[go: up one dir, main page]

CN1120969A - 工业炉的操作方法 - Google Patents

工业炉的操作方法 Download PDF

Info

Publication number
CN1120969A
CN1120969A CN95106035A CN95106035A CN1120969A CN 1120969 A CN1120969 A CN 1120969A CN 95106035 A CN95106035 A CN 95106035A CN 95106035 A CN95106035 A CN 95106035A CN 1120969 A CN1120969 A CN 1120969A
Authority
CN
China
Prior art keywords
stove
combustion
combustion reaction
burner
flue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95106035A
Other languages
English (en)
Other versions
CN1131722C (zh
Inventor
W·J·施奈德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN1120969A publication Critical patent/CN1120969A/zh
Application granted granted Critical
Publication of CN1131722C publication Critical patent/CN1131722C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • F23C6/047Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/102Furnace staging in horizontal direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/05081Disposition of burners relative to each other creating specific heat patterns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种工业炉操作方法,包括在远离烟道处燃烧产生超过平衡值的NOx,和靠近烟道处燃烧产生较小值的NOx,优选低于平衡值的NOx

Description

工业炉的操作方法
本发明一般涉及工业炉的操作,更具体地说是涉及减少从炉中氮的氧化物(NOx)的排放量。
许多工业过程要用到工业炉,通过燃料和氧化剂在炉中燃烧产生的热量将炉中炉料加热。在这些工业过程中,一种为玻璃制造业,其中的炉料为玻璃制造原料,或融化的或固态的玻璃;炼钢业,其炉料为钢或铁,还有炼铝业,其炉料为铝锭或铝片。
燃烧过程中产生的各种氮氧化物是一种严重的污染物质,在燃烧进行时总是希望能够减少他们的产生。我们知道,通过使用工业生产的纯氧或富氧的空气作为氧化剂,可以减少燃烧过程中NOx的产生,因为在供氧量不变的情况下,减少了供给燃烧反应的氮气量。然而,当使用合氧量比空气高的氧化剂时,燃烧反应的温度会升高,在动力学上较高的温度有利于NOx的形成。
众所周知,不同燃烧器和燃烧器系统在操作中产生NOx的速率也将各不相同。例如,在其它条件都相同的条件下,采用同轴式燃烧器装置一般比采用阶段式燃烧器装置更有利于NOx的形成。因此,在采用复式燃烧器的炉子中,通过用低NOx燃烧器来代替一个或多个高NOx燃烧器可以减少炉中NOx的排放量。然而,这种更换过程造价很高,并且总是希望不但能够减少复式炉中燃烧器的数目,而且要保证实现从高NOx向低NOx的转换。
因此,本发明的目的就是提供一种新的工业炉操作方法,该方法不仅能够最大限度减少低NOx燃烧器的数目,而且还能满足对炉中NOx排放量任何特定指标的要求。
本领域技术人员在读了这里所公开的内容之后将会明白,上述的和一些其它目的依照下面的方法是可以达到的:
一种可以减少工业炉烟道NOx排放水平的工业炉操作方法,包括:
(A)在第一燃烧反应中燃烧燃料和氧化剂,其中在炉中产生其速率或产值超过平衡值的NOx
(B)在第二燃烧反应中,燃烧燃料和氧化剂,其中在炉中产生其速率或产值均低于第一燃烧反应的NOx,这里所讲的第二燃烧反应发生在比第一燃烧反应更靠近烟道的位置;并且
(C)第一和第二燃烧反应所产生的NOx通过烟道排出工业炉。
这里所用的“烟道”一词是指能够将炉气排出炉子的一种通道,一般情况下排出的炉气进入周围大气层。
这里所用的“平衡值”,是指当炉内燃烧产物中氮和氧的浓度,在炉气温度下无限期地保持稳定时,所产生的一氧化氮和二氧化氮的加和浓度。本领域的技术人员都熟悉如何利用发表的平衡常数来计算该平衡值。
这里所用的“高NOx燃烧器”是指燃烧反应所产生的NOx高于平衡值的燃烧器。这种高NOx燃烧器的实例可在美国专利5,267,850和No.5,256,058号中找到。
这里所用的“低NOx燃烧器”是指燃烧反应产生NOx量较低的燃烧器,它不仅低于高NOx燃烧器产生的NOx,而且也低于平衡值。这种低NOx燃炉的实例可在美国专利4,378,205;No.4,907,061和No.5,209,656号中找到。
这里的“氮的氧化物”和“NOx”是指一氧化氮(NO)和二氧化氮(NO2)的总和。
这仅有的图是一张简化的设计图,代表了本发明实际应用中可以采用的一种炉子。
本发明包括了一个这样的认识,即燃烧反应中所产生的NOx量不是固定的,而是处在动态变化之中,这一非静止状态的发展方向是平衡值。燃烧反应产生的气体在炉中滞留的时间越长,在气体通过烟道逸出炉子之前就越接近NOx的平衡值。气体达到平衡值的速率取决于炉子的温度。当炉子的温度超过2700℃时,本发明取得的效果最佳。
在多燃烧器炉子中,采用本发明的实践方法可以使从烟道中NOx的排放水平大大低于仅靠用低NOx燃烧器取代一个或多个高NOx燃烧器所能达到的水平。如果将一个低NOx燃烧器安置在炉子中距烟道较远的位置,并且它产生NOx的水平低于平衡值,那么燃烧生成的炉气由于向烟道移动将会延长在炉内滞留的时间。这种长时间的滞留将导致NOx水平的增加,因为从动力学角度上讲燃烧所产生的低于平衡值的NOx将会向平衡值发展。再者,如果将一个高NOx燃烧器安置在靠近烟道的位置,那么燃烧产生的炉气在炉中停留的时间将会很短,这样也不会使NOx得到有效地减少。然而,如果将一个高NOx燃烧器放置在炉中距烟筒较远的位置,燃烧产生的炉气由于向烟道移动,在炉中滞留的时间将会延长,而长时间的停留将会导致NOx水平的减少,因为由燃烧产生的NOx的上述平衡值,在动力学作用下会向着其平衡值发展。这种朝着平衡值发展的动力学过程,不管是增加还是减少,在炉区之外将不能再继续。因为正是炉中的热量,流体的流动以及反应物的浓度等条件,才能使朝着平衡发展的动力学过程发生。
在本发明的实际应用中所使用的燃料可以是任何气体,或者是含有在炉中或燃烧区可以燃烧的可燃性物质的其它燃料。这些燃料中包括天然气,炼焦炉气、丙烷、甲烷、油料或碎煤。
在本发明的实际应用中所使用的氧化剂,可以是含氧量足以在炉中或燃烧区与燃料发生燃烧反应的任何流体。空气也可以作为氧化剂。优选的氧化剂是氧的浓度至少达到30%(体积)的流体,而最优的氧化剂则要求流体中含氧量至少90%(体积)。氧化剂也可以是工业生产的纯氧气,氧的浓度为99.5%或更高。
应用本发明时所使用的工业炉是一般工业炉。在玻璃制造炉的运行过程中,由于涉及高温,所以本发明特别有用。一台炉子包括许多用来放置燃烧器的燃烧器通道,有些燃烧反应可以在此发生。
通过参考附图以及下面的实例和比较实例,本发明将会得到更详细的描述。提供实例是为了说明发明的目的,但并不打算局限于此。
现在来看图,这里所展示的是一个玻璃制造炉(32)的简化形式,玻璃制造原料通过进料口30和31被送入炉内。玻璃制造原料按图中标明的玻璃流动的箭头方向从左向右通过工业炉,在此过程中,由于受到来自用箭头表示的燃烧器1-20进行燃烧产生的热量而被熔化。被熔化的玻璃经过喉管33而排出工业炉。燃烧反应产生的气体在玻璃制造原料之上沿着气体流动箭头朝着相反的方向流动,并通过烟道34而排出工业炉32。
一台类似于图中所示的炉子,可以全部采用20台美国NO.5,267,850专利中所描述的那种型号的高NOx燃烧器运行。所使用的燃料为天然气,使用的氧化剂为含氧量为93mol%的流体。那些燃烧器产生NOx的产率为0.30lb/百万BTU。从烟道的测量结果发现,生产一吨玻璃,NOx的排放量为1.43lb。
将1-12号燃烧器更换成低NOx燃烧器,仍用天然气作燃料和用93mol%氧的流体作为氧化剂,再次运行,生产熔融玻璃。低NOx燃烧器按照美国1993年11月17日提交的,序号为153,505的专利中所描述的方法进行,NOx的产生率为0.067lb/百万BTU。基于对两种不同燃烧器运行的实验结果,可以预料将20个高NOx燃烧器中的12个更换成低NOx燃烧器,烟道中NOx的排放量将减少45%。然而,当本发明被实际采用时,在烟道上所测到的NOx的排放量只有0.5lb/吨玻璃,减少了65%。
在此之前,传统的做法是一种复式燃烧器的工业炉全部使用一种类型的燃烧器。如果一个燃烧器需要更换,典型的做法是所有的燃烧器都得被换掉。本发明采用了一种不同寻常的措施,那就是在一个多燃烧器的工业炉中,采用了两种不同类型的燃烧器。再者,通过实施本项发明,在一多燃烧器工业炉的运行过程中,对于在任何给定水平上使燃烧器从高NOx型更换为低NOx型,都可以获得比其它方法更有效地减少NOx的产生。尽管本发明是通过参考一个特定的优选实施方案而进行详细描述的,但本领域技术人员将会认识到,在权利要求的精神和范围之内,还包含着本发明的一些其它实施方案。

Claims (8)

1.一种减少从工业炉烟道中排放NOx水平的工业炉操作方法,包括:
(A)在一次燃烧反应中燃烧燃料和氧化剂,其中在炉内产生了超过平衡值的NOx
(B)在二次燃烧反应中,燃烧燃料和氧化剂,其中在炉内产生低于第一燃烧反应产生的NOx值,上述的第二燃烧反应发生在比上述第一燃烧反应更靠近烟道的地方;并且
(C)上述第一和第二燃烧反应生成的NOx经烟道排出工业炉。
2.权利要求1的方法,其中第二燃烧反应过程中所生成的NOx低于平衡值。
3.权利要求1的方法,其中第一燃烧反应进行多次。
4.权利要求1的方法,其中第二燃烧反应进行多次。
5.权利要求1的方法,其中第一燃烧反应和第二反应进行多次。
6.权利要求5的方法,其中所有的第二反应全部发生在比任何第一反应都更靠近烟道的地方。
7.权利要求1的方法,其中工业炉为一种玻璃制造炉。
8.权利要求1的方法,其中炉内的温度超过2700°F。
CN95106035A 1994-05-18 1995-05-17 工业炉的操作方法 Expired - Fee Related CN1131722C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US24540894A 1994-05-18 1994-05-18
US245408 1994-05-18
US245,408 1994-05-18

Publications (2)

Publication Number Publication Date
CN1120969A true CN1120969A (zh) 1996-04-24
CN1131722C CN1131722C (zh) 2003-12-24

Family

ID=22926533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95106035A Expired - Fee Related CN1131722C (zh) 1994-05-18 1995-05-17 工业炉的操作方法

Country Status (10)

Country Link
US (1) US5683238A (zh)
EP (1) EP0683357B1 (zh)
JP (1) JPH0842813A (zh)
KR (1) KR100219746B1 (zh)
CN (1) CN1131722C (zh)
BR (1) BR9502060A (zh)
CA (1) CA2149554C (zh)
DE (1) DE69515207T2 (zh)
ES (1) ES2142969T3 (zh)
PT (1) PT683357E (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6705117B2 (en) 1999-08-16 2004-03-16 The Boc Group, Inc. Method of heating a glass melting furnace using a roof mounted, staged combustion oxygen-fuel burner
US6221127B1 (en) 1999-11-10 2001-04-24 Svedala Industries, Inc. Method of pyroprocessing mineral ore material for reducing combustion NOx
US6290492B1 (en) 2000-02-15 2001-09-18 Air Products And Chemicals, Inc. Method of reducing NOx emission from multi-zone reheat furnaces
JP2002115808A (ja) 2000-10-12 2002-04-19 Asahi Glass Co Ltd 燃焼炉燃焼ガスの窒素酸化物削減方法
US6745708B2 (en) * 2001-12-19 2004-06-08 Conocophillips Company Method and apparatus for improving the efficiency of a combustion device
CN1313726C (zh) * 2004-06-10 2007-05-02 上海交通大学 潜水器燃烧发动机进排气口的防海浪气罩
US7833009B2 (en) * 2004-09-10 2010-11-16 Air Products And Chemicals, Inc. Oxidant injection method
US7452400B2 (en) * 2005-07-07 2008-11-18 The North American Manufacturing Company, Ltd. Method and apparatus for melting metal
US20070281264A1 (en) * 2006-06-05 2007-12-06 Neil Simpson Non-centric oxy-fuel burner for glass melting systems
US20100159409A1 (en) * 2006-06-05 2010-06-24 Richardson Andrew P Non-centric oxy-fuel burner for glass melting systems
US20080081301A1 (en) * 2006-10-03 2008-04-03 Hannum Mark C Low NOx combustion
EP2415886A1 (en) * 2010-08-04 2012-02-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for melting scrap metal

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746498A (en) * 1972-01-24 1973-07-17 Combustion Eng Reducing no{11 {11 emissions by additive injection
JPS5237611B2 (zh) * 1973-03-01 1977-09-24
US4117075A (en) * 1973-08-09 1978-09-26 Agency Of Industrial Science & Technology Method of combustion for depressing nitrogen oxide discharge
US3890084A (en) * 1973-09-26 1975-06-17 Coen Co Method for reducing burner exhaust emissions
US4061487A (en) * 1976-07-01 1977-12-06 Union Carbide Corporation Process for producing glass in a rotary furnace
JPS5623615A (en) * 1979-08-06 1981-03-06 Babcock Hitachi Kk Burning method for low nox
US4378205A (en) 1980-04-10 1983-03-29 Union Carbide Corporation Oxygen aspirator burner and process for firing a furnace
US4427362A (en) * 1980-08-14 1984-01-24 Rockwell International Corporation Combustion method
US4405587A (en) * 1982-02-16 1983-09-20 Mcgill Incorporated Process for reduction of oxides of nitrogen
US4909728A (en) * 1986-09-26 1990-03-20 Matsushita Electric Industrial Co., Ltd. Combustion apparatus
US4907961A (en) 1988-05-05 1990-03-13 Union Carbide Corporation Oxygen jet burner and combustion method
US4973346A (en) * 1989-10-30 1990-11-27 Union Carbide Corporation Glassmelting method with reduced nox generation
US5154596A (en) * 1990-09-07 1992-10-13 John Zink Company, A Division Of Koch Engineering Company, Inc. Methods and apparatus for burning fuel with low NOx formation
US5076779A (en) * 1991-04-12 1991-12-31 Union Carbide Industrial Gases Technology Corporation Segregated zoning combustion
US5209656A (en) 1991-08-29 1993-05-11 Praxair Technology, Inc. Combustion system for high velocity gas injection
US5147438A (en) * 1991-09-18 1992-09-15 Union Carbide Industrial Gases Technology Corporation Auxiliary oxygen burners technique in glass melting cross-fired regenerative furnaces
US5256058A (en) 1992-03-30 1993-10-26 Combustion Tec, Inc. Method and apparatus for oxy-fuel heating with lowered NOx in high temperature corrosive environments
US5199866A (en) * 1992-03-30 1993-04-06 Air Products And Chemicals, Inc. Adjustable momentum self-cooled oxy/fuel burner for heating in high temperature environments
US5267850A (en) 1992-06-04 1993-12-07 Praxair Technology, Inc. Fuel jet burner
DE4218702C2 (de) * 1992-06-06 1994-03-31 Sorg Gmbh & Co Kg Regenerative Schmelzwanne mit verminderter NOx-Bildung
US5242296A (en) * 1992-12-08 1993-09-07 Praxair Technology, Inc. Hybrid oxidant combustion method
US5387100A (en) * 1994-02-17 1995-02-07 Praxair Technology, Inc. Super off-stoichiometric combustion method
DE4416650A1 (de) * 1994-05-11 1995-11-16 Abb Management Ag Verbrennungsverfahren für atmosphärische Feuerungsanlagen

Also Published As

Publication number Publication date
BR9502060A (pt) 1995-12-19
CN1131722C (zh) 2003-12-24
JPH0842813A (ja) 1996-02-16
KR950031945A (ko) 1995-12-20
EP0683357A2 (en) 1995-11-22
US5683238A (en) 1997-11-04
ES2142969T3 (es) 2000-05-01
KR100219746B1 (ko) 1999-09-01
CA2149554C (en) 1999-11-30
PT683357E (pt) 2000-06-30
CA2149554A1 (en) 1995-11-19
EP0683357A3 (en) 1996-09-18
EP0683357B1 (en) 2000-03-01
DE69515207D1 (de) 2000-04-06
DE69515207T2 (de) 2000-08-24

Similar Documents

Publication Publication Date Title
CN1131722C (zh) 工业炉的操作方法
US5242296A (en) Hybrid oxidant combustion method
US4375949A (en) Method of at least partially burning a hydrocarbon and/or carbonaceous fuel
CN1238659C (zh) 分开喷射燃料和氧化剂的燃烧方法以及实施这种方法的燃烧器装置
CN1151002A (zh) 用于在高温炉中受控辐射加热的低NOx分级燃烧装置
AU673452B2 (en) Flue system combustion
EP0640794B2 (en) Combustion using argon with oxygen
CN1206182C (zh) 用于制做工业玻璃制品的方法和用于实现此方法的燃烧器
EP0643019B1 (en) Method for processing niter-containing glassmaking materials
US5823124A (en) Method and system to reduced NOx and fuel emissions from a furnace
WO2004081446A2 (en) A method for combusting fuel in a fired heater
EP0009523B1 (en) A method of at least partially burning a hydrocarbon and/or carbonaceous fuel
CN1158954A (zh) 减少氮氧化物和一氧化碳产生的分级燃烧
US2780538A (en) Fuel utilization process
CN1916134A (zh) 一种熔窑熔制玻璃用固液混合燃料
CN1869250A (zh) 环体多孔短焰燃烧器
POGOJEV et al. Flame temperature as a function of the combustion conditions of gaseous fuels
Moilanen et al. NOx control options for glass furnaces
Pershing et al. Final Report: Nox Emissions from By Product Fuel Combustion in Steel Making, September 15, 1996-October 15, 1999
Bíró Modernization of metallurgical furnaces from the point of view of environmental protection
CN1660975A (zh) 高效能金属切割气
Dickerson Design of an optimum distillate oil burner for control of pollutant emissions
RU2180949C2 (ru) Способ многостадийного сжигания газообразного топлива
Doi et al. 2) ON THE COMBUSTION IN THE OPEN HEARTH FURNACE HEATED BY THE PRODUCER GAS
CN116305712A (zh) 一种低nox化工废液焚烧炉优化方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB02 Change of applicant information

Applicant after: Praxair Technology, Inc.

Applicant before: Praxair Technology Inc.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: PLACER TECHNOLOGY CO., LTD. TO: PLEX TECHNOLOGIES CORP.

C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee