113。In this embodiment, after forming the first protective layer 112 , etching a portion of the height of the initial work function layer 122 and the initial gate dielectric layer 121 on the sidewall of the opening is taken as an example. Therefore, after forming the first protective layer 112 , the second protective layer 113 is formed.

参考图10至图13,示出了本发明半导体结构的形成方法另一实施例中各步骤对应的结构示意图。10 to 13 , schematic structural diagrams corresponding to the steps in another embodiment of the method for forming a semiconductor structure of the present invention are shown.

本发明实施例与前一实施例的相同之处在此不再赘述,本发明与前一实施例的不同之处在于,在刻蚀开口侧壁上的部分高度的所述初始功函数层和初始栅介质层之后,在所述栅电极层的顶部形成第一保护层。The similarities between the embodiment of the present invention and the previous embodiment are not repeated here. The difference between the present invention and the previous embodiment is that after etching the initial work function layer and the initial gate dielectric layer of a partial height on the side wall of the opening, a first protective layer is formed on the top of the gate electrode layer.

通过在刻蚀开口侧壁上的部分高度的所述初始功函数层和初始栅介质层之后,形成所述第一保护层,有利于防止所述第一保护层在刻蚀初始功函数层和初始栅介质层的步骤中受到损伤,从而提高使第一保护层的形成质量较好,进而保障所述第一保护层在后续自对准接触刻蚀工艺中对栅电极层的保护作用。By forming the first protective layer after etching the initial work function layer and the initial gate dielectric layer of a partial height on the side wall of the opening, it is beneficial to prevent the first protective layer from being damaged during the step of etching the initial work function layer and the initial gate dielectric layer, thereby improving the formation quality of the first protective layer, and further ensuring the protective effect of the first protective layer on the gate electrode layer in the subsequent self-aligned contact etching process.

参考图10,形成所述栅电极层233后,刻蚀所述开口侧壁上的部分高度的所述初始功函数层222和初始栅介质层221之前,还包括:在所述栅电极层233的顶部上形成牺牲层215,所述牺牲层215露出所述初始功函数层222和初始栅介质层221的顶部,且所述牺牲层215覆盖所述栅电极层233所露出的初始功函数层222的侧壁。Referring to Figure 10, after the gate electrode layer 233 is formed, before etching the initial work function layer 222 and the initial gate dielectric layer 221 at a partial height on the side wall of the opening, it also includes: forming a sacrificial layer 215 on the top of the gate electrode layer 233, the sacrificial layer 215 exposing the top of the initial work function layer 222 and the initial gate dielectric layer 221, and the sacrificial layer 215 covers the side wall of the initial work function layer 222 exposed by the gate electrode layer 233.

所述牺牲层215用于作为后续刻蚀开口侧壁上的部分高度的初始功函数层222和初始栅介质层221的刻蚀掩膜,所述牺牲层215还对所述栅电极层233起到保护作用。The sacrificial layer 215 is used as an etching mask for subsequently etching a portion of the height of the initial work function layer 222 and the initial gate dielectric layer 221 on the sidewall of the opening. The sacrificial layer 215 also protects the gate electrode layer 233 .

所述牺牲层215的材料包括多晶硅。多晶硅为半导体工艺中常用的材料,工艺兼容性高,且通过选用多晶硅材料,在后续去除所述牺牲层215的过程中,易于使得对所述牺牲层215和层间介质层210、对牺牲层215与栅极结构230的刻蚀选择比均较大,从而降低去除所述牺牲层215的工艺难度,同时减小对其他膜层结构的损伤。The material of the sacrificial layer 215 includes polysilicon. Polysilicon is a commonly used material in semiconductor processes, and has high process compatibility. In addition, by selecting polysilicon material, in the subsequent process of removing the sacrificial layer 215, it is easy to make the etching selectivity of the sacrificial layer 215 and the interlayer dielectric layer 210, and the sacrificial layer 215 and the gate structure 230 larger, thereby reducing the process difficulty of removing the sacrificial layer 215 and reducing the damage to other film structures.

本实施例中,形成所述牺牲层215的工艺步骤可参考前述实施例中对形成第一保护层工艺步骤的相关描述,在此不再赘述。In this embodiment, the process steps for forming the sacrificial layer 215 may refer to the related description of the process steps for forming the first protective layer in the above-mentioned embodiment, which will not be repeated here.

参考图11,形成所述栅电极层233后,刻蚀所述开口侧壁上的部分高度的所述初始功函数层222和初始栅介质层221,剩余所述初始功函数层222作为功函数层232,剩余所述初始栅介质层221作为栅介质层231。Referring to Figure 11, after the gate electrode layer 233 is formed, the initial work function layer 222 and the initial gate dielectric layer 221 are etched to a partial height on the side wall of the opening, and the remaining initial work function layer 222 serves as the work function layer 232, and the remaining initial gate dielectric layer 221 serves as the gate dielectric layer 231.

本实施例中,所述栅电极层233的顶部上形成有所述牺牲层215,因此,以所述牺牲层215为掩膜,刻蚀所述开口侧壁上的部分高度的初始功函数层222和初始栅介质层221。In this embodiment, the sacrificial layer 215 is formed on the top of the gate electrode layer 233 , and therefore, the sacrificial layer 215 is used as a mask to etch a portion of the height of the initial work function layer 222 and the initial gate dielectric layer 221 on the sidewall of the opening.

刻蚀所述初始功函数层222和初始栅介质层221的工艺与前述实施例相同,在此不再赘述。The process of etching the initial work function layer 222 and the initial gate dielectric layer 221 is the same as that in the above embodiment, and will not be described again.

结合参考图12,刻蚀所述初始功函数层222和初始栅介质层221后,功函数层232、栅介质层231和栅电极层233构成栅极结构230,形成方法还包括:去除所述牺牲层215,形成由栅极结构230和层间介质层210围成的凹槽400。12 , after etching the initial work function layer 222 and the initial gate dielectric layer 221 , the work function layer 232 , the gate dielectric layer 231 and the gate electrode layer 233 constitute a gate structure 230 , and the formation method further includes: removing the sacrificial layer 215 to form a groove 400 surrounded by the gate structure 230 and the interlayer dielectric layer 210 .

去除所述牺牲层215,露出所述栅电极层233顶部,为后续在所述栅电极层233的顶部形成第一保护层、以及在所述功函数层232和栅介质层231的顶部形成第二保护层做准备。The sacrificial layer 215 is removed to expose the top of the gate electrode layer 233 , in preparation for subsequently forming a first protection layer on the top of the gate electrode layer 233 and a second protection layer on the top of the work function layer 232 and the gate dielectric layer 231 .

本实施例中,采用湿法刻蚀工艺去除所述牺牲层215。具体地,所述湿法刻蚀工艺的刻蚀溶液可以为热磷酸溶液。In this embodiment, a wet etching process is used to remove the sacrificial layer 215. Specifically, the etching solution of the wet etching process can be a hot phosphoric acid solution.

参考图13,在所述栅电极层233的顶部形成第一保护层220。13 , a first protection layer 220 is formed on top of the gate electrode layer 233 .

继续参考图13,在所述功函数层232和栅介质层231的顶部形成第二保护层225。Continuing to refer to FIG. 13 , a second protection layer 225 is formed on top of the work function layer 232 and the gate dielectric layer 231 .

本实施例中,在同一步骤中形成所述第一保护层220和第二保护层225,所述第一保护层220和第二保护层225的形成质量较好,且有利于简化工艺步骤、提高工艺整合度。In this embodiment, the first protective layer 220 and the second protective layer 225 are formed in the same step. The formation quality of the first protective layer 220 and the second protective layer 225 is good, which is conducive to simplifying the process steps and improving the process integration.

具体地,形成所述第一保护层220和第二保护层225的步骤包括:填充所述凹槽400(如图12所示),形成位于所述栅电极层233顶部的所述第一保护层220、以及位于所述栅介质层231和功函数层232顶部的所述第二保护层225。Specifically, the steps of forming the first protective layer 220 and the second protective layer 225 include: filling the groove 400 (as shown in Figure 12), forming the first protective layer 220 located on the top of the gate electrode layer 233, and the second protective layer 225 located on the top of the gate dielectric layer 231 and the work function layer 232.

本实施例中,形成所述第一保护层220和第二保护层225的工艺与前述实施例中形成第二保护层的工艺步骤相同,在此不再赘述。In this embodiment, the process of forming the first protective layer 220 and the second protective layer 225 is the same as the process steps of forming the second protective layer in the above-mentioned embodiment, and will not be repeated here.

相应的,本发明还提供一种半导体结构。参考图14,示出了本发明半导体结构一实施例的结构示意图。Correspondingly, the present invention further provides a semiconductor structure. Referring to FIG14 , a schematic diagram of the structure of an embodiment of the semiconductor structure of the present invention is shown.

所述半导体结构包括:基底400;层间介质层410,位于所述基底400上,所述层间介质层410内形成有露出所述基底400的开口(未标示);初始栅介质层421,位于所述开口的底部和侧壁上;初始功函数层422,保形覆盖于所述初始栅介质层421上;栅电极层433,位于所述初始功函数层422露出的剩余所述开口中,所述栅电极层433的顶部低于所述初始栅介质层421和初始功函数层422的顶部。The semiconductor structure includes: a substrate 400; an interlayer dielectric layer 410, which is located on the substrate 400, and an opening (not marked) is formed in the interlayer dielectric layer 410 to expose the substrate 400; an initial gate dielectric layer 421, which is located on the bottom and side walls of the opening; an initial work function layer 422, which conformally covers the initial gate dielectric layer 421; and a gate electrode layer 433, which is located in the remaining opening exposed by the initial work function layer 422, and the top of the gate electrode layer 433 is lower than the tops of the initial gate dielectric layer 421 and the initial work function layer 422.

所述栅电极层433通过对初始栅电极层刻蚀而形成,本实施例刻蚀初始栅电极层的过程中,未刻蚀开口侧壁上部分高度的所述初始功函数层422和初始栅介质层421,从而能够进行两次刻蚀工艺分别刻蚀所述初始功函数层422和初始栅介质层421、以及所述初始栅电极层,防止刻蚀初始栅电极层的工艺对刻蚀初始功函数层422和初始栅电极层421的工艺产生影响,有利于提高对所述初始功函数层422和初始栅介质层421的刻蚀速率的均一性,进而提高功函数层和栅介质层的高度均一性,且有利于精确控制对初始功函数层422和初始栅介质层421的刻蚀量,防止出现功函数层和栅介质层的高度过小的问题,进而降低因功函数层和栅介质层的顶部与基底400的距离过近而出现漏电流、击穿等问题的概率,提升了半导体结构的性能。The gate electrode layer 433 is formed by etching the initial gate electrode layer. In the process of etching the initial gate electrode layer in this embodiment, the initial work function layer 422 and the initial gate dielectric layer 421 of the upper part of the height of the opening side wall are not etched, so that two etching processes can be performed to etch the initial work function layer 422 and the initial gate dielectric layer 421, and the initial gate electrode layer respectively, so as to prevent the process of etching the initial gate electrode layer from affecting the process of etching the initial work function layer 422 and the initial gate electrode layer 421, which is beneficial to improve the uniformity of the etching rate of the initial work function layer 422 and the initial gate dielectric layer 421, thereby improving the height uniformity of the work function layer and the gate dielectric layer, and is beneficial to accurately control the etching amount of the initial work function layer 422 and the initial gate dielectric layer 421, preventing the problem of the height of the work function layer and the gate dielectric layer being too small, thereby reducing the probability of leakage current, breakdown and other problems caused by the top of the work function layer and the gate dielectric layer being too close to the substrate 400, thereby improving the performance of the semiconductor structure.

所述基底400用于为形成半导体结构提供工艺平台。The substrate 400 is used to provide a process platform for forming a semiconductor structure.

本实施例中,以所述形成的半导体结构为平面型晶体管为例,所述基底400相应仅包括衬底(未标示)。在其他实施例中,当所形成的半导体结构为鳍式场效应晶体管时,基底应包括衬底以及凸出于衬底的鳍部。In this embodiment, the semiconductor structure formed is a planar transistor as an example, and the base 400 accordingly only includes a substrate (not shown). In other embodiments, when the semiconductor structure formed is a fin field effect transistor, the base should include a substrate and a fin protruding from the substrate.

本实施例中,衬底的材料为硅。在其他实施例中,衬底的材料还可以为锗、碳化硅、砷化镓或镓化铟,衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, the material of the substrate is silicon. In other embodiments, the material of the substrate may also be germanium, silicon carbide, gallium arsenide or indium gallium, and the substrate may also be a silicon on insulator substrate or a germanium on insulator substrate.

本实施例中,所述基底400包括用于形成第一器件的第一器件区I和用于形成第二器件的第二器件区I,沿垂直于所述栅电极层433侧壁的方向,所述第二器件区II的栅电极层433宽度大于所述第一器件区I的栅电极层433宽度。也就是说,所述第二器件的关键尺寸大于所述第一器件的关键尺寸。In this embodiment, the substrate 400 includes a first device region I for forming a first device and a second device region I for forming a second device, and along a direction perpendicular to the sidewall of the gate electrode layer 433, the width of the gate electrode layer 433 in the second device region II is greater than the width of the gate electrode layer 433 in the first device region I. In other words, the critical dimension of the second device is greater than the critical dimension of the first device.

所述栅电极层433通过对初始栅电极层刻蚀而形成,与所述第一器件区I相比,所述第二器件区II的初始栅电极层露出的面积更大,在刻蚀初始栅电极层以形成所述栅电极层433的步骤中,对所述第二器件区II的初始栅电极层的刻蚀速率更快,本实施例通过进行两次刻蚀工艺分别刻蚀所述初始功函数层422和初始栅介质层421、以及初始栅电极层,有利于防止因不同器件区的栅电极层的被刻蚀速率不同,而导致剩余初始栅电极层所露出的初始功函数层422和初始栅介质层421侧壁的面积不同的问题,进而避免出现不同器件区所述初始功函数层422和初始栅介质层421的被刻蚀速率不同的问题;因此,本实施例提高对所述初始功函数层422和初始栅介质层421的刻蚀速率的均一性的效果较为显著,从而显著提高不同器件的功函数层和栅介质层的高度均一性。The gate electrode layer 433 is formed by etching the initial gate electrode layer. Compared with the first device area I, the initial gate electrode layer of the second device area II is exposed in a larger area. In the step of etching the initial gate electrode layer to form the gate electrode layer 433, the etching rate of the initial gate electrode layer of the second device area II is faster. In this embodiment, the initial work function layer 422, the initial gate dielectric layer 421, and the initial gate electrode layer are respectively etched by performing two etching processes, which is conducive to preventing the problem of different areas of the side walls of the initial work function layer 422 and the initial gate dielectric layer 421 exposed by the remaining initial gate electrode layer due to different etching rates of the gate electrode layers in different device areas, thereby avoiding the problem of different etching rates of the initial work function layer 422 and the initial gate dielectric layer 421 in different device areas; therefore, the embodiment has a more significant effect on improving the uniformity of the etching rates of the initial work function layer 422 and the initial gate dielectric layer 421, thereby significantly improving the height uniformity of the work function layer and the gate dielectric layer of different devices.

本实施例中,所述基底400还包括位于所述第一器件区I和第二器件区II之间的隔离区(未标示),所述隔离区用于实现相邻器件区之间的隔离。In this embodiment, the substrate 400 further includes an isolation region (not shown) located between the first device region I and the second device region II, and the isolation region is used to achieve isolation between adjacent device regions.

因此,本实施例中,所述半导体结构还包括:隔离结构403,位于所述隔离区的基底400内。所述隔离结构403的材料为介电材料。具体的,所述隔离结构403的材料包括氮化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。本实施例中,所述隔离结构403的材料包括氧化硅。Therefore, in this embodiment, the semiconductor structure further includes: an isolation structure 403, located in the substrate 400 of the isolation region. The material of the isolation structure 403 is a dielectric material. Specifically, the material of the isolation structure 403 includes one or more of silicon nitride, silicon carbonitride, silicon carbonitride oxide, silicon nitride oxide, boron nitride and boron carbonitride. In this embodiment, the material of the isolation structure 403 includes silicon oxide.

本实施例中,所述隔离结构403为浅沟槽隔离结构。In this embodiment, the isolation structure 403 is a shallow trench isolation structure.

层间介质层410用于对相邻器件之间起到隔离作用。因此,层间介质层410的材料为绝缘材料,例如氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。本实施例中,层间介质层410的材料为氧化硅。The interlayer dielectric layer 410 is used to isolate adjacent devices. Therefore, the material of the interlayer dielectric layer 410 is an insulating material, such as one or more of silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride, and silicon carbon nitride oxide. In this embodiment, the material of the interlayer dielectric layer 410 is silicon oxide.

所述开口为形成所述初始栅介质层421、初始功函数层422、以及栅电极层433提供空间位置。The opening provides a space for forming the initial gate dielectric layer 421 , the initial work function layer 422 , and the gate electrode layer 433 .

所述初始栅介质层421用于经后续刻蚀工艺后,形成栅介质层;所述初始功函数层422用于经后续刻蚀工艺后,形成功函数层。The initial gate dielectric layer 421 is used to form a gate dielectric layer after a subsequent etching process; the initial work function layer 422 is used to form a work function layer after a subsequent etching process.

所述栅电极层433和后续功函数层、栅介质层构成栅极结构,从而控制器件工作时导电沟道的开启或关断。The gate electrode layer 433 and the subsequent work function layer and gate dielectric layer form a gate structure, thereby controlling the opening or closing of the conductive channel when the device is working.

本实施例中,所述初始栅介质层421的材料为高k介质材料;其中,高k介质材料是指相对介电常数大于氧化硅相对介电常数的介质材料。具体地,所述初始栅介质层421的材料为HfO2。在其他实施例中,所述初始栅介质层的材料还可以选自ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO或Al2O3等。In this embodiment, the material of the initial gate dielectric layer 421 is a high-k dielectric material; wherein the high-k dielectric material refers to a dielectric material having a relative dielectric constant greater than that of silicon oxide. Specifically, the material of the initial gate dielectric layer 421 is HfO 2 . In other embodiments, the material of the initial gate dielectric layer may also be selected from ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO or Al 2 O 3 , etc.

另一些实施例中,所述初始栅介质层可以包括位于所述开口底部的栅氧化层、以及位于所述栅氧化层上和所述开口侧壁上的初始高k介质层。所述栅氧化层的材料可以为氧化硅或氮氧化硅。In some other embodiments, the initial gate dielectric layer may include a gate oxide layer located at the bottom of the opening and an initial high-k dielectric layer located on the gate oxide layer and on the sidewalls of the opening. The gate oxide layer may be made of silicon oxide or silicon oxynitride.

当形成NMOS晶体管时,所述初始功函数层422的材料包括铝化钛、碳化钽、铝或者碳化钛中的一种或多种;当形成PMOS晶体管时,所述初始功函数层422的材料包括氮化钛、氮化钽、碳化钛、氮化硅钽、氮化硅钛和碳化钽中的一种或多种。When an NMOS transistor is formed, the material of the initial work function layer 422 includes one or more of titanium aluminide, tantalum carbide, aluminum or titanium carbide; when a PMOS transistor is formed, the material of the initial work function layer 422 includes one or more of titanium nitride, tantalum nitride, titanium carbide, tantalum silicon nitride, titanium silicon nitride and tantalum carbide.

所述栅电极层433用于将栅极结构的电性引出,从而实现栅极结构与外部电路或其他互连结构的电连接;The gate electrode layer 433 is used to electrically lead out the gate structure, thereby realizing electrical connection between the gate structure and an external circuit or other interconnection structures;

本实施例中,所述栅电极层433的材料为钨。其他实施例中,栅电极层的材料还可以为镁钨合金、Al、Cu、Ag、Au、Pt、Ni或Ti等。In this embodiment, the material of the gate electrode layer 433 is tungsten. In other embodiments, the material of the gate electrode layer may also be magnesium-tungsten alloy, Al, Cu, Ag, Au, Pt, Ni or Ti.

本实施例中,所述半导体结构还包括:保护层412,位于所述栅电极层433的顶部,所述保护层412露出所述初始功函数层422和初始栅介质层421的顶部,且覆盖所述栅电极层433所露出的初始功函数层422的侧壁。In this embodiment, the semiconductor structure also includes: a protective layer 412, located on the top of the gate electrode layer 433, the protective layer 412 exposes the top of the initial work function layer 422 and the initial gate dielectric layer 421, and covers the side wall of the initial work function layer 422 exposed by the gate electrode layer 433.

所述保护层412用于对所述栅电极层433的顶部起到保护作用,在后续形成露出源漏掺杂区425的接触孔的自对准刻蚀工艺中,所述保护层412还用于起到定义自对准刻蚀工艺的停止位置的作用,从而防止所述刻蚀工艺对所述栅电极层433产生损耗,进而在后续形成接触孔插塞后,防止所述接触孔插塞与所述栅电极层433产生桥接的问题。The protective layer 412 is used to protect the top of the gate electrode layer 433. In the subsequent self-aligned etching process for forming contact holes to expose the source and drain doping regions 425, the protective layer 412 is also used to define the stop position of the self-aligned etching process, thereby preventing the etching process from causing damage to the gate electrode layer 433, and further preventing the contact hole plug from bridging the gate electrode layer 433 after the subsequent formation of the contact hole plug.

本实施例中,所述保护层412还露出所述初始功函数层422和初始栅介质层421的顶部,从而后续可以以所述保护层412为掩膜,刻蚀所述开口侧壁上部分高度的所述初始功函数层422和初始栅介质层421,有利于简化工艺流程,提高工艺整合度。In this embodiment, the protective layer 412 also exposes the top of the initial work function layer 422 and the initial gate dielectric layer 421, so that the initial work function layer 422 and the initial gate dielectric layer 421 can be etched to a partial height of the upper side wall of the opening using the protective layer 412 as a mask, which is beneficial to simplifying the process flow and improving process integration.

而且,所述第一器件区I和第二器件区II的保护层412所露出的初始功函数层422、初始栅介质层421的面积相同,从而显著提高后续对不同器件区的初始功函数层422和初始栅介质层421的刻蚀速率均一性。Moreover, the areas of the initial work function layer 422 and the initial gate dielectric layer 421 exposed by the protective layer 412 of the first device region I and the second device region II are the same, thereby significantly improving the uniformity of the subsequent etching rates of the initial work function layer 422 and the initial gate dielectric layer 421 of different device regions.

本实施例中,所述保护层412的材料为氮化硅。氮化硅的硬度和致密度均比较大,有利于提高所述保护层412对所述栅电极层433的保护作用。In this embodiment, the material of the protective layer 412 is silicon nitride. Silicon nitride has relatively high hardness and density, which is beneficial to improving the protective effect of the protective layer 412 on the gate electrode layer 433.

在其他实施例中,所述保护层的材料还可以为氧化硅或多晶硅。In other embodiments, the material of the protection layer may also be silicon oxide or polysilicon.

本实施例中,所述初始栅介质层421的侧壁上还形成有侧墙401。所述侧墙401用于对栅极结构的侧壁起到保护作用,所述侧墙401还用于定义源漏掺杂区425的形成区域。In this embodiment, a sidewall 401 is formed on the sidewall of the initial gate dielectric layer 421. The sidewall 401 is used to protect the sidewall of the gate structure, and is also used to define the formation area of the source and drain doping region 425.

侧墙401的材料可以为氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮氧化硅、碳氧化硅、氮化硼和碳氮化硼中的一种或多种,侧墙401可以为单层结构或叠层结构。本实施例中,侧墙401为单层结构,侧墙401的材料为氮化硅。The material of the sidewall 401 can be one or more of silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride oxide, silicon oxycarbide, boron nitride and boron carbonitride, and the sidewall 401 can be a single-layer structure or a stacked structure. In this embodiment, the sidewall 401 is a single-layer structure, and the material of the sidewall 401 is silicon nitride.

本实施例中,所述半导体结构还包括:位于所述开口两侧的基底400内的源漏掺杂区425。相应地,所述层间介质层410还覆盖所述源漏掺杂区425。In this embodiment, the semiconductor structure further includes: source-drain doped regions 425 located in the substrate 400 at both sides of the opening. Accordingly, the interlayer dielectric layer 410 also covers the source-drain doped regions 425 .

当形成NMOS晶体管时,所述源漏掺杂区425包括掺杂有N型离子的应力层,所述应力层的材料为Si或SiC,所述应力层为NMOS晶体管的沟道区提供拉应力作用,从而有利于提高NMOS晶体管的载流子迁移率,其中,所述N型离子为P离子、As离子或Sb离子;当形成PMOS晶体管时,所述源漏掺杂区425包括掺杂有P型离子的应力层,所述应力层的材料为Si或SiGe,所述应力层为PMOS晶体管的沟道区提供压应力作用,从而有利于提高PMOS晶体管的载流子迁移率,其中,所述P型离子为B离子、Ga离子或In离子。When an NMOS transistor is formed, the source-drain doped region 425 includes a stress layer doped with N-type ions, the material of the stress layer is Si or SiC, and the stress layer provides tensile stress for the channel region of the NMOS transistor, thereby facilitating the improvement of the carrier mobility of the NMOS transistor, wherein the N-type ions are P ions, As ions or Sb ions; when a PMOS transistor is formed, the source-drain doped region 425 includes a stress layer doped with P-type ions, the material of the stress layer is Si or SiGe, and the stress layer provides compressive stress for the channel region of the PMOS transistor, thereby facilitating the improvement of the carrier mobility of the PMOS transistor, wherein the P-type ions are B ions, Ga ions or In ions.

本实施例中,所述半导体结构还包括:接触孔刻蚀阻挡层402,保形覆盖所述源漏掺杂区425、所述隔离结构403、以及侧墙401侧壁。所述层间介质层410覆盖所述接触孔刻蚀阻挡层402。In this embodiment, the semiconductor structure further includes: a contact hole etching stop layer 402 conformally covering the source and drain doping regions 425 , the isolation structure 403 , and the sidewalls of the spacer 401 . The interlayer dielectric layer 410 covers the contact hole etching stop layer 402 .

所述接触孔刻蚀阻挡层402用于定义后续接触孔刻蚀工艺中的刻蚀停止位置,从而减小接触孔刻蚀工艺对源漏掺杂区425的损伤。The contact hole etching barrier layer 402 is used to define an etching stop position in a subsequent contact hole etching process, thereby reducing damage to the source-drain doped region 425 caused by the contact hole etching process.

本实施例中,接触孔刻蚀阻挡层402的材料为氮化硅。氮化硅材料的致密度较大,硬度较高,从而保证所述接触孔刻蚀阻挡层402能够起到定义后续接触孔刻蚀工艺中刻蚀停止位置的作用。In this embodiment, the material of the contact hole etching stop layer 402 is silicon nitride. Silicon nitride has a high density and hardness, thereby ensuring that the contact hole etching stop layer 402 can play a role in defining the etching stop position in the subsequent contact hole etching process.

所述半导体结构可以采用前述实施例所述的形成方法所形成,也可以采用其他形成方法所形成。对本实施例所述半导体结构的具体描述,可参考前述实施例中的相应描述,本实施例在此不再赘述。The semiconductor structure can be formed by the formation method described in the above embodiment, or by other formation methods. For the specific description of the semiconductor structure described in this embodiment, reference can be made to the corresponding description in the above embodiment, and this embodiment will not be repeated here.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed as above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined by the claims.

Claims (13)

1. A method of forming a semiconductor structure, comprising:
Providing a substrate, wherein an interlayer dielectric layer is formed on the substrate, an opening exposing the substrate is formed in the interlayer dielectric layer, an initial gate structure is formed in the opening, and the initial gate structure comprises an initial gate dielectric layer positioned on the bottom and the side wall of the opening, an initial work function layer covering the initial gate dielectric layer in a conformal manner, and an initial gate electrode layer positioned in the rest of the opening exposed by the initial work function layer;
Etching part of the initial gate electrode layer with the thickness, and taking the rest of the initial gate electrode layer as a gate electrode layer;
forming a first protection layer on the top of the gate electrode layer, wherein the first protection layer plays a role in defining a stop position of the self-aligned etching process in the self-aligned etching process of subsequently forming a contact hole exposing the source-drain doped region;
After forming the first protective layer on the top of the gate electrode layer, etching the initial work function layer and the initial gate dielectric layer with partial heights on the side wall of the opening, wherein the rest of the initial work function layer is used as a work function layer, and the rest of the initial gate dielectric layer is used as a gate dielectric layer;
and forming a second protective layer on top of the work function layer and the gate dielectric layer.
2. The method of forming a semiconductor structure of claim 1, wherein in the step of forming a first protective layer on top of the gate electrode layer, the first protective layer exposes the initial work function layer and a top of an initial gate dielectric layer, and the first protective layer covers sidewalls of the initial work function layer exposed by the gate electrode layer;
and etching the initial work function layer and the initial gate dielectric layer on the side wall of the opening by taking the first protective layer as a mask.
3. The method of forming a semiconductor structure of claim 2, wherein the gate dielectric layer, work function layer and gate electrode layer form a gate structure, and the gate structure, the first protective layer and the interlayer dielectric layer enclose a recess;
the step of forming the second protective layer includes: and filling the groove to form a second protective layer positioned on the tops of the work function layer and the gate dielectric layer.
4. The method of forming a semiconductor structure of claim 1, wherein the substrate comprises a first device region for forming a first device and a second device region for forming a second device, the second device region having an initial gate electrode layer width greater than an initial gate electrode layer width of the first device region in a direction perpendicular to the initial gate structure sidewall.
5. The method of forming a semiconductor structure of claim 1, wherein a dry etching process is used to etch a portion of the thickness of the initial gate electrode layer.
6. The method of claim 5, wherein the dry etching process etching gas comprises CF 4 and Cl 2.
7. The method of forming a semiconductor structure of claim 1, wherein the step of forming the first protective layer comprises: forming a first protective material layer covering the gate electrode layer, the initial work function layer and the initial gate dielectric layer; and removing the first protective material layer higher than the initial work function layer and the top of the initial gate dielectric layer by adopting a planarization process, and taking the rest of the first protective material layer positioned on the top of the gate electrode layer as the first protective layer.
8. The method of forming a semiconductor structure of claim 7, wherein the process of forming the first protective material layer comprises an atomic layer deposition process.
9. The method of forming a semiconductor structure of claim 1, wherein the initial work function layer and the initial gate dielectric layer are etched using a dry etching process.
10. The method of claim 9, wherein the dry etching process etching gas comprises CF 4 and Cl 2.
11. The method of forming a semiconductor structure of claim 3, wherein the step of forming the second protective layer comprises: forming a second protective material layer in the groove, wherein the second protective material layer also covers the first protective layer; and removing the second protective material layer higher than the top of the first protective layer by adopting a planarization process, and taking the rest of the second protective material layer as the second protective layer.
12. The method of forming a semiconductor structure of claim 11, wherein forming the second protective material layer comprises an atomic layer deposition process.
13. The method of forming a semiconductor structure according to claim 7 or 11, wherein the planarization process is performed using a chemical mechanical polishing process or a dry etching process.
CN201910577121.5A 2019-06-28 2019-06-28 Semiconductor structure and forming method thereof Active CN112151381B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910577121.5A CN112151381B (en) 2019-06-28 2019-06-28 Semiconductor structure and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910577121.5A CN112151381B (en) 2019-06-28 2019-06-28 Semiconductor structure and forming method thereof

Publications (2)

Publication Number Publication Date
CN112151381A CN112151381A (en) 2020-12-29
CN112151381B true CN112151381B (en) 2024-08-23

Family

ID=73869517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910577121.5A Active CN112151381B (en) 2019-06-28 2019-06-28 Semiconductor structure and forming method thereof

Country Status (1)

Country Link
CN (1) CN112151381B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172276B (en) * 2021-04-02 2024-05-24 长鑫存储技术有限公司 Semiconductor structure and forming method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742184A (en) * 2014-12-24 2016-07-06 台湾积体电路制造股份有限公司 Method For Forming Semiconductor Device Structure With Gate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11145747B2 (en) * 2017-10-25 2021-10-12 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742184A (en) * 2014-12-24 2016-07-06 台湾积体电路制造股份有限公司 Method For Forming Semiconductor Device Structure With Gate

Also Published As

Publication number Publication date
CN112151381A (en) 2020-12-29

Similar Documents

Publication Publication Date Title
CN112309860B (en) Semiconductor structures and methods of forming them
US10297511B2 (en) Fin-FET device and fabrication method thereof
CN112309861B (en) Semiconductor structure, forming method thereof and transistor
CN110581173B (en) Semiconductor structures and methods of forming them
CN112151380B (en) Semiconductor structure and forming method thereof
CN113808947B (en) Semiconductor structure and forming method thereof
CN112151381B (en) Semiconductor structure and forming method thereof
CN110854194B (en) Semiconductor structure and forming method thereof
US11011608B2 (en) Semiconductor structure and method for forming the same
CN112151605B (en) Semiconductor structure and method of forming the same
CN115116948A (en) Method of forming a semiconductor structure
CN112447516A (en) Semiconductor structure and forming method thereof
CN112951725B (en) Semiconductor structure and forming method thereof
CN114068396B (en) Semiconductor structure and forming method thereof
US20230387261A1 (en) Semiconductor device and manufacturing method thereof
CN112289687B (en) Semiconductor structure and method of forming the same
CN112151606B (en) Semiconductor structure and forming method thereof
CN113838806B (en) Semiconductor structures and methods of forming them
CN111627854B (en) Semiconductor structure and forming method thereof
CN110808286B (en) Semiconductor structures and methods of forming them
CN117153859A (en) Semiconductor structure and forming method thereof
CN117410334A (en) Semiconductor structure and forming method thereof
CN117672971A (en) Semiconductor structure and forming method thereof
CN113745162A (en) Semiconductor structure and forming method thereof
CN119562559A (en) Semiconductor structure and method of forming the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant