[go: up one dir, main page]

CN112086436A - Solar blind ultraviolet focal plane imaging detector and manufacturing method thereof - Google Patents

Solar blind ultraviolet focal plane imaging detector and manufacturing method thereof Download PDF

Info

Publication number
CN112086436A
CN112086436A CN202010995497.0A CN202010995497A CN112086436A CN 112086436 A CN112086436 A CN 112086436A CN 202010995497 A CN202010995497 A CN 202010995497A CN 112086436 A CN112086436 A CN 112086436A
Authority
CN
China
Prior art keywords
layer
hole
solar
metal layer
focal plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010995497.0A
Other languages
Chinese (zh)
Inventor
宋航
陈一仁
张志伟
蒋红
缪国庆
李志明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN202010995497.0A priority Critical patent/CN112086436A/en
Publication of CN112086436A publication Critical patent/CN112086436A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/107Integrated devices having multiple elements covered by H10F30/00 in a repetitive configuration, e.g. radiation detectors comprising photodiode arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/103Integrated devices the at least one element covered by H10F30/00 having potential barriers, e.g. integrated devices comprising photodiodes or phototransistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/127The active layers comprising only Group III-V materials, e.g. GaAs or InP
    • H10F71/1272The active layers comprising only Group III-V materials, e.g. GaAs or InP comprising at least three elements, e.g. GaAlAs or InGaAsP
    • H10F71/1274The active layers comprising only Group III-V materials, e.g. GaAs or InP comprising at least three elements, e.g. GaAlAs or InGaAsP comprising nitrides, e.g. InGaN or InGaAlN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/127The active layers comprising only Group III-V materials, e.g. GaAs or InP
    • H10F71/1276The active layers comprising only Group III-V materials, e.g. GaAs or InP comprising growth substrates not made of Group III-V materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

本申请公开了一种日盲紫外焦平面成像探测器及其制作方法,探测器包括探测器阵列、读出电路、钝化层、具有第一通孔的金属层、具有第二通孔的绝缘层、填充物层、连接柱;金属层位于钝化层的下表面,第一通孔对应探测器阵列中的P型电极,且第一通孔的尺寸小于P型电极的尺寸,以使金属层对应探测器阵列中的台面阵列间隙和台面阵列表面未被P型电极覆盖的区域;绝缘层位于金属层的下表面和第一通孔中,第二通孔对应第一通孔,且第二通孔的尺寸小于第一通孔的尺寸。日盲紫外焦平面成像探测器中的绝缘层避免金属层与读出电路之间发生短路,金属层避免可见光通过阵列台面间隙入射到读出电路上,进而提高日盲紫外焦平面成像探测器的日盲/可见抑制比。

Figure 202010995497

The present application discloses a solar-blind ultraviolet focal plane imaging detector and a manufacturing method thereof. The detector includes a detector array, a readout circuit, a passivation layer, a metal layer with a first through hole, and an insulating layer with a second through hole. layer, filler layer, connection post; the metal layer is located on the lower surface of the passivation layer, the first through hole corresponds to the P-type electrode in the detector array, and the size of the first through hole is smaller than that of the P-type electrode, so that the metal The layer corresponds to the mesa array gap in the detector array and the area of the surface of the mesa array that is not covered by the P-type electrode; the insulating layer is located on the lower surface of the metal layer and in the first through hole, the second through hole corresponds to the first through hole, and the third through hole corresponds to the first through hole. The size of the second through hole is smaller than that of the first through hole. The insulating layer in the solar-blind UV focal plane imaging detector avoids short circuit between the metal layer and the readout circuit, and the metal layer prevents visible light from being incident on the read-out circuit through the gap of the array mesa, thereby improving the solar-blind UV focal plane imaging detector. Helioblind/visible inhibition ratio.

Figure 202010995497

Description

一种日盲紫外焦平面成像探测器及其制作方法A solar-blind ultraviolet focal plane imaging detector and method of making the same

技术领域technical field

本申请涉及光电探测器技术领域,特别是涉及一种日盲紫外焦平面成像探测器及其制作方法。The present application relates to the technical field of photodetectors, in particular to a solar-blind ultraviolet focal plane imaging detector and a manufacturing method thereof.

背景技术Background technique

日盲紫外焦平面成像探测器结构示意图如图1所示,包括探测器阵列、读出电路、填充物层、具有开孔的钝化层以及连接探测器阵列和读出电路的连接柱,探测器阵列包括衬底1、成核层2、超晶格层3、本征AlGaN层4、N型AlGaN层5、由I型AlGaN层6和P型AlGaN层7形成的台面阵列、公共N型电极8、像素P型电极9,探测器阵列作为光敏部件用于实现日盲紫外焦平面成像探测器的光电信号的转换,读出电路用于光电信号的读取。The schematic diagram of the solar-blind UV focal plane imaging detector structure is shown in Figure 1, including a detector array, a readout circuit, a filler layer, a passivation layer with openings, and a connecting column connecting the detector array and the readout circuit. The device array includes a substrate 1, a nucleation layer 2, a superlattice layer 3, an intrinsic AlGaN layer 4, an N-type AlGaN layer 5, a mesa array formed by an I-type AlGaN layer 6 and a P-type AlGaN layer 7, and a common N-type The electrode 8, the pixel P-type electrode 9, the detector array is used as a photosensitive component to realize the conversion of the photoelectric signal of the solar-blind ultraviolet focal plane imaging detector, and the readout circuit is used for the reading of the photoelectric signal.

探测器阵列中的衬底可以透过可见光至近红外波段的光,由于读出电路自身是一种良好的可见光/近红外光电成像探测器,对波长在350nm以上的光具有灵敏的光谱响应特性,使得日盲紫外焦平面成像探测器在工作时,环境光(主要是可见光)透过探测器阵列的像素间隙(台面阵列间隙)透射到读出电路,使读出电路产生可见光光谱响应,造成日盲紫外焦平面成像探测器日盲/可见抑制比低下,无法发挥AlGaN材料日盲紫外本征截止的优势。The substrate in the detector array can transmit light from visible light to near-infrared wavelengths. Since the readout circuit itself is a good visible light/near-infrared photoelectric imaging detector, it has sensitive spectral response characteristics to light with wavelengths above 350 nm. When the solar-blind UV focal plane imaging detector is working, the ambient light (mainly visible light) is transmitted to the readout circuit through the pixel gap of the detector array (the mesa array gap), so that the readout circuit produces a visible light spectral response, causing solar radiation. Blind UV focal plane imaging detectors have a low solar-blind/visible suppression ratio and cannot take advantage of the solar-blind UV intrinsic cutoff of AlGaN materials.

因此,如何解决上述技术问题应是本领域技术人员重点关注的。Therefore, how to solve the above technical problems should be the focus of those skilled in the art.

发明内容SUMMARY OF THE INVENTION

本申请的目的是提供一种日盲紫外焦平面成像探测器及其制作方法,以提高日盲紫外焦平面成像探测器的日盲/可见抑制比。The purpose of the present application is to provide a solar-blind UV focal plane imaging detector and a manufacturing method thereof, so as to improve the solar-blind/visible suppression ratio of the solar-blind UV focal-plane imaging detector.

为解决上述技术问题,本申请提供一种日盲紫外焦平面成像探测器,包括探测器阵列、读出电路、钝化层、具有第一通孔的金属层、具有第二通孔的绝缘层、填充物层、连接柱;In order to solve the above technical problems, the present application provides a solar-blind ultraviolet focal plane imaging detector, comprising a detector array, a readout circuit, a passivation layer, a metal layer with a first through hole, and an insulating layer with a second through hole , packing layer, connecting column;

所述金属层位于所述钝化层的下表面,所述第一通孔对应所述探测器阵列中的P型电极,且所述第一通孔的尺寸小于所述P型电极的尺寸,以使所述金属层对应所述探测器阵列中的台面阵列间隙和台面阵列表面未被所述P型电极覆盖的区域;The metal layer is located on the lower surface of the passivation layer, the first through hole corresponds to the P-type electrode in the detector array, and the size of the first through hole is smaller than the size of the P-type electrode, so that the metal layer corresponds to the mesa array gap in the detector array and the area of the mesa array surface not covered by the P-type electrode;

所述绝缘层位于所述金属层的下表面和所述第一通孔中,所述第二通孔对应所述第一通孔,且所述第二通孔的尺寸小于所述第一通孔的尺寸。The insulating layer is located on the lower surface of the metal layer and in the first through hole, the second through hole corresponds to the first through hole, and the size of the second through hole is smaller than that of the first through hole size of the hole.

可选的,所述金属层为铝层或者金层。Optionally, the metal layer is an aluminum layer or a gold layer.

可选的,所述绝缘层为二氧化硅层或者氮化硅层。Optionally, the insulating layer is a silicon dioxide layer or a silicon nitride layer.

可选的,所述读出电路为CMOS读出电路或者CCD读出电路。Optionally, the readout circuit is a CMOS readout circuit or a CCD readout circuit.

可选的,所述金属层的厚度取值范围为200nm~300nm,包括端点值。Optionally, the thickness of the metal layer ranges from 200 nm to 300 nm, inclusive.

可选的,所述绝缘层的厚度取值范围为200nm~1μm,包括端点值。Optionally, the thickness of the insulating layer ranges from 200 nm to 1 μm, inclusive.

本申请还提供一种日盲紫外焦平面成像探测器制备方法,包括:The present application also provides a method for preparing a solar-blind ultraviolet focal plane imaging detector, comprising:

获得探测器阵列;obtain a detector array;

在所述探测器阵列的上表面制备钝化层;preparing a passivation layer on the upper surface of the detector array;

在所述钝化层的上表面涂覆光刻胶层,并进行曝光、显影,以使所述光刻胶层对应所述探测器阵列中的台面阵列间隙和台面阵列表面未被P型电极覆盖的区域形成镂空区域,且所述光刻胶层的尺寸小于对应的所述P型电极的尺寸;A photoresist layer is coated on the upper surface of the passivation layer, and exposed and developed, so that the photoresist layer corresponds to the mesa array gap in the detector array and the surface of the mesa array is free from P-type electrodes The covered area forms a hollow area, and the size of the photoresist layer is smaller than the size of the corresponding P-type electrode;

在所述光刻胶层的上表面制备金属层,并去除所述光刻胶层和层叠在所述光刻胶层表面的金属层,以使所述金属层具有第一通孔;A metal layer is prepared on the upper surface of the photoresist layer, and the photoresist layer and the metal layer stacked on the surface of the photoresist layer are removed, so that the metal layer has a first through hole;

在所述金属层的上表面制备绝缘层;preparing an insulating layer on the upper surface of the metal layer;

对位于所述第一通孔内的所述绝缘层和所述钝化层进行刻蚀形成第二通孔,且所述第二通孔的尺寸小于所述第一通孔的尺寸,所述第二通孔止于所述P型电极的表面,得到处理后探测器阵列;etching the insulating layer and the passivation layer in the first through hole to form a second through hole, and the size of the second through hole is smaller than the size of the first through hole, the The second through hole ends at the surface of the P-type electrode to obtain a processed detector array;

利用倒装焊接技术使读出电路和所述处理后探测器阵列通过连接柱相连,并在所述读出电路和所述绝缘层之间形成填充物层。The readout circuit and the processed detector array are connected by connecting posts using flip-chip bonding technology, and a filler layer is formed between the readout circuit and the insulating layer.

可选的,所述在所述光刻胶层的上表面制备金属层包括:Optionally, the preparing a metal layer on the upper surface of the photoresist layer includes:

利用电子束蒸镀工艺或者磁控溅射工艺在所述光刻胶层的上表面制备所述金属层。The metal layer is prepared on the upper surface of the photoresist layer by an electron beam evaporation process or a magnetron sputtering process.

可选的,所述在所述金属层的上表面制备绝缘层包括:Optionally, the preparing an insulating layer on the upper surface of the metal layer includes:

利用等离子体增强化学气相沉积工艺在所述金属层的上表面制备所述绝缘层。The insulating layer is formed on the upper surface of the metal layer using a plasma enhanced chemical vapor deposition process.

可选的,所述对位于所述第一通孔内的所述绝缘层和所述钝化层进行刻蚀形成第二通孔包括:Optionally, the etching of the insulating layer and the passivation layer in the first through hole to form the second through hole includes:

利用光刻和等离子体刻蚀工艺,对位于所述第一通孔内的所述绝缘层和所述钝化层进行刻蚀形成所述第二通孔。The second through hole is formed by etching the insulating layer and the passivation layer in the first through hole by using photolithography and plasma etching processes.

本申请所提供的一种日盲紫外焦平面成像探测器,包括探测器阵列、读出电路、钝化层、具有第一通孔的金属层、具有第二通孔的绝缘层、填充物层、连接柱;所述金属层位于所述钝化层的下表面,所述第一通孔对应所述探测器阵列中的P型电极,且所述第一通孔的尺寸小于所述P型电极的尺寸,以使所述金属层对应所述探测器阵列中的台面阵列间隙和台面阵列表面未被所述P型电极覆盖的区域;所述绝缘层位于所述金属层的下表面和所述第一通孔中,所述第二通孔对应所述第一通孔,且所述第二通孔的尺寸小于所述第一通孔的尺寸。A solar-blind UV focal plane imaging detector provided in this application includes a detector array, a readout circuit, a passivation layer, a metal layer with a first through hole, an insulating layer with a second through hole, and a filler layer , a connecting column; the metal layer is located on the lower surface of the passivation layer, the first through hole corresponds to the P-type electrode in the detector array, and the size of the first through hole is smaller than the P-type electrode the size of the electrode, so that the metal layer corresponds to the mesa array gap in the detector array and the area of the mesa array surface not covered by the P-type electrode; the insulating layer is located on the lower surface of the metal layer and all the Among the first through holes, the second through holes correspond to the first through holes, and the size of the second through holes is smaller than that of the first through holes.

可见,本申请中的日盲紫外焦平面成像探测器除了包括探测器阵列、读出电路、钝化层填充物层、连接柱,还包括具有第一通孔的金属层和具有第二通孔的绝缘层,绝缘层避免金属层与读出电路之间发生短路,金属层对应探测器阵列中的台面阵列间隙和台面阵列表面未被P型电极覆盖的区域,从而避免可见光通过阵列台面间隙入射到读出电路上,避免读出电路发生可见光光谱响应,进而提高日盲紫外焦平面成像探测器的日盲/可见抑制比。It can be seen that the solar-blind UV focal plane imaging detector in this application not only includes a detector array, a readout circuit, a passivation layer filling layer, and a connecting column, but also includes a metal layer with a first through hole and a second through hole. The insulating layer avoids short circuit between the metal layer and the readout circuit. The metal layer corresponds to the mesa array gap in the detector array and the area on the surface of the mesa array that is not covered by the P-type electrode, so as to prevent visible light from passing through the array mesa gap. On the readout circuit, the visible light spectral response of the readout circuit is avoided, thereby improving the solar blind/visible suppression ratio of the solar blind UV focal plane imaging detector.

此外,本申请还提供一种具有上述优点的日盲紫外焦平面成像探测器制作方法。In addition, the present application also provides a method for fabricating a solar-blind ultraviolet focal plane imaging detector with the above advantages.

附图说明Description of drawings

为了更清楚的说明本申请实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present application or the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only For some embodiments of the present application, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.

图1为现有技术中日盲紫外焦平面成像探测器结构示意图;1 is a schematic structural diagram of a solar-blind ultraviolet focal plane imaging detector in the prior art;

图2为本申请实施例所提供的一种日盲紫外焦平面成像探测器的结构示意图;2 is a schematic structural diagram of a solar-blind ultraviolet focal plane imaging detector provided by an embodiment of the application;

图3为本申请的日盲紫外焦平面成像探测器和现有技术的日盲紫外焦平面成像探测器的透射光谱对照图;Fig. 3 is the transmission spectrum comparison diagram of the solar-blind ultraviolet focal plane imaging detector of the application and the solar-blind ultraviolet focal plane imaging detector of the prior art;

图4为本申请实施例所提供的一种日盲紫外焦平面成像探测器制备方法流程图;4 is a flowchart of a method for preparing a solar-blind ultraviolet focal plane imaging detector provided by an embodiment of the application;

图中,1.衬底、2.成核层、超晶格层3.、4.本征AlGaN层、5.N型AlGaN层、6.由I型AlGaN层、7.P型AlGaN层、8.公共N型电极、9.像素P型电极、10.钝化层、11.连接柱、12.读出电路、13.填充物层、14.像元上电极、15.金属层、16.绝缘层。In the figure, 1. substrate, 2. nucleation layer, superlattice layer 3., 4. intrinsic AlGaN layer, 5. N-type AlGaN layer, 6. I-type AlGaN layer, 7. P-type AlGaN layer, 8. Common N-type electrode, 9. Pixel P-type electrode, 10. Passivation layer, 11. Connection column, 12. Readout circuit, 13. Filler layer, 14. Pixel upper electrode, 15. Metal layer, 16 .Insulation.

具体实施方式Detailed ways

为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make those skilled in the art better understand the solution of the present application, the present application will be further described in detail below with reference to the accompanying drawings and specific embodiments. Obviously, the described embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.

在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。In the following description, many specific details are set forth to facilitate a full understanding of the present invention, but the present invention can also be implemented in other ways different from those described herein, and those skilled in the art can do so without departing from the connotation of the present invention. Similar promotion, therefore, the present invention is not limited by the specific embodiments disclosed below.

AlGaN是一种物理化学稳定、能带带隙可调的直接宽禁带半导体材料,通过调节Al组分高于45%可实现日盲紫外本征截止,是发展全固态、高日盲/可见抑制比、抗辐射的日盲紫外焦平面成像探测器的理想材料。AlGaN is a direct wide-bandgap semiconductor material with physicochemical stability and adjustable band gap. By adjusting the Al composition higher than 45%, the solar-blind UV intrinsic cutoff can be achieved. Ideal material for suppression ratio, radiation-hardened solar-blind UV focal-plane imaging detectors.

正如背景技术部分所述,现有的日盲紫外焦平面成像探测器,环境光透过探测器阵列的台面阵列间隙,入射到读出电路,使读出电路产生可见光光谱响应,造成日盲紫外焦平面成像探测器日盲/可见抑制比较低。As described in the Background Art section, in the existing solar-blind UV focal plane imaging detector, ambient light passes through the mesa array gap of the detector array and is incident on the readout circuit, causing the readout circuit to generate a visible light spectral response, resulting in solar-blind UV light. Focal plane imaging detectors have low solar blindness/visibility suppression ratios.

有鉴于此,本申请提供了一种日盲紫外焦平面成像探测器,请参见图2,图2为本申请实施例所提供的一种日盲紫外焦平面成像探测器的结构示意图,该日盲紫外焦平面成像探测器包括:In view of this, the present application provides a solar-blind ultraviolet focal plane imaging detector, please refer to FIG. 2 , which is a schematic structural diagram of a solar-blind ultraviolet focal plane imaging detector provided by an embodiment of the present application. Blind UV focal plane imaging detectors include:

探测器阵列、读出电路12、钝化层10、具有第一通孔的金属层15、具有第二通孔的绝缘层16、填充物层13、连接柱11;a detector array, a readout circuit 12, a passivation layer 10, a metal layer 15 with a first through hole, an insulating layer 16 with a second through hole, a filler layer 13, and a connection post 11;

所述金属层15位于所述钝化层10的下表面,所述第一通孔对应所述探测器阵列中的P型电极,且所述第一通孔的尺寸小于所述P型电极的尺寸,以使所述金属层15对应所述探测器阵列中的台面阵列间隙和台面阵列表面未被所述P型电极覆盖的区域;The metal layer 15 is located on the lower surface of the passivation layer 10 , the first through hole corresponds to the P-type electrode in the detector array, and the size of the first through hole is smaller than that of the P-type electrode. size, so that the metal layer 15 corresponds to the mesa array gap in the detector array and the area of the mesa array surface not covered by the P-type electrode;

所述绝缘层16位于所述金属层15的下表面和所述第一通孔中,所述第二通孔对应所述第一通孔,且所述第二通孔的尺寸小于所述第一通孔的尺寸。The insulating layer 16 is located on the lower surface of the metal layer 15 and in the first through hole, the second through hole corresponds to the first through hole, and the size of the second through hole is smaller than that of the first through hole. The size of a through hole.

探测器阵列包括衬底1、成核层2、超晶格层3、本征AlGaN层4、N型AlGaN层5、由I型AlGaN层6和P型AlGaN层7形成的台面阵列、公共N型电极8、像素P型电极9,具体的,衬底1为双面抛光蓝宝石衬底,成核层2为AlN层,超晶格层3为AlGaN/AlN层。The detector array includes a substrate 1, a nucleation layer 2, a superlattice layer 3, an intrinsic AlGaN layer 4, an N-type AlGaN layer 5, a mesa array formed by an I-type AlGaN layer 6 and a P-type AlGaN layer 7, a common N Type electrode 8 and pixel P-type electrode 9, specifically, the substrate 1 is a double-sided polished sapphire substrate, the nucleation layer 2 is an AlN layer, and the superlattice layer 3 is an AlGaN/AlN layer.

读出电路12上设置有像元上电极14,像元上电极14连接有连接柱11,像素P型电极以及公共N型电极同样连接有连接柱11,通过连接柱11的相连使得探测器阵列和读出电路12混合集成。其中,连接柱11的材料一般选用铟,填充物层13的材料一般选用环氧树脂。The readout circuit 12 is provided with a pixel upper electrode 14, the pixel upper electrode 14 is connected with a connection column 11, the pixel P-type electrode and the common N-type electrode are also connected with the connection column 11, and the detector array is connected by the connection of the connection column 11. Mixed integration with readout circuit 12 . The material of the connection post 11 is generally indium, and the material of the filler layer 13 is generally epoxy resin.

需要说明的是,本申请中对读出电路12的类型不做具体限定,例如,所述读出电路12为CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)读出电路12或者CCD(Charge-coupled Device,电耦合元件)读出电路12。It should be noted that the type of the readout circuit 12 is not specifically limited in this application. For example, the readout circuit 12 is a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) readout circuit 12 or a CCD (Charge -coupled Device, electrically coupled element) readout circuit 12.

本申请中设置第一通孔对应P型电极且第一通孔的尺寸小于P型电极的尺寸的目的是,保证金属层15完全覆盖探测器阵列中的台面阵列间隙和台面阵列表面未被所述P型电极覆盖的区域,避免有光线照射到读出电路12上。可选的,第一通孔的边缘距P型电极的边缘的距离在1μm~2μm之间。In the present application, the purpose of setting the first through hole corresponding to the P-type electrode and the size of the first through hole is smaller than that of the P-type electrode is to ensure that the metal layer 15 completely covers the mesa array gap in the detector array and the surface of the mesa array is not covered. The area covered by the P-type electrode is used to prevent light from irradiating on the readout circuit 12 . Optionally, the distance between the edge of the first through hole and the edge of the P-type electrode is between 1 μm and 2 μm.

优选地,所述金属层15为铝层或者金层,由于金和铝对光线的反射率较高,可以更好的遮挡台面阵列间隙中的光线,其中,铝层的成本更低。Preferably, the metal layer 15 is an aluminum layer or a gold layer. Since gold and aluminum have high reflectivity to light, they can better block the light in the gap of the mesa array, wherein the cost of the aluminum layer is lower.

可选的,所述金属层15的厚度取值范围为200nm~300nm,包括端点值,避免金属层15的厚度太薄,导致光线透过金属层15照射到读出电路12上,同时避免金属层15的度太厚,浪费原材料,成本增加。Optionally, the thickness of the metal layer 15 ranges from 200 nm to 300 nm, including the endpoint value, to avoid that the thickness of the metal layer 15 is too thin, causing light to pass through the metal layer 15 and irradiate on the readout circuit 12, while avoiding the metal layer 15. If the thickness of the layer 15 is too thick, raw materials are wasted and the cost is increased.

金属层15中第一通孔的形状包括但不限于圆形、正方形、矩形。The shape of the first through hole in the metal layer 15 includes, but is not limited to, a circle, a square, and a rectangle.

本申请中对绝缘层16的材料不作具体限定,可自行设置。例如,所述绝缘层16为二氧化硅层或者氮化硅层。The material of the insulating layer 16 is not specifically limited in this application, and can be set by yourself. For example, the insulating layer 16 is a silicon dioxide layer or a silicon nitride layer.

需要指出的是,为了降低制作工艺难度,钝化层10的材料一般与绝缘层16的材料相同。It should be pointed out that, in order to reduce the difficulty of the manufacturing process, the material of the passivation layer 10 is generally the same as that of the insulating layer 16 .

可选的,所述绝缘层16的厚度取值范围为200nm~1μm,包括端点值,以保证绝缘层16具有良好的绝缘性。优选地,绝缘层16的厚度为500nm。Optionally, the thickness of the insulating layer 16 ranges from 200 nm to 1 μm, inclusive, to ensure that the insulating layer 16 has good insulating properties. Preferably, the thickness of the insulating layer 16 is 500 nm.

绝缘层16中第二通孔的形状包括但不限于圆形、正方形、矩形,第二通孔的尺寸小于第一通孔的尺寸,尺寸的差值范围可以在1μm~3μm之间。The shape of the second through hole in the insulating layer 16 includes, but is not limited to, circle, square, and rectangle. The size of the second through hole is smaller than the size of the first through hole, and the difference in size may range from 1 μm to 3 μm.

本申请中的日盲紫外焦平面成像探测器除了包括探测器阵列、读出电路12、钝化层10填充物层13、连接柱11,还包括具有第一通孔的金属层15和具有第二通孔的绝缘层16,绝缘层16避免金属层15与读出电路12之间发生短路,金属层15对应探测器阵列中的台面阵列间隙和台面阵列表面未被P型电极覆盖的区域,从而避免可见光通过阵列台面间隙入射到读出电路12上,避免读出电路12发生可见光光谱响应,进而提高日盲紫外焦平面成像探测器的日盲/可见抑制比。The solar-blind UV focal plane imaging detector in this application not only includes a detector array, a readout circuit 12, a passivation layer 10, a filler layer 13, and a connection post 11, but also includes a metal layer 15 with a first through hole and a metal layer 15 with a first through hole. The insulating layer 16 of the two through holes, the insulating layer 16 avoids short circuit between the metal layer 15 and the readout circuit 12, the metal layer 15 corresponds to the mesa array gap in the detector array and the area of the mesa array surface that is not covered by the P-type electrode, Thus, visible light is prevented from being incident on the readout circuit 12 through the array mesa gap, and visible light spectral response of the readout circuit 12 is avoided, thereby improving the solar blindness/visibility suppression ratio of the solar blind UV focal plane imaging detector.

图3为本申请的日盲紫外焦平面成像探测器和现有技术日盲紫外焦平面成像探测器的透射光谱对照图,横坐标为波长,纵坐标为透射率,图3中的实线表示本申请的日盲紫外焦平面成像探测器在不同波长下的透射率,虚线表示现有技术日盲紫外焦平面成像探测器在不同波长下的透射率,可以得出,本申请的日盲紫外焦平面成像探测器可见光/近红外光透射率小于1%,现有技术中日盲紫外焦平面成像探测器可见光/近红外光透射率高于25%,因此,本申请中的日盲紫外焦平面成像探测器的日盲/可见抑制比提升显著。Fig. 3 is the transmission spectrum comparison diagram of the solar-blind UV focal plane imaging detector of the present application and the prior art solar-blind UV focal plane imaging detector, the abscissa is the wavelength, the ordinate is the transmittance, and the solid line in Fig. 3 represents The transmittance of the solar-blind ultraviolet focal plane imaging detector of the present application at different wavelengths, the dotted line represents the transmittance of the solar-blind ultraviolet focal plane imaging detector of the prior art at different wavelengths, it can be concluded that the solar-blind ultraviolet focal plane imaging detector of the present application The visible light/near-infrared light transmittance of the focal plane imaging detector is less than 1%, and the visible light/near-infrared light transmittance of the solar-blind ultraviolet focal plane imaging detector in the prior art is higher than 25%. The helioblind/visible suppression ratio of the planar imaging detector is significantly improved.

本申请还提供一种日盲紫外焦平面成像探测器制备方法,请参见图4,图4为本申请实施例所提供的一种日盲紫外焦平面成像探测器制备方法流程图,该方法包括:The present application also provides a method for preparing a solar-blind ultraviolet focal plane imaging detector. Please refer to FIG. 4 . FIG. 4 is a flowchart of a method for preparing a solar-blind ultraviolet focal plane imaging detector provided by an embodiment of the application. The method includes: :

步骤S101:获得探测器阵列。Step S101: Obtain a detector array.

具体的,在衬底上生长成核层、超晶格层、本征AlGaN层、N型AlGaN层、I型AlGaN层、P型AlGaN层,并对I型AlGaN层、P型AlGaN层进行刻蚀形成台面阵列,并制作公共N型电极和像素P型电极,具体的制作过程已为本领域技术人员所熟知,此处不再详细赘述。Specifically, a nucleation layer, a superlattice layer, an intrinsic AlGaN layer, an N-type AlGaN layer, an I-type AlGaN layer, and a P-type AlGaN layer are grown on the substrate, and the I-type AlGaN layer and the P-type AlGaN layer are etched A mesa array is formed by etching, and a common N-type electrode and a pixel P-type electrode are fabricated. The specific fabrication process is well known to those skilled in the art and will not be described in detail here.

步骤S102:在所述探测器阵列的上表面制备钝化层。Step S102 : preparing a passivation layer on the upper surface of the detector array.

利用等离子体增强化学气相沉积工艺制备钝化层,优选地,控制钝化层的材料与绝缘层的材料一致,以便刻蚀形成第二通孔时,利用相同的刻蚀气体对钝化层和绝缘层一起刻蚀,降低制作工艺难度。The passivation layer is prepared by using a plasma enhanced chemical vapor deposition process. Preferably, the material of the passivation layer is controlled to be the same as the material of the insulating layer, so that when the second through hole is formed by etching, the passivation layer and the passivation layer are formed by using the same etching gas. The insulating layers are etched together to reduce the difficulty of the fabrication process.

步骤S103:在所述钝化层的上表面涂覆光刻胶层,并进行曝光、显影,以使所述光刻胶层对应所述探测器阵列中的台面阵列间隙和台面阵列表面未被P型电极覆盖的区域形成镂空区域,且所述光刻胶层的尺寸小于对应的所述P型电极的尺寸。Step S103: Coating a photoresist layer on the upper surface of the passivation layer, and performing exposure and development, so that the photoresist layer corresponds to the mesa array gap in the detector array and the surface of the mesa array is not free. The area covered by the P-type electrode forms a hollow area, and the size of the photoresist layer is smaller than the size of the corresponding P-type electrode.

需要说明的是,本申请中对光刻胶层的形状不作具体限定,视情况而定。例如,光刻胶层的形状可以为圆形、矩形、正方形等等。It should be noted that the shape of the photoresist layer is not specifically limited in this application, and it depends on the situation. For example, the shape of the photoresist layer may be circular, rectangular, square, or the like.

步骤S104:在所述光刻胶层的上表面制备金属层,并去除所述光刻胶层和层叠在所述光刻胶层表面的金属层,以使所述金属层具有第一通孔。Step S104 : preparing a metal layer on the upper surface of the photoresist layer, and removing the photoresist layer and the metal layer stacked on the surface of the photoresist layer, so that the metal layer has a first through hole .

可选的,所述在所述光刻胶层的上表面制备金属层包括:Optionally, the preparing a metal layer on the upper surface of the photoresist layer includes:

利用电子束蒸镀工艺或者磁控溅射工艺在所述光刻胶层的上表面制备所述金属层。The metal layer is prepared on the upper surface of the photoresist layer by an electron beam evaporation process or a magnetron sputtering process.

优选地,控制金属层为铝层或者金层,由于金和铝对光线的反射率较高,可以更好的遮挡台面阵列间隙中的光线,其中,铝层的成本更低。Preferably, the control metal layer is an aluminum layer or a gold layer. Since gold and aluminum have high reflectivity to light, they can better block light in the gap of the mesa array, wherein the cost of the aluminum layer is lower.

可选的,控制生成金属层的厚度范围在200nm~300nm,包括端点值,避免生成的金属层的厚度太薄,导致光线透过金属层照射到读出电路上,同时避免生成的金属层的度太厚,浪费原材料,成本增加。Optionally, the thickness of the generated metal layer is controlled to be in the range of 200nm to 300nm, including the endpoint value, to avoid the thickness of the generated metal layer being too thin, causing light to pass through the metal layer and irradiating the readout circuit, while avoiding the generated metal layer. If the thickness is too thick, raw materials are wasted and the cost increases.

具体的,利用lift-off工艺去除光刻胶层和层叠在光刻胶层表面的金属层,由于光刻胶层对应台面阵列间隙和台面阵列表面未被P型电极覆盖的区域为镂空区域,所以金属层形成在镂空区域的金属层直接与钝化层接触,也即得到的日盲紫外焦平面成像探测器中的金属层,另外,光刻胶层的尺寸小于对应的P型电极的尺寸,层叠在光刻胶层的金属层随着光刻胶一起被去除,即形成第一通孔,所以第一通孔对应P型电极且第一通孔的尺寸小于P型电极的尺寸。第一通孔的形状即为光刻胶层的形状。Specifically, the lift-off process is used to remove the photoresist layer and the metal layer stacked on the surface of the photoresist layer. Since the photoresist layer corresponds to the mesa array gap and the area of the mesa array surface that is not covered by the P-type electrode is a hollow area, Therefore, the metal layer formed in the hollow area is in direct contact with the passivation layer, that is, the metal layer in the solar-blind UV focal plane imaging detector obtained. In addition, the size of the photoresist layer is smaller than the size of the corresponding P-type electrode , the metal layer stacked on the photoresist layer is removed together with the photoresist, that is, a first through hole is formed, so the first through hole corresponds to the P-type electrode and the size of the first through hole is smaller than that of the P-type electrode. The shape of the first through hole is the shape of the photoresist layer.

步骤S105:在所述金属层的上表面制备绝缘层。Step S105 : preparing an insulating layer on the upper surface of the metal layer.

需要指出的是,由于金属层具有第一通孔,第一通孔内同样有绝缘层。It should be pointed out that since the metal layer has the first through hole, there is also an insulating layer in the first through hole.

利用等离子体增强化学气相沉积工艺在所述金属层的上表面制备所述绝缘层,本申请中对制备的绝缘层不做具体限定,可以为二氧化硅层或者氮化硅层。The insulating layer is prepared on the upper surface of the metal layer by a plasma-enhanced chemical vapor deposition process, and the prepared insulating layer is not specifically limited in this application, and may be a silicon dioxide layer or a silicon nitride layer.

可选的,控制生成绝缘层的厚度在200nm~1μm,包括端点值,以保证绝缘层具有良好的绝缘性。优选地,绝缘层的厚度为500nm。Optionally, the thickness of the generated insulating layer is controlled to be between 200 nm and 1 μm, including the endpoint value, to ensure that the insulating layer has good insulating properties. Preferably, the thickness of the insulating layer is 500 nm.

步骤S106:对位于所述第一通孔内的所述绝缘层和所述钝化层进行刻蚀形成第二通孔,且所述第二通孔的尺寸小于所述第一通孔的尺寸,所述第二通孔止于所述P型电极的表面,得到处理后探测器阵列。Step S106 : etching the insulating layer and the passivation layer in the first through hole to form a second through hole, and the size of the second through hole is smaller than the size of the first through hole , the second through hole ends at the surface of the P-type electrode, and the processed detector array is obtained.

可选的,所述对位于所述第一通孔内的所述绝缘层和所述钝化层进行刻蚀形成第二通孔包括:Optionally, the etching of the insulating layer and the passivation layer in the first through hole to form the second through hole includes:

利用光刻和等离子体刻蚀工艺,对位于所述第一通孔内的所述绝缘层和所述钝化层进行刻蚀形成所述第二通孔。The second through hole is formed by etching the insulating layer and the passivation layer in the first through hole by using photolithography and plasma etching processes.

步骤S107:利用倒装焊接技术使读出电路和所述处理后探测器阵列通过连接柱相连,并在所述读出电路和所述绝缘层之间形成填充物层。Step S107 : using flip-chip bonding technology to connect the readout circuit and the processed detector array through connecting posts, and form a filler layer between the readout circuit and the insulating layer.

需要说明的是,将读出电路与探测器阵列利用连接柱连接以及制备填充物的过程与现有技术中一致,已为本领域技术人员所熟知,此处不再详细赘述。It should be noted that the process of connecting the readout circuit and the detector array by connecting posts and preparing the filler is consistent with the prior art, which is well known to those skilled in the art, and will not be described in detail here.

本申请中的日盲紫外焦平面成像探测器制作方法制得的日盲紫外焦平面成像探测器探测器,除了包括探测器阵列、读出电路、钝化层填充物层、连接柱,还包括具有第一通孔的金属层和具有第二通孔的绝缘层,绝缘层避免金属层与读出电路之间发生短路,金属层对应探测器阵列中的台面阵列间隙和台面阵列表面未被P型电极覆盖的区域,从而避免可见光通过阵列台面间隙入射到读出电路上,避免读出电路发生可见光光谱响应,进而提高日盲紫外焦平面成像探测器的日盲/可见抑制比。The solar-blind UV focal-plane imaging detector detector prepared by the solar-blind UV focal-plane imaging detector manufacturing method in the present application includes, in addition to a detector array, a readout circuit, a passivation layer filling layer, and a connecting column, and also includes A metal layer with a first through hole and an insulating layer with a second through hole, the insulating layer avoids short circuit between the metal layer and the readout circuit, the metal layer corresponds to the mesa array gap in the detector array and the surface of the mesa array is not protected by P Therefore, the visible light can be prevented from being incident on the readout circuit through the gap of the array mesa, and the visible light spectral response of the readout circuit can be avoided, thereby improving the solar-blind/visible suppression ratio of the solar-blind UV focal plane imaging detector.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments may be referred to each other. As for the device disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.

以上对本申请所提供的日盲紫外焦平面成像探测器及其制作方法进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。The solar-blind ultraviolet focal plane imaging detector and its fabrication method provided by the present application are described in detail above. Specific examples are used herein to illustrate the principles and implementations of the present application, and the descriptions of the above embodiments are only used to help understand the methods and core ideas of the present application. It should be pointed out that for those of ordinary skill in the art, without departing from the principles of the present application, several improvements and modifications can also be made to the present application, and these improvements and modifications also fall within the protection scope of the claims of the present application.

Claims (10)

1.一种日盲紫外焦平面成像探测器,其特征在于,包括探测器阵列、读出电路、钝化层、具有第一通孔的金属层、具有第二通孔的绝缘层、填充物层、连接柱;1. A solar-blind ultraviolet focal plane imaging detector, characterized in that, comprising a detector array, a readout circuit, a passivation layer, a metal layer with a first through hole, an insulating layer with a second through hole, a filler layer, connecting column; 所述金属层位于所述钝化层的下表面,所述第一通孔对应所述探测器阵列中的P型电极,且所述第一通孔的尺寸小于所述P型电极的尺寸,以使所述金属层对应所述探测器阵列中的台面阵列间隙和台面阵列表面未被所述P型电极覆盖的区域;The metal layer is located on the lower surface of the passivation layer, the first through hole corresponds to the P-type electrode in the detector array, and the size of the first through hole is smaller than the size of the P-type electrode, so that the metal layer corresponds to the mesa array gap in the detector array and the area of the mesa array surface not covered by the P-type electrode; 所述绝缘层位于所述金属层的下表面和所述第一通孔中,所述第二通孔对应所述第一通孔,且所述第二通孔的尺寸小于所述第一通孔的尺寸。The insulating layer is located on the lower surface of the metal layer and in the first through hole, the second through hole corresponds to the first through hole, and the size of the second through hole is smaller than that of the first through hole size of the hole. 2.如权利要求1所述的日盲紫外焦平面成像探测器,其特征在于,所述金属层为铝层或者金层。2 . The solar-blind ultraviolet focal plane imaging detector according to claim 1 , wherein the metal layer is an aluminum layer or a gold layer. 3 . 3.如权利要求1或2所述的日盲紫外焦平面成像探测器,其特征在于,所述绝缘层为二氧化硅层或者氮化硅层。3. The solar-blind ultraviolet focal plane imaging detector according to claim 1 or 2, wherein the insulating layer is a silicon dioxide layer or a silicon nitride layer. 4.如权利要求3所述的日盲紫外焦平面成像探测器,其特征在于,所述读出电路为CMOS读出电路或者CCD读出电路。4. The solar-blind ultraviolet focal plane imaging detector according to claim 3, wherein the readout circuit is a CMOS readout circuit or a CCD readout circuit. 5.如权利要求4所述的日盲紫外焦平面成像探测器,其特征在于,所述金属层的厚度取值范围为200nm~300nm,包括端点值。5 . The solar-blind ultraviolet focal plane imaging detector according to claim 4 , wherein the thickness of the metal layer ranges from 200 nm to 300 nm, inclusive. 6 . 6.如权利要求5所述的日盲紫外焦平面成像探测器,其特征在于,所述绝缘层的厚度取值范围为200nm~1μm,包括端点值。6 . The solar-blind ultraviolet focal plane imaging detector according to claim 5 , wherein the thickness of the insulating layer ranges from 200 nm to 1 μm, inclusive. 6 . 7.一种日盲紫外焦平面成像探测器制备方法,其特征在于,包括:7. A method for preparing a solar-blind ultraviolet focal plane imaging detector, comprising: 获得探测器阵列;obtain a detector array; 在所述探测器阵列的上表面制备钝化层;preparing a passivation layer on the upper surface of the detector array; 在所述钝化层的上表面涂覆光刻胶层,并进行曝光、显影,以使所述光刻胶层对应所述探测器阵列中的台面阵列间隙和台面阵列表面未被P型电极覆盖的区域形成镂空区域,且所述光刻胶层的尺寸小于对应的所述P型电极的尺寸;A photoresist layer is coated on the upper surface of the passivation layer, and exposed and developed, so that the photoresist layer corresponds to the mesa array gap in the detector array and the surface of the mesa array is free from P-type electrodes The covered area forms a hollow area, and the size of the photoresist layer is smaller than the size of the corresponding P-type electrode; 在所述光刻胶层的上表面制备金属层,并去除所述光刻胶层和层叠在所述光刻胶层表面的金属层,以使所述金属层具有第一通孔;A metal layer is prepared on the upper surface of the photoresist layer, and the photoresist layer and the metal layer stacked on the surface of the photoresist layer are removed, so that the metal layer has a first through hole; 在所述金属层的上表面制备绝缘层;preparing an insulating layer on the upper surface of the metal layer; 对位于所述第一通孔内的所述绝缘层和所述钝化层进行刻蚀形成第二通孔,且所述第二通孔的尺寸小于所述第一通孔的尺寸,所述第二通孔止于所述P型电极的表面,得到处理后探测器阵列;etching the insulating layer and the passivation layer in the first through hole to form a second through hole, and the size of the second through hole is smaller than the size of the first through hole, the The second through hole ends at the surface of the P-type electrode to obtain a processed detector array; 利用倒装焊接技术使读出电路和所述处理后探测器阵列通过连接柱相连,并在所述读出电路和所述绝缘层之间形成填充物层。The readout circuit and the processed detector array are connected by connecting posts using flip-chip bonding technology, and a filler layer is formed between the readout circuit and the insulating layer. 8.如权利要求7所述的日盲紫外焦平面成像探测器制备方法,其特征在于,所述在所述光刻胶层的上表面制备金属层包括:8. The method for preparing a solar-blind ultraviolet focal plane imaging detector according to claim 7, wherein the preparing a metal layer on the upper surface of the photoresist layer comprises: 利用电子束蒸镀工艺或者磁控溅射工艺在所述光刻胶层的上表面制备所述金属层。The metal layer is prepared on the upper surface of the photoresist layer by an electron beam evaporation process or a magnetron sputtering process. 9.如权利要求8所述的日盲紫外焦平面成像探测器制备方法,其特征在于,所述在所述金属层的上表面制备绝缘层包括:9. The method for preparing a solar-blind ultraviolet focal plane imaging detector according to claim 8, wherein the preparing an insulating layer on the upper surface of the metal layer comprises: 利用等离子体增强化学气相沉积工艺在所述金属层的上表面制备所述绝缘层。The insulating layer is formed on the upper surface of the metal layer using a plasma enhanced chemical vapor deposition process. 10.如权利要求9所述的日盲紫外焦平面成像探测器制备方法,其特征在于,所述对位于所述第一通孔内的所述绝缘层和所述钝化层进行刻蚀形成第二通孔包括:10 . The method for preparing a solar-blind ultraviolet focal plane imaging detector according to claim 9 , wherein the insulating layer and the passivation layer located in the first through hole are formed by etching. 11 . The second through hole includes: 利用光刻和等离子体刻蚀工艺,对位于所述第一通孔内的所述绝缘层和所述钝化层进行刻蚀形成所述第二通孔。The second through hole is formed by etching the insulating layer and the passivation layer in the first through hole by using photolithography and plasma etching processes.
CN202010995497.0A 2020-09-21 2020-09-21 Solar blind ultraviolet focal plane imaging detector and manufacturing method thereof Pending CN112086436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010995497.0A CN112086436A (en) 2020-09-21 2020-09-21 Solar blind ultraviolet focal plane imaging detector and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010995497.0A CN112086436A (en) 2020-09-21 2020-09-21 Solar blind ultraviolet focal plane imaging detector and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN112086436A true CN112086436A (en) 2020-12-15

Family

ID=73739302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010995497.0A Pending CN112086436A (en) 2020-09-21 2020-09-21 Solar blind ultraviolet focal plane imaging detector and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN112086436A (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2405204Y (en) * 1999-12-10 2000-11-08 中国科学院上海技术物理研究所 Photovoltaic prober array having micro-light cone
CN1426115A (en) * 2002-11-18 2003-06-25 中国科学院上海技术物理研究所 Gallium nitride base detector without visible light interference read out circuit and preparing method
US6630736B1 (en) * 2000-07-27 2003-10-07 National Semiconductor Corporation Light barrier for light sensitive semiconductor devices
CN101228631A (en) * 2005-06-02 2008-07-23 索尼株式会社 Solid imaging element and manufacturing method thereof
US7972885B1 (en) * 2008-09-25 2011-07-05 Banpil Photonics, Inc. Broadband imaging device and manufacturing thereof
CN102244146A (en) * 2011-07-01 2011-11-16 中国科学院半导体研究所 GaN-base ultraviolet detector area array which does not transmit infrared light and visible light
CN103633107A (en) * 2013-12-16 2014-03-12 中国电子科技集团公司第四十四研究所 Focal plane detector installation structure
US20160307956A1 (en) * 2015-04-19 2016-10-20 Semi Conductor Devices-An Elbit Systems-Rafael Partnership Semiconductor device
US20180342635A1 (en) * 2017-05-24 2018-11-29 Sumitomo Electric Industries, Ltd. Light receiving device and method of producing light receiving device
CN108987523A (en) * 2017-06-05 2018-12-11 北京弘芯科技有限公司 Infrared focal plane detector and preparation method thereof
CN109616529A (en) * 2018-12-07 2019-04-12 中国科学院长春光学精密机械与物理研究所 A kind of ultraviolet detector and preparation method thereof
CN109659398A (en) * 2018-12-26 2019-04-19 中南大学 A kind of AlGaN base carries on the back the preparation method into formula MSM ultraviolet focal-plane array imaging system
CN110047968A (en) * 2019-04-17 2019-07-23 中南大学 A kind of preparation method of AlGaN base 3D flip chip bonding MSM array ultraviolet detector
CN110047956A (en) * 2019-04-25 2019-07-23 南京大学 Planes AlGaN base schottky type ultraviolet detector such as non-with light blocking layer and preparation method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2405204Y (en) * 1999-12-10 2000-11-08 中国科学院上海技术物理研究所 Photovoltaic prober array having micro-light cone
US6630736B1 (en) * 2000-07-27 2003-10-07 National Semiconductor Corporation Light barrier for light sensitive semiconductor devices
CN1426115A (en) * 2002-11-18 2003-06-25 中国科学院上海技术物理研究所 Gallium nitride base detector without visible light interference read out circuit and preparing method
CN101228631A (en) * 2005-06-02 2008-07-23 索尼株式会社 Solid imaging element and manufacturing method thereof
US7972885B1 (en) * 2008-09-25 2011-07-05 Banpil Photonics, Inc. Broadband imaging device and manufacturing thereof
CN102244146A (en) * 2011-07-01 2011-11-16 中国科学院半导体研究所 GaN-base ultraviolet detector area array which does not transmit infrared light and visible light
CN103633107A (en) * 2013-12-16 2014-03-12 中国电子科技集团公司第四十四研究所 Focal plane detector installation structure
US20160307956A1 (en) * 2015-04-19 2016-10-20 Semi Conductor Devices-An Elbit Systems-Rafael Partnership Semiconductor device
US20180342635A1 (en) * 2017-05-24 2018-11-29 Sumitomo Electric Industries, Ltd. Light receiving device and method of producing light receiving device
CN108987523A (en) * 2017-06-05 2018-12-11 北京弘芯科技有限公司 Infrared focal plane detector and preparation method thereof
CN109616529A (en) * 2018-12-07 2019-04-12 中国科学院长春光学精密机械与物理研究所 A kind of ultraviolet detector and preparation method thereof
CN109659398A (en) * 2018-12-26 2019-04-19 中南大学 A kind of AlGaN base carries on the back the preparation method into formula MSM ultraviolet focal-plane array imaging system
CN110047968A (en) * 2019-04-17 2019-07-23 中南大学 A kind of preparation method of AlGaN base 3D flip chip bonding MSM array ultraviolet detector
CN110047956A (en) * 2019-04-25 2019-07-23 南京大学 Planes AlGaN base schottky type ultraviolet detector such as non-with light blocking layer and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
叶嗣荣,刘小芹,赵文伯,周家万,钟强: ""非等平面AlGaN紫外探测器阵列挡光技术研究"", 《半导体光电》 *

Similar Documents

Publication Publication Date Title
US7566875B2 (en) Single-chip monolithic dual-band visible- or solar-blind photodetector
CN101313413B (en) Photoelectric converter
US7381966B2 (en) Single-chip monolithic dual-band visible- or solar-blind photodetector
US9577121B2 (en) Tetra-lateral position sensing detector
JP4944590B2 (en) Method for manufacturing thermal infrared detector
JP2007171170A (en) Method for manufacturing thermal type infrared sensing device
US10910425B2 (en) Solid-state image sensor
CN113889493B (en) Metal Deep Trench Isolation Bias Solutions
CN111433918B (en) Germanium on insulator for CMOS imagers in the short wave infrared
KR20190055746A (en) Polarizers for image sensor devices
CN111223957B (en) Fabry Luo Gongzhen near-infrared thermal electron photoelectric detector and preparation method thereof
JP2008270529A (en) Semiconductor light receiving device, light receiving module, and method of manufacturing semiconductor light receiving device
CN114497244B (en) Infrared detector chip and manufacturing method and application thereof
CN112086436A (en) Solar blind ultraviolet focal plane imaging detector and manufacturing method thereof
JP4823619B2 (en) Photoelectric conversion element, fixed imaging device, imaging apparatus, and image reading apparatus
CN110690235A (en) Detector array chip and preparation method thereof
JP5779005B2 (en) Ultraviolet light receiving element and manufacturing method thereof
TWI790638B (en) Image sensor device and method of forming the same
CN115985979A (en) Epitaxial wafer of high-performance infrared photoelectric detector and preparation method thereof
CN113678266B (en) Semiconductor light receiving element
CN110690314B (en) Ultraviolet detector with absorption layer and multiplication layer in separate structures and preparation method thereof
JP2011228732A (en) Photoelectric conversion element, solid-state imaging device, imaging apparatus, and image reader
TWI783805B (en) Optoelectronic semiconductor structure
CN116779630B (en) Image sensor and manufacturing method thereof
US20230268364A1 (en) Solid-state image sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201215

RJ01 Rejection of invention patent application after publication