CN112083791B - Chip power consumption optimization method, apparatus, computer equipment and storage medium - Google Patents
Chip power consumption optimization method, apparatus, computer equipment and storage medium Download PDFInfo
- Publication number
- CN112083791B CN112083791B CN202010969527.0A CN202010969527A CN112083791B CN 112083791 B CN112083791 B CN 112083791B CN 202010969527 A CN202010969527 A CN 202010969527A CN 112083791 B CN112083791 B CN 112083791B
- Authority
- CN
- China
- Prior art keywords
- power
- wake
- power domain
- mode
- domain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 91
- 238000005457 optimization Methods 0.000 title abstract description 18
- 230000008569 process Effects 0.000 claims abstract description 36
- 230000004044 response Effects 0.000 claims abstract description 14
- 238000002955 isolation Methods 0.000 claims description 42
- 230000014759 maintenance of location Effects 0.000 claims description 22
- 238000004590 computer program Methods 0.000 claims description 17
- 230000003068 static effect Effects 0.000 claims description 11
- 230000001960 triggered effect Effects 0.000 claims description 11
- 238000004891 communication Methods 0.000 claims description 8
- 238000004886 process control Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/3237—Power saving characterised by the action undertaken by disabling clock generation or distribution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/3287—Power saving characterised by the action undertaken by switching off individual functional units in the computer system
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- Power Sources (AREA)
Abstract
本申请涉及一种芯片功耗优化方法、装置、计算机设备和存储介质。采用本申请能够完成了芯片功耗优化的自动管理过程,且能够进一步节省功耗。该方法包括:通过将唤醒模式指令和掉电模式指令分别存储于唤醒模式寄存器和掉电模式寄存器中,响应于上述掉电模式指令,触发掉电使能寄存器启动掉电流程并在掉电流程中控制由上述掉电模式指令指定的电源域进入低功耗模式;接收上述唤醒源信息对应的唤醒源产生的唤醒信号;若该唤醒信号为有效唤醒信号,则控制由上述唤醒模式指令指定的电源域进入上述电源开关模式。
The present application relates to a chip power consumption optimization method, apparatus, computer equipment and storage medium. By adopting the present application, the automatic management process of chip power consumption optimization can be completed, and the power consumption can be further saved. The method includes: by storing the wake-up mode command and the power-down mode command in the wake-up mode register and the power-down mode register, respectively, in response to the power-down mode command, triggering the power-down enable register to start the power-down process, and in the power-down process control the power domain specified by the above power-down mode command to enter the low power consumption mode; receive the wake-up signal generated by the wake-up source corresponding to the above-mentioned wake-up source information; if the wake-up signal is a valid wake-up signal, control the wake-up mode command specified above. The power domain enters the power switch mode described above.
Description
技术领域technical field
本申请涉及电池技术领域,特别是涉及一种芯片功耗优化方法、装置、计算机设备和存储介质。The present application relates to the field of battery technology, and in particular, to a method, device, computer equipment and storage medium for optimizing chip power consumption.
背景技术Background technique
随着物联网技术的发展,人们对可穿戴电子产品的需求提高,同时对可穿戴电子产品的电池续航能力有了更进一步的要求,而受到电池容量发展的限制,芯片的功耗优化越来越受到重视。With the development of Internet of Things technology, people's demand for wearable electronic products has increased, and at the same time, there are further requirements for the battery life of wearable electronic products. Limited by the development of battery capacity, the power consumption optimization of chips is becoming more and more important. received attention.
芯片功耗优化技术有很多,多电源域技术是其中一种有效且被广泛使用的技术。多电源域技术将芯片架构划分为多个电源域分别供电,每个电源域可以根据需要使用不同的电压供电,并且在不需要某个电源域工作时,可将该电源域的电源关掉,达到降低芯片功耗的目的。There are many chip power optimization technologies, and the multi-power domain technology is one of the effective and widely used technologies. The multi-power domain technology divides the chip architecture into multiple power domains to supply power separately. Each power domain can use different voltages to supply power as needed, and when a power domain is not required to work, the power of the power domain can be turned off. To achieve the purpose of reducing chip power consumption.
目前的多电源域技术在芯片处于一些模式下时还不足以降低功耗,不能满足目前人们对芯片续航能力的需求。The current multi-power domain technology is not enough to reduce power consumption when the chip is in some modes, and cannot meet the current demand for chip endurance.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对上述技术问题,提供一种芯片功耗优化方法、装置、计算机设备和存储介质。Based on this, it is necessary to provide a method, apparatus, computer device and storage medium for optimizing chip power consumption in response to the above technical problems.
一种芯片功耗优化方法,所述方法包括:A method for optimizing chip power consumption, the method comprising:
将唤醒模式指令存储于唤醒模式寄存器中;所述唤醒模式指令携带唤醒源信息和芯片系统被唤醒后所述芯片系统进入的电源开关模式;The wake-up mode instruction is stored in the wake-up mode register; the wake-up mode instruction carries the wake-up source information and the power switch mode entered by the chip system after the chip system is woken up;
将掉电模式指令存储于掉电模式寄存器中;Store the power-down mode command in the power-down mode register;
响应于所述掉电模式指令,触发掉电使能寄存器启动掉电流程并在所述掉电流程中控制由所述掉电模式指令指定的电源域进入低功耗模式中;In response to the power-down mode instruction, trigger the power-down enable register to start the power-down process and control the power domain specified by the power-down mode instruction to enter the low power consumption mode in the power-down process;
接收所述唤醒源信息对应的唤醒源产生的唤醒信号;receiving a wake-up signal generated by a wake-up source corresponding to the wake-up source information;
若所述唤醒信号为有效唤醒信号,则控制由所述唤醒模式指令指定的电源域进入所述电源开关模式。If the wake-up signal is a valid wake-up signal, the power domain specified by the wake-up mode instruction is controlled to enter the power switch mode.
在其中一个实施例中,还包括,所述芯片系统包括多个电源域;各电源域两两之间设有电平转换器或隔离单元;其中,In one of the embodiments, it further includes that the chip system includes a plurality of power domains; a level converter or an isolation unit is arranged between each power domain; wherein,
两电源域各自的供电电压的差值的绝对值大于预设值,且所述两电源域之间有数字信号通信的情况下,所述两电源域之间设有所述电平转换器;When the absolute value of the difference between the respective power supply voltages of the two power supply domains is greater than a preset value, and there is digital signal communication between the two power supply domains, the level converter is provided between the two power supply domains;
两电源域之间有数字信号通信,且所述两电源域之间存在其中一个掉电而另一个不掉电的情况下,所述两电源域之间设有所述隔离单元。The isolation unit is provided between the two power domains when there is digital signal communication between the two power domains, and one of the two power domains is powered down and the other is not powered off.
在其中一个实施例中,所述响应于所述掉电模式指令,触发掉电使能寄存器启动掉电流程并在所述掉电流程中控制由所述掉电模式指令指定的电源域进入低功耗模式中,包括:In one embodiment, in response to the power-down mode command, triggering a power-down enable register to initiate a power-down process and control the power domain specified by the power-down mode command to enter a low state during the power-down process power modes, including:
根据所述掉电模式指令,触发所述掉电使能寄存器向由所述掉电模式指令指定的电源域发送掉电使能信号,以使所述掉电模式指令指定的电源域的时钟信号关闭;According to the power-down mode command, the power-down enable register is triggered to send a power-down enable signal to the power domain specified by the power-down mode command, so as to enable the clock signal of the power domain specified by the power-down mode command closure;
响应于所述时钟信号关闭,触发所述掉电模式指令指定的电源域复位;triggering a reset of the power domain specified by the power-down mode instruction in response to the clock signal being turned off;
将与复位后的由所述掉电模式指令指定的电源域对应的所述隔离单元使能,并将所述复位后的由所述掉电模式指令指定的电源域对应的电压控制器关闭。The isolation unit corresponding to the power domain specified by the power-down mode command after reset is enabled, and the voltage controller corresponding to the power domain specified by the power-down mode command after the reset is turned off.
在其中一个实施例中,所述控制由所述唤醒模式指令指定的电源域进入所述电源开关模式,包括:In one embodiment, the controlling the power domain specified by the wake-up mode instruction to enter the power switch mode includes:
根据所述有效唤醒信号,将所述由所述唤醒模式指令指定的电源域对应的电压控制器打开,并将所述由所述唤醒模式指令指定的电源域解复位;According to the valid wake-up signal, turn on the voltage controller corresponding to the power domain specified by the wake-up mode command, and de-reset the power domain specified by the wake-up mode command;
将与解复位后的所述由所述唤醒模式指令指定的电源域对应的隔离单元去使能;disabling the isolation unit corresponding to the power supply domain specified by the wake-up mode command after de-resetting;
重启所述由所述唤醒模式指令指定的电源域对应的时钟信号。Restart the clock signal corresponding to the power domain specified by the wake-up mode instruction.
在其中一个实施例中,所述芯片系统包括常开电源域和触发器;所述方法还包括:In one of the embodiments, the chip system includes a normally-on power supply domain and a flip-flop; the method further includes:
所述唤醒源信息为内部唤醒信号无效的情况下,若所述掉电模式指令包括深度睡眠模式或静态存储器保留模式其中之一,则通过所述触发器触发所述常开电源域的时钟信号关闭。When the wake-up source information is an invalid internal wake-up signal, if the power-down mode command includes one of deep-sleep mode or static memory retention mode, the trigger is used to trigger the clock signal of the normally-on power domain. closure.
在其中一个实施例中,所述通过所述触发器触发所述常开电源域的时钟信号关闭之后,所述方法还包括:In one of the embodiments, after the triggering of the trigger by the flip-flop to turn off the clock signal of the normally-on power domain, the method further includes:
所述唤醒源信息为内部唤醒信号无效且外部唤醒信号有效的情况下,被触发复位的所述触发器产生时钟使能信号并发送至所述常开电源域,以使所述常开电源域重启时钟信号。When the wake-up source information is that the internal wake-up signal is invalid and the external wake-up signal is valid, the flip-flop triggered to reset generates a clock enable signal and sends it to the normally-on power domain, so that the normally-on power domain Restart the clock signal.
在其中一个实施例中,所述芯片系统包括软件唤醒寄存器;所述方法还包括:In one of the embodiments, the chip system includes a software wake-up register; the method further includes:
当所述低功耗模式为闪存关闭模式、蓝牙关闭模式或闪存与蓝牙同时关闭模式其中之一时,将所述有效唤醒信号作为软件唤醒指令并存储于所述软件唤醒寄存器中;When the low power consumption mode is one of flash off mode, bluetooth off mode or flash memory and bluetooth off mode at the same time, use the valid wake-up signal as a software wake-up command and store it in the software wake-up register;
根据所述软件唤醒指令,将所述软件唤醒指令指定的电源域对应的电压控制器打开;所述软件唤醒指令指定的电源域为闪存电源域或蓝牙电源域;According to the software wake-up command, the voltage controller corresponding to the power domain specified by the software wake-up command is turned on; the power domain specified by the software wake-up command is a flash power domain or a Bluetooth power domain;
将所述软件唤醒指令指定的电源域解复位;De-reset the power domain specified by the software wake-up instruction;
将与解复位后的所述软件唤醒指令指定的电源域对应的隔离单元去使能;disabling the isolation unit corresponding to the power supply domain specified by the software wake-up command after de-resetting;
重启所述软件唤醒指令指定的电源域对应的时钟信号。Restart the clock signal corresponding to the power domain specified by the software wake-up instruction.
一种芯片功耗优化装置,所述装置包括:A device for optimizing chip power consumption, the device comprising:
唤醒模式指令存储模块,用于将唤醒模式指令存储于唤醒模式寄存器中;所述唤醒模式指令携带唤醒源信息和芯片系统被唤醒后所述芯片系统进入的电源开关模式;a wake-up mode instruction storage module, used for storing the wake-up mode instruction in the wake-up mode register; the wake-up mode instruction carries the wake-up source information and the power switch mode entered by the chip system after the chip system is woken up;
掉电模式指令存储模块,用于将掉电模式指令存储于掉电模式寄存器中;The power-down mode command storage module is used to store the power-down mode command in the power-down mode register;
电源域掉电模块,用于响应于所述掉电模式指令,触发掉电使能寄存器启动掉电流程并在所述掉电流程中控制由所述掉电模式指令指定的电源域进入低功耗模式中;A power domain power-down module, configured to trigger a power-down enable register to start a power-down process in response to the power-down mode command, and control the power domain specified by the power-down mode command to enter a low-power state during the power-down process in consumption mode;
唤醒信号接收模块,用于接收所述唤醒源信息对应的唤醒源产生的唤醒信号;a wake-up signal receiving module, configured to receive a wake-up signal generated by a wake-up source corresponding to the wake-up source information;
电源域唤醒模块,用于若所述唤醒信号为有效唤醒信号,则控制由所述唤醒模式指令指定的电源域进入所述电源开关模式。A power domain wake-up module, configured to control the power domain specified by the wake-up mode instruction to enter the power switch mode if the wake-up signal is a valid wake-up signal.
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一种芯片功耗优化方法的步骤。A computer device includes a memory and a processor, wherein the memory stores a computer program, and when the processor executes the computer program, the steps of any of the above-mentioned methods for optimizing chip power consumption are implemented.
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种芯片功耗优化方法的步骤。A computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of any one of the above-mentioned methods for optimizing chip power consumption.
上述芯片功耗优化方法、装置、计算机设备和存储介质,通过将唤醒模式指令和掉电模式指令分别存储于唤醒模式寄存器和掉电模式寄存器中,响应于上述掉电模式指令,触发掉电使能寄存器启动掉电流程并在掉电流程中控制由上述掉电模式指令指定的电源域进入低功耗模式;接收上述唤醒源信息对应的唤醒源产生的唤醒信号;若该唤醒信号为有效唤醒信号,则控制由上述唤醒模式指令指定的电源域进入上述电源开关模式。该芯片功耗优化方法通过预设的寄存器预先存储相应的唤醒模式指令或掉电模式指令,在掉电模式指令的触发下进入相应的低功耗模式,并在指定的唤醒信号和唤醒模式指令的触发下进入对应的电源开关模式,完成了芯片功耗优化的自动管理过程,且能够进一步节省芯片功耗。The above-mentioned chip power consumption optimization method, device, computer equipment and storage medium, by storing the wake-up mode command and the power-down mode command in the wake-up mode register and the power-down mode register, respectively, in response to the power-down mode command, triggering the power-down mode command. The power register starts the power-down process and controls the power domain specified by the above power-down mode command to enter the low-power mode in the power-down process; receives the wake-up signal generated by the wake-up source corresponding to the above wake-up source information; if the wake-up signal is a valid wake-up signal, then control the power domain specified by the above wake-up mode command to enter the above-mentioned power switch mode. The chip power consumption optimization method pre-stores the corresponding wake-up mode command or power-down mode command through a preset register, enters the corresponding low-power mode under the trigger of the power-down mode command, and executes the specified wake-up signal and wake-up mode command. The corresponding power switch mode is entered under the trigger of the , and the automatic management process of chip power consumption optimization is completed, and the power consumption of the chip can be further saved.
附图说明Description of drawings
图1为一个实施例中芯片功耗优化方法的芯片电源域架构图;1 is an architecture diagram of a chip power domain of a method for optimizing chip power consumption in one embodiment;
图2为一个实施例中芯片功耗优化方法的流程示意图;2 is a schematic flowchart of a method for optimizing chip power consumption in one embodiment;
图3为一个实施例中触发器的结构示意图;3 is a schematic structural diagram of a flip-flop in one embodiment;
图4为另一个实施例中芯片功耗优化方法的流程示意图;4 is a schematic flowchart of a method for optimizing chip power consumption in another embodiment;
图5为一个实施例中芯片功耗优化装置的结构框图;5 is a structural block diagram of an apparatus for optimizing chip power consumption in one embodiment;
图6为一个实施例中计算机设备的内部结构图。FIG. 6 is a diagram of the internal structure of a computer device in one embodiment.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clearly understood, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
本申请提供的芯片功耗优化方法,可以应用于如图1所示的芯片电源域架构中。其中,整个芯片系统被划分成5个电源域,分别为电源域1(Always-on domain,常开电源域)、电源域2(Retention SRAM domain,静态存储器电源域)、电源域3(CORE domain,核心电源域)、电源域4(BLE domain,蓝牙电源域)、电源域5(FLASH domain,闪存电源域),各电源域采用各自的电压供电,如图1所示。The chip power consumption optimization method provided by the present application can be applied to the chip power domain architecture as shown in FIG. 1 . Among them, the entire chip system is divided into 5 power domains, namely power domain 1 (Always-on domain, normally open power domain), power domain 2 (Retention SRAM domain, static memory power domain), power domain 3 (CORE domain) , core power domain), power domain 4 (BLE domain, Bluetooth power domain), power domain 5 (FLASH domain, flash memory power domain), each power domain uses its own voltage to supply power, as shown in Figure 1.
电源域1(Always-on domain,常开电源域)由外部电源VCC供电,供电电压为1.8V~3.6V。电源域1的电源是常开的。电源域1包括电源管理单元(PMU),还包括该电源管理单元的控制器(AON)。电源管理单元PMU主要包括电源域2的电压控制器(LPLDO_SRAM),电源域3的电压控制器(MLDO_CORE),电源域4的电压控制器(MLDO_RF),电源域5的电压控制器(LPLDO_FLASH)。其中电源域2的电压控制器LPLDO_SRAM输出1.2V电压给电源域2,电源域3的电压控制器MLDO_CORE输出1.2V电压给电源域3,电源域4的电压控制器MLDO_RF输出1.3V电压给电源域4,LPLDO_FLASH输出1.2V电压给电源域5。Power domain 1 (Always-on domain, normally-on power domain) is powered by an external power supply VCC, and the power supply voltage is 1.8V to 3.6V. The power supply of
电源域2由电源域1中的LPLDO_SRAM供电。电源域2中包含多块SRAM,在电源域2内部每块SRAM有独立的电源开关。当系统正常工作时,这几个SRAM可以作为普通SRAM使用;当其他可掉电的电源域都掉电时,可以选择让电源域2中的一块或多块SRAM不掉电,此时不掉电的SRAM发挥数据保留功能,用来存储掉电后不想丢失的数据。
电源域3由电源域1中的MLDO_CORE供电。电源域3包含芯片的主要逻辑电路,包括CPU、外设等。MLDO_CORE供电时可以提供两种模式,正常工作模式和低电压工作模式。在低电压工作模式下,MLDO_CORE输出电压降低,为1.02V电压,相比正常工作模式可以降低电源域3的功耗。
电源域4由电源域1中的MLDO_RF供电。电源域4主要包含蓝牙模块(BLE),当芯片暂时不需要使用蓝牙功能时,可以将电源域4掉电。
电源域5由电源域1中的LPLDO_FLASH供电。电源域5主要包含一块FLASH,正常工作时,软件程序运行在该FLASH中。当芯片运行的软件程序不大时,可以选择在电源域2内部的RAM里运行,此时可以将电源域5掉电。
在一个实施例中,如图2所示,提供了一种芯片功耗优化方法的流程示意图,以该方法应用于图1中的电源域3(CORE domain,核心电源域)为例进行说明,包括以下步骤:In one embodiment, as shown in FIG. 2 , a schematic flowchart of a method for optimizing chip power consumption is provided, and the method is applied to power domain 3 (CORE domain, core power domain) in FIG. 1 as an example for illustration. Include the following steps:
步骤S201,将唤醒模式指令存储于唤醒模式寄存器(WUR)中;该唤醒模式指令携带唤醒源信息和芯片系统被唤醒后该芯片系统进入的电源开关模式。Step S201, store a wake-up mode instruction in a wake-up mode register (WUR); the wake-up mode instruction carries wake-up source information and a power switch mode entered by the chip system after the chip system is woken up.
其中,电源域3(CORE domain,核心电源域)中的CPU(中央处理器)设置有不同的寄存器,包括唤醒模式寄存器(WUR,Wake Up Register)、掉电模式寄存器(POFFR,Power OffRegister)和掉电使能寄存器(POER,Power Off Enable Register);唤醒模式指令指的是将指定的电源域从低功耗状态转换成正常工作状态的指令;掉电模式指令是指将正常工作状态转换成低功耗状态的指令;电源开关模式是的是针对整个芯片系统在遵循一定的原则的前提下产生的电源域开关模式组合形式。Among them, the CPU (central processing unit) in the power domain 3 (CORE domain, core power domain) is set with different registers, including a wake-up mode register (WUR, Wake Up Register), a power-down mode register (POFFR, Power OffRegister) and Power Off Enable Register (POER, Power Off Enable Register); the wake-up mode command refers to the command to convert the specified power domain from the low-power state to the normal working state; the power-down mode command refers to the conversion of the normal working state to the normal working state. The command of the low-power state; the power switch mode is a combination of power domain switch modes generated for the entire chip system under the premise of following certain principles.
在本实施例中,以图1所示的芯片系统为例,图1所示的5个电源域能够掉电和上电要遵循以下原则:In this embodiment, taking the chip system shown in FIG. 1 as an example, the following principles must be followed for the five power domains shown in FIG. 1 to be powered off and on:
1、电源域1的电源是常开的,不会掉电;1. The power supply of
2、当电源域3没有掉电时,电源域2不可以掉电;2. When
3、当电源域3没有掉电时,电源域4和电源域5可以分别独立选择掉电或不掉电;3. When
4、当电源域3掉电时,电源域2可以选择掉电或不掉电;4. When
5、当电源域3掉电时,电源域4和电源域5必须掉电。5. When
根据以上描述的原则,系统连接电源后有六种电源开关模式,分别为:According to the principles described above, there are six power switch modes after the system is connected to the power supply, which are:
1、正常工作模式(SYSTEM ON),即所有电源域都处于正常工作状态,没有电源域掉电;1. Normal working mode (SYSTEM ON), that is, all power domains are in normal working state, and no power domain is powered off;
2、FLASH关闭模式(FLASH OFF),即只有电源域5掉电,其他电源域均正常工作;2. FLASH OFF mode (FLASH OFF), that is,
3、蓝牙关闭模式(BLE OFF),即只有电源域4掉电,其他电源域均正常工作;3. Bluetooth off mode (BLE OFF), that is,
4、FLASH&蓝牙关闭模式(FLASH&BLE OFF),即电源域4和电源域5掉电,其余电源域正常工作;4. FLASH & Bluetooth off mode (FLASH & BLE OFF), that is,
5、深度睡眠模式(DEEP SLEEP),此时电源域2、电源域3、电源域4、电源域5均掉电,只有电源域1工作;5. Deep sleep mode (DEEP SLEEP), at this time,
6、SRAM保存模式(SRAM RETENTION),此时电源域3、电源域4、电源域5掉电,电源域1和电源域2工作。6. In SRAM RETENTION mode,
在一次上电或掉电流程中,各种电源开关模式两两之间的转换关系如下表所示:In a power-up or power-down process, the conversion relationship between various power switch modes is shown in the following table:
表1电源开关模式转换关系Table 1 Power switch mode conversion relationship
根据上面表格(表1)所示,各种电源开关模式两两之间的转换关系共有26种(表格中打√的个数),可简化为如下13种转换关系:According to the above table (Table 1), there are a total of 26 conversion relationships between various power switch modes (the number marked with √ in the table), which can be simplified into the following 13 conversion relationships:
1、SYSTEM ON<-->BLE OFF;1. SYSTEM ON<-->BLE OFF;
2、SYSTEM ON<-->FLASH OFF;2. SYSTEM ON<-->FLASH OFF;
3、SYSTEM ON<-->FLASH&BLE OFF;3. SYSTEM ON<-->FLASH&BLE OFF;
4、SYSTEM ON<-->DEEP SLEEP;4. SYSTEM ON<-->DEEP SLEEP;
5、SYSTEM ON<-->SRAM RETENTION;5. SYSTEM ON<-->SRAM RETENTION;
6、BLE OFF<-->FLASH&BLE OFF;6. BLE OFF<-->FLASH&BLE OFF;
7、BLE OFF<-->DEEP SLEEP;7. BLE OFF<-->DEEP SLEEP;
8、BLE OFF<-->SRAM RETENTION;8. BLE OFF<-->SRAM RETENTION;
9、FLASH OFF<-->FLASH&BLE OFF;9. FLASH OFF<-->FLASH&BLE OFF;
10、FLASH OFF<-->DEEP SLEEP;10. FLASH OFF<-->DEEP SLEEP;
11、FLASH OFF<-->SRAM RETENTION;11. FLASH OFF<-->SRAM RETENTION;
12、FLASH&BLE OFF<-->DEEP SLEEP;12. FLASH&BLE OFF<-->DEEP SLEEP;
13、FLASH&BLE OFF<-->SRAM RETENTION。13. FLASH&BLE OFF<-->SRAM RETENTION.
另外,该芯片功耗优化方法还可预先设置唤醒源信息,唤醒源信息包括内部唤醒信号和外部唤醒信号,内部唤醒信号可以为定时设置的时钟信号,外部唤醒信号可以为外部事件导致的芯片唤醒操作,例如用户触发芯片系统设置的外部按键。In addition, the chip power consumption optimization method can also preset wake-up source information. The wake-up source information includes an internal wake-up signal and an external wake-up signal. The internal wake-up signal can be a clock signal set regularly, and the external wake-up signal can be a chip wake-up caused by an external event. Operations, such as user triggering of external keys set by the chip system.
在本步骤中,CPU接收用户预设的唤醒模式指令并存储于唤醒模式寄存器(WUR)中,例如预设的唤醒后系统进入的电源开关模式为SYSTEM ON,且为外部唤醒有效,则将该模式对应的指令存储于唤醒模式寄存器(WUR)中。In this step, the CPU receives the wake-up mode command preset by the user and stores it in the wake-up mode register (WUR). The instruction corresponding to the mode is stored in the wake-up mode register (WUR).
步骤S202,将掉电模式指令存储于掉电模式寄存器(POFFR)中。Step S202, the power-down mode command is stored in the power-down mode register (POFFR).
具体地,例如预设的掉电模式指令为在预设时间段后开始掉电或者在用户触发的信号作用下开始掉电,进入BLE OFF模式,则将该指令存储于掉电模式寄存器(POFFR)中。Specifically, for example, the preset power-down mode instruction is to start power-down after a preset time period or start power-down under the action of a user-triggered signal, and enter the BLE OFF mode, then store the instruction in the power-down mode register (POFFR )middle.
步骤S203,响应于掉电模式指令,触发掉电使能寄存器(POER)启动掉电流程并在掉电流程中控制由掉电模式指令指定的电源域进入低功耗模式中。Step S203, in response to the power-down mode command, trigger the power-down enable register (POER) to start the power-down process and control the power domain specified by the power-down mode command to enter the low power consumption mode in the power-down process.
具体地,当预设的时钟信号来临时,或者在用户触发按键的作用下,掉电使能寄存器被触发,芯片系统开始掉电流程,并在掉电流程中根据上述掉电模式指令控制对应的电源域进入低功耗模式,例如根据掉电模式指令中的BLE OFF模式控制电源域4即蓝牙电源域进入低功耗模式,也即关闭电源域4。Specifically, when the preset clock signal comes, or under the action of the user triggering the button, the power-down enable register is triggered, and the chip system starts the power-down process, and controls the corresponding power-down mode command according to the power-down process. For example, according to the BLE OFF mode in the power-down mode command, the
步骤S204,接收唤醒源信息对应的唤醒源产生的唤醒信号;Step S204, receiving a wake-up signal generated by a wake-up source corresponding to the wake-up source information;
具体地,芯片接收唤醒源信息指定有效的唤醒信号,例如唤醒源信息指定的外部唤醒信号或内部唤醒信号,内部唤醒信号可以为定时设置的时钟信号,外部唤醒信号可以为外部事件导致的芯片唤醒操作,例如用户触发芯片系统设置的外部按键。Specifically, the chip receives a valid wake-up signal specified by the wake-up source information, such as an external wake-up signal or an internal wake-up signal specified by the wake-up source information. The internal wake-up signal can be a clock signal set regularly, and the external wake-up signal can be the chip wake-up caused by an external event. Operations, such as user triggering of external keys set by the chip system.
步骤S205,若唤醒信号为有效唤醒信号,则控制由唤醒模式指令指定的电源域进入电源开关模式。Step S205, if the wake-up signal is a valid wake-up signal, control the power domain specified by the wake-up mode command to enter the power switch mode.
具体地,根据唤醒模式指令预设的唤醒源信息判断当前唤醒信号是否为有效唤醒信号,若为有效唤醒信号,则根据唤醒模式寄存器(WUR)中预存的唤醒模式指令控制芯片系统进入指定的电源开关模式,例如若预先指定的电源开关模式为SYSTEM ON,则在有效唤醒信号的触发下将芯片系统由上述BLE OFF模式唤醒为SYSTEM ON模式。Specifically, it is judged whether the current wake-up signal is a valid wake-up signal according to the wake-up source information preset in the wake-up mode command. If it is a valid wake-up signal, the chip system is controlled to enter the specified power supply according to the wake-up mode command pre-stored in the wake-up mode register (WUR). The switch mode, for example, if the pre-specified power switch mode is SYSTEM ON, the chip system will be woken up from the BLE OFF mode to the SYSTEM ON mode under the trigger of an effective wake-up signal.
上述实施例,通过将唤醒模式指令和掉电模式指令分别存储于唤醒模式寄存器和掉电模式寄存器中,响应于上述掉电模式指令,触发掉电使能寄存器启动掉电流程并在掉电流程中控制由上述掉电模式指令指定的电源域进入低功耗模式;接收上述唤醒源信息对应的唤醒源产生的唤醒信号;若该唤醒信号为有效唤醒信号,则控制由上述唤醒模式指令指定的电源域进入上述电源开关模式。该芯片功耗优化方法通过预设的寄存器预先存储相应的唤醒模式指令或掉电模式指令,在掉电模式指令的触发下进入相应的低功耗模式,并在指定的唤醒信号和唤醒模式指令的触发下进入对应的电源开关模式,完成了芯片功耗优化的自动管理过程,降低了芯片功耗,节省了电源资源。In the above embodiment, by storing the wake-up mode command and the power-down mode command in the wake-up mode register and the power-down mode register, respectively, in response to the power-down mode command, the power-down enable register is triggered to start the power-down process and the power-down process is executed. Control the power domain specified by the above power-down mode command to enter the low power consumption mode; receive the wake-up signal generated by the wake-up source corresponding to the above-mentioned wake-up source information; if the wake-up signal is a valid wake-up signal, control the wake-up mode specified by the above. The power domain enters the power switch mode described above. The chip power consumption optimization method pre-stores the corresponding wake-up mode command or power-down mode command through a preset register, enters the corresponding low-power mode under the trigger of the power-down mode command, and executes the specified wake-up signal and wake-up mode command. It enters the corresponding power switch mode under the trigger of the device, completes the automatic management process of chip power consumption optimization, reduces chip power consumption, and saves power resources.
在一个实施例中,芯片系统包括多个电源域;各电源域两两之间设有电平转换器或隔离单元;其中,两电源域各自的供电电压的差值的绝对值大于预设值,且两电源域之间有数字信号通信的情况下,两电源域之间设有电平转换器;两电源域之间有数字信号通信,且两电源域之间存在其中一个掉电而另一个不掉电的情况下,两电源域之间设有隔离单元。In one embodiment, the chip system includes a plurality of power domains; a level shifter or an isolation unit is arranged between each power domain; wherein the absolute value of the difference between the power supply voltages of the two power domains is greater than a preset value , and there is digital signal communication between the two power domains, a level converter is provided between the two power domains; there is digital signal communication between the two power domains, and one of the two power domains is powered down and the other In the case of no power failure, an isolation unit is provided between the two power domains.
具体地,芯片系统包括多个电源域,例如图1所示的芯片系统有5个电源域,由于有的电源域之间的供电电压有明显差距,相互之间也有信号连接,并且有信号连接的两个电源域之间可能存在其中一个掉电而另一个不掉电的情况,因此在电源域之间需要使用电平转换器(Level Shifter)和隔离单元(Isolation Cell)。插入Level Shifter和IsolationCell所遵循的原则是:假设有信号连接的两个电源域为电源域A和电源域B,如果电源域A与电源域B的供电电压有明显差距,则它们之间连接的信号需要在这两个电源域之间插入Level Shifter;如果存在电源域A掉电而电源域B不掉电的情况,则电源域A输出给电源域B的信号要在两个电源域之间插入Isolation Cell,反之亦然。Specifically, the chip system includes multiple power domains. For example, the chip system shown in FIG. 1 has 5 power domains. Since the power supply voltages between some power domains are significantly different, there are also signal connections between them, and there are signal connections between them. There may be a situation in which one of the two power domains is powered down and the other is not powered down, so a Level Shifter and an Isolation Cell need to be used between the power domains. The principle followed when inserting Level Shifter and IsolationCell is: Assume that the two power domains with signal connections are power domain A and power domain B. If there is a significant difference between the power supply voltages of power domain A and power domain B, the connected The signal needs to insert a Level Shifter between the two power domains; if there is a situation where power domain A is powered off but power domain B is not powered off, the signal output from power domain A to power domain B must be between the two power domains Insert Isolation Cell and vice versa.
如图1所示,根据上面描述的插入Level Shifter和Isolation Cell的原则,由于电源域1的供电电压明显高于其他三个电源域的供电电压,而且电源域1只与电源域3之间有信号连接,所以连接电源域1和电源域3的信号需要在这两个电源域之间插入电平转换器(Level Shifter);另外电源域1是常开的,所以存在电源域3掉电而电源域1正常工作的情况,因此电源域3输出给电源域1的信号需要在这两个电源域之间插入隔离单元(IsolationCell),而电源域1输出给电源域3的信号不需要插入Isolation Cell。电源域2、电源域3、电源域4、电源域5的供电电压相同或相近,因此这三个电源域之间的信号传递不需要LevelShifter。电源域2只与电源域3有信号连接,根据上述六种电源开关模式,存在电源域3掉电而电源域2不掉电的情况(SRAM RETENTION),因此电源域3输出给电源域2的信号正常应该需要插入Isolation Cell,但在进入SRAM RETENTION前,CPU会将电源域2中的SRAM设置为保存模式(Retention mode),当系统进入SRAM RETENTION之后,电源域2中只有SRAM本身还有供电,其他逻辑电路没有供电,而电源域3输出给电源域2的信号只是连接到逻辑电路上,没有连接到SRAM本身,因此电源域3输出给电源域2的信号不需要插入Isolation Cell;由于不存在电源域2掉电而电源域3不掉电的情况,因此电源域2输出到电源域3的信号也不需要插入Isolation Cell。电源域4只与电源域3有信号连接,根据上述六种电源开关模式,存在电源域4掉电而电源域3不掉电的情况,因此电源域4输出给电源域3的信号需要在这两个电源域之间插入Isolation Cell;由于不存在电源域3掉电而电源域4不掉电的情况,因此电源域3输出到电源域4的信号不需要插入Isolation Cell。电源域5与电源域4情况相同,电源域5输出给电源域3的信号也需要在这两个电源域之间插入Isolation Cell。As shown in Figure 1, according to the principle of inserting Level Shifter and Isolation Cell described above, since the power supply voltage of
上述实施例,通过设置一定的原则在相应的电源域之间插入电平转换器或隔离单元,保证了不同的电源域之间能够协同工作,不至于导致其中一个电源域掉电而另一关联电源域也无法正常工作。In the above-mentioned embodiment, by setting certain principles and inserting level converters or isolation units between the corresponding power domains, it is ensured that different power domains can work together, so as not to cause one power domain to be powered down and the other to be associated. Power domains also don't work properly.
在一实施例中,上述步骤S203,包括:根据掉电模式指令,触发掉电使能寄存器(POER)向由掉电模式指令指定的电源域发送掉电使能信号,以使掉电模式指令指定的电源域的时钟信号关闭;响应于时钟信号关闭,触发掉电模式指令指定的电源域复位;将与复位后的由掉电模式指令指定的电源域对应的隔离单元使能,并将复位后的由掉电模式指令指定的电源域对应的电压控制器关闭。In one embodiment, the above step S203 includes: according to the power-down mode command, triggering the power-down enable register (POER) to send a power-down enable signal to the power domain specified by the power-down mode command, so that the power-down mode command The clock signal of the specified power domain is turned off; in response to the clock signal being turned off, the reset of the power domain specified by the power-down mode command is triggered; the isolation unit corresponding to the power domain specified by the power-down mode command after reset is enabled and reset The voltage controller corresponding to the power domain specified by the power-down mode command is turned off.
具体地,CPU根据步骤S202中设置的掉电之后进入的电源开关模式,首先将需要掉电的电源域的时钟关闭,其次将这些电源域复位,之后将相关的隔离单元Isolation cell使能,最后将这些电源域对应的电源域1中的电压控制器关闭,使需要掉电的电源域掉电。Specifically, according to the power switch mode entered after the power down set in step S202, the CPU firstly turns off the clocks of the power domains that need to be powered off, then resets these power domains, then enables the relevant isolation cells, and finally Turn off the voltage controllers in
上述实施例,通过在掉电流程中依次控制需要掉电的电源域的时钟关闭、电源域复位、隔离单元使能、电压控制器关闭,有序完成电源域掉电流程,降低了芯片功耗同时保证其他电源域正常工作。In the above-mentioned embodiment, the power-down process of the power domain is completed in an orderly manner, and the power consumption of the chip is reduced by sequentially controlling the clock shutdown, power-domain reset, isolation unit enable, and voltage controller shutdown of the power-supply domain that needs to be powered down in the power-down process. At the same time, ensure that other power domains work normally.
在一实施例中,上述步骤S205,包括:根据有效唤醒信号,将由唤醒模式指令指定的电源域对应的电压控制器打开,并将由唤醒模式指令指定的电源域解复位;将与解复位后的由唤醒模式指令指定的电源域对应的隔离单元去使能;重启由唤醒模式指令指定的电源域对应的时钟信号。In one embodiment, the above step S205 includes: according to a valid wake-up signal, turning on the voltage controller corresponding to the power domain specified by the wake-up mode command, and de-resetting the power domain specified by the wake-up mode command; The isolation unit corresponding to the power domain specified by the wake-up mode command is disabled; the clock signal corresponding to the power domain specified by the wake-up mode command is restarted.
具体地,当所需的唤醒信号有效时,CPU根据步骤S201中设置的唤醒后系统进入的电源开关模式,首先将需要上电的电源域对应的电源域1中的电压控制器打开,其次将相关的隔离单元Isolation cell去使能,之后将这些电源域解复位,最后将需要上电的电源域的时钟打开,使需要上电的电源域恢复正常工作。Specifically, when the required wake-up signal is valid, the CPU first turns on the voltage controller in the
上述实施例,通过在唤醒流程中依次将需要上电的电源域的电压控制器打开、相关的隔离单元去使能、电源域解复位、时钟打开,完成了电源域的唤醒流程,同时保证其他电源域正常工作。In the above embodiment, the wake-up process of the power domain is completed by sequentially turning on the voltage controller of the power domain that needs to be powered on, disabling the relevant isolation unit, de-resetting the power domain, and turning on the clock in the wake-up process. The power domain is functioning normally.
在一实施例中,如图3所示,芯片系统包括常开电源域和触发器;上述芯片功耗优化方法还包括:In one embodiment, as shown in FIG. 3 , the chip system includes a normally-on power supply domain and a flip-flop; the above-mentioned chip power consumption optimization method further includes:
在唤醒源信息为内部唤醒信号无效的情况下,若掉电模式指令包括深度睡眠模式或静态存储器保留模式其中之一,则通过触发器触发常开电源域的时钟信号关闭。In the case that the wake-up source information is invalid internal wake-up signal, if the power-down mode command includes one of deep sleep mode or static memory retention mode, the clock signal of the normally-on power domain is triggered by a trigger to turn off.
具体地,为了实现当系统处于深度睡眠模式DEEP SLEEP或静态存储器保留模式SRAM RETENTION时关闭电源域1的时钟,当外部唤醒有效时再将电源域1的时钟打开,需要使用一个带异步复位端的D触发器,如图3所示。这个D触发器的D端连逻辑1;CLK端连接(!int_wu_en&&system_off_flag);Q端连接一个反相器,反相之后的信号为aon_clk的使能信号aon_clk_en;RESET端连接外部唤醒信号ext_wake_up。其中int_wu_en为内部唤醒使能信号,当使能了内部唤醒时,该信号为1;system_off_flag是一个脉冲信号。当系统进入DEEPSLEEP或SRAM RETENTION时,system_off_flag信号会产生一个脉冲,如果此时没有使能内部唤醒,即int_wu_en为0,那么该D触发器的CLK端接收到一个脉冲,Q端的值就变成了1,经过反相器后,产生的aon_clk_en就变成了0,aon_clk的使能信号变为0,aon_clk被关闭。Specifically, in order to turn off the clock of
上述实施例,通过D触发器控制电源域1(常开电源域)的时钟信号,在芯片系统处于深度睡眠模式DEEP SLEEP或静态存储器保留模式SRAM RETENTION时,关闭电源域1的时钟,进一步节省了系统功耗。In the above embodiment, the clock signal of the power domain 1 (normally open power domain) is controlled by the D flip-flop, and when the chip system is in the deep sleep mode DEEP SLEEP or the static memory retention mode SRAM RETENTION, the clock of the
在一实施例中,上述通过触发器触发常开电源域的时钟信号关闭之后,芯片功耗优化方法还包括:In an embodiment, after the above-mentioned triggering the triggering of the clock signal of the normally-on power domain to be turned off by the trigger, the chip power consumption optimization method further includes:
唤醒源信息为内部唤醒信号无效且外部唤醒信号有效的情况下,被触发复位的触发器产生时钟使能信号并发送至常开电源域,以使常开电源域重启时钟信号。When the wake-up source information is that the internal wake-up signal is invalid and the external wake-up signal is valid, the reset trigger generates a clock enable signal and sends it to the normally-on power domain, so that the normally-on power domain restarts the clock signal.
具体地,在上述常开电源域即电源域1的时钟信号被关闭后,当外部唤醒信号(ext_wake_up)有效时,该D触发器被复位,Q端输出的值变为0,经过反相器后,产生的aon_clk_en就变成了1,aon_clk被使能,恢复正常工作。Specifically, after the clock signal of the above-mentioned normally-on power domain, that is, the
上述实施例,通过外部唤醒信号触发D触发器复位,使得电源域1的时钟信号打开,芯片系统恢复正常工作,便于芯片系统在深度睡眠模式DEEP SLEEP或静态存储器保留模式SRAM RETENTION时通过外部唤醒信号唤醒。In the above embodiment, the reset of the D flip-flop is triggered by an external wake-up signal, so that the clock signal of
在一实施例中,芯片系统包括软件唤醒寄存器(SWUR,Software Wake UpRegister);芯片功耗优化方法还包括:In one embodiment, the chip system includes a software wakeup register (SWUR, Software Wake UpRegister); the chip power consumption optimization method further includes:
当低功耗模式为闪存关闭模式、蓝牙关闭模式或闪存与蓝牙同时关闭模式其中之一时,将有效唤醒信号作为软件唤醒指令并存储于软件唤醒寄存器(SWUR)中;根据软件唤醒指令,将软件唤醒指令指定的电源域对应的电压控制器打开;软件唤醒指令指定的电源域为闪存电源域或蓝牙电源域;将软件唤醒指令指定的电源域解复位;将与解复位后的软件唤醒指令指定的电源域对应的隔离单元去使能;重启软件唤醒指令指定的电源域对应的时钟信号。When the low power consumption mode is one of flash off mode, bluetooth off mode or flash and bluetooth off mode, the effective wake-up signal is used as a software wake-up command and stored in the software wake-up register (SWUR); according to the software wake-up command, the software The voltage controller corresponding to the power domain specified by the wake-up command is turned on; the power domain specified by the software wake-up command is the flash power domain or the Bluetooth power domain; unreset the power domain specified by the software wake-up command; The isolation unit corresponding to the power supply domain is disabled; restart the clock signal corresponding to the power supply domain specified by the software wake-up command.
具体地,当某个或多个电源域处于掉电状态时,系统等待唤醒信号的到来。如果要使用内部唤醒,CPU除了使能内部唤醒外,还需要设置唤醒计数器的目标计数值。当使能了内部唤醒并且系统进入低电源开关模式(BLE OFF、DEEP SLEEP、SRAM RETENTION三个电源开关模式之一)时,唤醒计数器从0开始计数,当唤醒计数器计数值达到设置的目标计数值时,产生内部唤醒信号,可以将系统某个或某些处于掉电状态的电源域唤醒,进入设定好的唤醒后的电源开关模式。如果要使用外部唤醒,系统进入低电源开关模式后,状态机AON_FSM等待外部引脚输入的唤醒信号,当外部唤醒信号有效时,可以将系统某个或某些处于掉电状态的电源域唤醒,进入设定好的唤醒后的电源开关模式。如果系统是从BLE OFF、FLASHOFF或FLASH&BLE OFF状态进行唤醒,由于此时CPU正常工作,还可以使用软件唤醒的方式,具体做法为CPU配置软件唤醒寄存器(SWUR)为有效值,就可以产生软件唤醒信号,将电源域4或电源域5唤醒。唤醒过程中,首先将需要上电的电源域对应的电源域1中的电压控制器打开,其次将这些电源域解复位,最后将相关的Isolation cell除能,使需要上电的电源域恢复正常工作。Specifically, when one or more power domains are in a power-down state, the system waits for the arrival of a wake-up signal. If you want to use the internal wake-up, the CPU needs to set the target count value of the wake-up counter in addition to enabling the internal wake-up. When the internal wake-up is enabled and the system enters a low power switch mode (one of the three power switch modes of BLE OFF, DEEP SLEEP, and SRAM RETENTION), the wake-up counter starts counting from 0, and when the wake-up counter count value reaches the set target count value When the internal wake-up signal is generated, one or some power domains in the power-down state of the system can be woken up and entered into the set power switch mode after wake-up. If you want to use external wake-up, after the system enters the low power switch mode, the state machine AON_FSM waits for the wake-up signal input from the external pin. When the external wake-up signal is valid, you can wake up one or some power domains in the power-down state of the system. Enter the set power switch mode after wake-up. If the system wakes up from the BLE OFF, FLASHOFF or FLASH&BLE OFF state, since the CPU is working normally at this time, the software wake-up method can also be used. The specific method is to configure the software wake-up register (SWUR) for the CPU to be a valid value to generate a software wake-up. signal to wake up
上述实施例,通过设置软件唤醒寄存器使得统是从BLE OFF、FLASH OFF或FLASH&BLE OFF状态进行唤醒时可使用软件唤醒方式,更简洁高效。In the above embodiment, by setting the software wake-up register, the software wake-up method can be used when the system wakes up from the BLE OFF, FLASH OFF or FLASH&BLE OFF state, which is more concise and efficient.
如图4所示,图4为一实施例中掉电流程与上电流程示意图:As shown in FIG. 4, FIG. 4 is a schematic diagram of a power-down process and a power-up process in an embodiment:
各个电源域的掉电与上电流程通过电源域1中的AON中的状态机(AON_FSM)控制,状态机位于图1中的AON Logic中。控制流程如图2所示。The power-down and power-up procedures of each power domain are controlled by the state machine (AON_FSM) in the AON in the
当芯片没有连通电源时,状态机处于复位状态,等待上电。当芯片第一次上电时,首先,状态机将电源域1中的电源域2电压控制器、电源域3电压控制器、电源域4电压控制器和电源域5电压控制器打开,分别给这四个电源域供电;When the chip is not connected to the power supply, the state machine is in the reset state, waiting for power-on. When the chip is powered on for the first time, first, the state machine turns on the
其次,状态机将电源域2、电源域3、电源域4、电源域5的复位信号释放;Secondly, the state machine releases the reset signals of
之后,状态机将各电源域之间的Isolation Cell除能(没上电时Isolation Cell处于使能状态);After that, the state machine disables the Isolation Cell between the power domains (the Isolation Cell is in the enabled state when it is not powered on);
最后,系统进入正常工作模式(SYSTEM ON)。Finally, the system enters the normal working mode (SYSTEM ON).
当有的电源域不需要工作时,可以将其供电关掉。CPU先提前通过配置唤醒模式寄存器(WUR),设置唤醒源和唤醒后系统进入的电源开关模式。唤醒源可以选择内部唤醒和外部唤醒。如果使能了外部唤醒而没有使能内部唤醒,当系统处于DEEP SLEEP或SRAMRETENTION时,电源域1的时钟(aon_clk)会被关闭;如果使能了内部唤醒,系统就需要通过电源域1里的唤醒计数器(wake_counter)进行内部唤醒,所以此时aon_clk不能关闭。CPU可以配置掉电模式寄存器(POFFR),来选择掉电之后进入的电源开关模式。CPU通过配置掉电使能寄存器(POER),开始掉电流程。When some power domains do not need to work, they can be powered off. The CPU first configures the wake-up mode register (WUR) in advance to set the wake-up source and the power switch mode that the system enters after wake-up. The wake-up source can select internal wake-up and external wake-up. If the external wake-up is enabled but the internal wake-up is not enabled, when the system is in DEEP SLEEP or SRAMRETENTION, the clock (aon_clk) of
在掉电流程中,首先关闭将要掉电的电源域的时钟,In the power-down process, first shut down the clock of the power domain to be powered down,
其次将要掉电的电源域复位,Second, reset the power domain to be powered down,
之后使能相关的Isolation Cell,Then enable the related Isolation Cell,
最后关闭要掉电的电源域所对应的在电源域1中的电压控制器。Finally, turn off the voltage controller in
在一具体场景中,例如,当需要完成SYSTEM ON->BLE OFF->SYSTEM ON的电源开关模式转换且使用外部唤醒,操作步骤如下:In a specific scenario, for example, when the power switch mode transition from SYSTEM ON->BLE OFF->SYSTEM ON needs to be completed and an external wake-up is used, the operation steps are as follows:
步骤一、CPU配置唤醒模式寄存器(WUR),设置唤醒源为外部唤醒源,设置唤醒后系统进入的电源开关模式为SYSTEM ON;
步骤二、CPU配置配置掉电模式寄存器(POFFR),选择掉电之后进入的电源开关模式为BLE OFF;
步骤三、CPU通过配置掉电使能寄存器(POER),以开始掉电流程;
步骤四、硬件将电源域4的时钟关闭,其次将电源域4复位,之后将电源域4和电源域3之间的Isolation cell使能,最后将电源域4对应的电源域1中的电压控制器关闭,使电源域4掉电;
步骤五、硬件等待外部唤醒信号的到来;
步骤六、当外部唤醒信号有效时,硬件电源域4对应的电源域1中的电压控制器打开,其次将的Isolation cell除能,之后将电源域4解复位,最后打开电源域4的时钟,使电源域4恢复正常工作。Step 6. When the external wake-up signal is valid, the voltage controller in the
上述实施例中的芯片功耗优化方法通过预设的寄存器预先存储相应的唤醒模式指令或掉电模式指令,在掉电模式指令的触发下进入相应的低功耗模式,并在指定的唤醒信号和唤醒模式指令的触发下进入对应的电源开关模式,完成了芯片功耗优化的自动管理过程,降低了芯片功耗,节省了电源资源。The chip power consumption optimization method in the above-mentioned embodiment pre-stores the corresponding wake-up mode command or power-down mode command through a preset register, enters the corresponding low-power consumption mode under the trigger of the power-down mode command, and executes a specified wake-up signal. The corresponding power switch mode is entered under the trigger of the wake-up mode command, which completes the automatic management process of chip power consumption optimization, reduces chip power consumption, and saves power resources.
应该理解的是,虽然图1-4的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-4中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the steps in the flowcharts of FIGS. 1-4 are shown in sequence according to the arrows, these steps are not necessarily executed in the sequence shown by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIGS. 1-4 may include multiple steps or multiple stages. These steps or stages are not necessarily executed at the same time, but may be executed at different times. The execution of these steps or stages The order is also not necessarily sequential, but may be performed alternately or alternately with other steps or at least a portion of the steps or phases within the other steps.
在一个实施例中,如图5所示,提供了一种芯片功耗优化装置500,包括:唤醒模式指令存储模块501、掉电模式指令存储模块502、电源域掉电模块503、唤醒信号接收模块504和电源域唤醒模块505,其中:In one embodiment, as shown in FIG. 5, an apparatus 500 for optimizing chip power consumption is provided, including: a wake-up mode command storage module 501, a power-down mode command storage module 502, a power-domain power-
唤醒模式指令存储模块501,用于将唤醒模式指令存储于唤醒模式寄存器中;所述唤醒模式指令携带唤醒源信息和芯片系统被唤醒后所述芯片系统进入的电源开关模式。The wake-up mode command storage module 501 is used for storing the wake-up mode command in the wake-up mode register; the wake-up mode command carries the wake-up source information and the power switch mode entered by the chip system after the chip system is woken up.
掉电模式指令存储模块502,用于将掉电模式指令存储于掉电模式寄存器中;The power-down mode instruction storage module 502 is used for storing the power-down mode instruction in the power-down mode register;
电源域掉电模块503,用于响应于所述掉电模式指令,触发掉电使能寄存器启动掉电流程并在所述掉电流程中控制由所述掉电模式指令指定的电源域进入低功耗模式中;The power domain power-
唤醒信号接收模块504,用于接收所述唤醒源信息对应的唤醒源产生的唤醒信号;A wake-up
电源域唤醒模块505,用于若所述唤醒信号为有效唤醒信号,则控制由所述唤醒模式指令指定的电源域进入所述电源开关模式。The power domain wake-up
在一实施例中,所述芯片系统包括多个电源域;各电源域两两之间设有电平转换器或隔离单元;其中,In one embodiment, the chip system includes a plurality of power domains; a level shifter or an isolation unit is arranged between each power domain; wherein,
两电源域各自的供电电压的差值的绝对值大于预设值,且所述两电源域之间有数字信号通信的情况下,所述两电源域之间设有所述电平转换器;When the absolute value of the difference between the respective power supply voltages of the two power supply domains is greater than a preset value, and there is digital signal communication between the two power supply domains, the level converter is provided between the two power supply domains;
两电源域之间有数字信号通信,且所述两电源域之间存在其中一个掉电而另一个不掉电的情况下,所述两电源域之间设有所述隔离单元。The isolation unit is provided between the two power domains when there is digital signal communication between the two power domains, and one of the two power domains is powered down and the other is not powered off.
在一实施例中,电源域掉电模块503进一步用于:In one embodiment, the power domain power down
根据所述掉电模式指令,触发所述掉电使能寄存器(POER)向由所述掉电模式指令指定的电源域发送掉电使能信号,以使所述掉电模式指令指定的电源域的时钟信号关闭;According to the power-down mode command, the power-down enable register (POER) is triggered to send a power-down enable signal to the power domain specified by the power-down mode command, so that the power domain specified by the power-down mode command is enabled The clock signal is turned off;
响应于所述时钟信号关闭,触发所述掉电模式指令指定的电源域复位;triggering a reset of the power domain specified by the power-down mode instruction in response to the clock signal being turned off;
将与复位后的由所述掉电模式指令指定的电源域对应的所述隔离单元使能,并将所述复位后的由所述掉电模式指令指定的电源域对应的电压控制器关闭。The isolation unit corresponding to the power domain specified by the power-down mode command after reset is enabled, and the voltage controller corresponding to the power domain specified by the power-down mode command after the reset is turned off.
在一实施例中,上述电源域唤醒模块505进一步用于:In one embodiment, the above-mentioned power domain wake-up
根据所述有效唤醒信号,将所述由所述唤醒模式指令指定的电源域对应的电压控制器打开,并将所述由所述唤醒模式指令指定的电源域解复位;According to the valid wake-up signal, turn on the voltage controller corresponding to the power domain specified by the wake-up mode command, and de-reset the power domain specified by the wake-up mode command;
将与解复位后的所述由所述唤醒模式指令指定的电源域对应的隔离单元去使能;disabling the isolation unit corresponding to the power supply domain specified by the wake-up mode command after de-resetting;
重启所述由所述唤醒模式指令指定的电源域对应的时钟信号。Restart the clock signal corresponding to the power domain specified by the wake-up mode instruction.
在一实施例中,上述芯片系统包括常开电源域和触发器;上述方法还包括:In one embodiment, the above-mentioned chip system includes a normally-on power supply domain and a flip-flop; the above-mentioned method further includes:
所述唤醒源信息为内部唤醒信号无效的情况下,若所述掉电模式指令包括深度睡眠模式或静态存储器保留模式其中之一,则通过所述触发器触发所述常开电源域的时钟信号关闭。When the wake-up source information is an invalid internal wake-up signal, if the power-down mode command includes one of deep-sleep mode or static memory retention mode, the trigger is used to trigger the clock signal of the normally-on power domain. closure.
在一实施例中,所述通过所述触发器触发所述常开电源域的时钟信号关闭之后,所述方法还包括:In an embodiment, after the triggering of the trigger by the trigger to turn off the clock signal of the normally-on power domain, the method further includes:
所述唤醒源信息为内部唤醒信号无效且外部唤醒信号有效的情况下,被触发复位的所述触发器产生时钟使能信号并发送至所述常开电源域,以使所述常开电源域重启时钟信号。When the wake-up source information is that the internal wake-up signal is invalid and the external wake-up signal is valid, the flip-flop triggered to reset generates a clock enable signal and sends it to the normally-on power domain, so that the normally-on power domain Restart the clock signal.
在一实施例中,所述芯片系统包括软件唤醒寄存器(SWUR);所述方法还包括:In one embodiment, the chip system includes a software wake-up register (SWUR); the method further includes:
当所述低功耗模式为闪存关闭模式、蓝牙关闭模式或闪存与蓝牙同时关闭模式其中之一时,将所述有效唤醒信号作为软件唤醒指令并存储于所述软件唤醒寄存器(SWUR)中;When the low power consumption mode is one of flash off mode, bluetooth off mode or flash and bluetooth off mode simultaneously, use the valid wake-up signal as a software wake-up command and store it in the software wake-up register (SWUR);
根据所述软件唤醒指令,将所述软件唤醒指令指定的电源域对应的电压控制器打开;所述软件唤醒指令指定的电源域为闪存电源域或蓝牙电源域;According to the software wake-up command, the voltage controller corresponding to the power domain specified by the software wake-up command is turned on; the power domain specified by the software wake-up command is a flash power domain or a Bluetooth power domain;
将所述软件唤醒指令指定的电源域解复位;De-reset the power domain specified by the software wake-up instruction;
将与解复位后的所述软件唤醒指令指定的电源域对应的隔离单元去使能;disabling the isolation unit corresponding to the power supply domain specified by the software wake-up command after de-resetting;
重启所述软件唤醒指令指定的电源域对应的时钟信号。Restart the clock signal corresponding to the power domain specified by the software wake-up instruction.
关于芯片功耗优化装置的具体限定可以参见上文中对于芯片功耗优化方法的限定,在此不再赘述。上述芯片功耗优化装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。For the specific limitation of the device for optimizing the power consumption of a chip, reference may be made to the limitation of the method for optimizing the power consumption of the chip above, which will not be repeated here. Each module in the above-mentioned device for optimizing chip power consumption may be implemented in whole or in part by software, hardware, and combinations thereof. The above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
在一个实施例中,提供了一种计算机设备,其内部结构图可以如图6所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储唤醒模式指令或掉电模式指令数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种芯片功耗优化方法。In one embodiment, a computer device is provided, the internal structure of which can be shown in FIG. 6 . The computer device includes a processor, memory, and a network interface connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system, a computer program, and a database. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. The database of the computer device is used to store wake-up mode command or power-down mode command data. The network interface of the computer device is used to communicate with an external terminal through a network connection. The computer program, when executed by the processor, implements a chip power consumption optimization method.
本领域技术人员可以理解,图6中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the structure shown in FIG. 6 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。In one embodiment, a computer device is provided, including a memory and a processor, where a computer program is stored in the memory, and the processor implements the steps in the foregoing method embodiments when the processor executes the computer program.
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述各方法实施例中的步骤。In one embodiment, a computer-readable storage medium is provided, on which a computer program is stored, and when the computer program is executed by a processor, the steps in the foregoing method embodiments are implemented.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by instructing relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage In the medium, when the computer program is executed, it may include the processes of the above-mentioned method embodiments. Wherein, any reference to memory, storage, database or other media used in the various embodiments provided in this application may include at least one of non-volatile and volatile memory. The non-volatile memory may include Read-Only Memory (ROM), magnetic tape, floppy disk, flash memory or optical memory, and the like. Volatile memory may include random access memory (RAM) or external cache memory. By way of illustration and not limitation, the RAM may be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM).
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. In order to make the description simple, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features It is considered to be the range described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010969527.0A CN112083791B (en) | 2020-09-15 | 2020-09-15 | Chip power consumption optimization method, apparatus, computer equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010969527.0A CN112083791B (en) | 2020-09-15 | 2020-09-15 | Chip power consumption optimization method, apparatus, computer equipment and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112083791A CN112083791A (en) | 2020-12-15 |
CN112083791B true CN112083791B (en) | 2021-09-24 |
Family
ID=73737912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010969527.0A Active CN112083791B (en) | 2020-09-15 | 2020-09-15 | Chip power consumption optimization method, apparatus, computer equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112083791B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115827068B (en) * | 2021-09-17 | 2023-12-05 | 珠海市凌珑宇芯科技有限公司 | Chip dormancy management system and method |
CN113723034B (en) * | 2021-09-23 | 2025-02-14 | 珠海一微半导体股份有限公司 | A power management architecture, chip and power management method |
CN114020139B (en) * | 2021-11-05 | 2024-08-06 | 珠海全志科技股份有限公司 | CPU power consumption management method, computer device and computer readable storage medium |
CN114327651B (en) * | 2021-12-21 | 2024-07-16 | 深聪半导体(江苏)有限公司 | Chip wake-up method, system, electronic device and readable storage medium |
CN114661133A (en) * | 2022-02-25 | 2022-06-24 | 珠海博雅科技股份有限公司 | Chip and method for reducing power consumption of non-volatile memory |
CN114637386B (en) * | 2022-03-24 | 2024-08-06 | 南京英锐创电子科技有限公司 | Low power consumption debugging path processing method, debugging system and electronic equipment |
CN117093535A (en) * | 2022-05-13 | 2023-11-21 | 华为技术有限公司 | System on chip and power-on recovery method of related system |
CN115118534B (en) * | 2022-06-07 | 2023-11-17 | 合肥移瑞通信技术有限公司 | Low-power-consumption state control method, device, terminal and storage medium of MBB equipment |
CN115696530A (en) * | 2022-11-02 | 2023-02-03 | 深圳桐汭科技有限公司 | Low-power-consumption Bluetooth chip and control method |
CN118012252B (en) * | 2022-11-09 | 2024-08-30 | 苏州纳芯微电子股份有限公司 | Low-power-consumption circuit based on multiple power domains, control method, chip and electronic equipment |
CN115639897B (en) * | 2022-11-16 | 2023-06-16 | 南京芯驰半导体科技有限公司 | Real-time voltage control module |
CN118276663A (en) * | 2022-12-30 | 2024-07-02 | 深圳市中兴微电子技术有限公司 | Processing method, control method, chip, filter, device, system, medium |
CN117130671B (en) * | 2023-01-16 | 2024-09-20 | 荣耀终端有限公司 | System wake-up method, electronic equipment and computer readable storage medium |
CN119088195B (en) * | 2024-11-05 | 2025-03-07 | 北京轩宇信息技术有限公司 | SRAM array low-power consumption control method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5878264A (en) * | 1997-07-17 | 1999-03-02 | Sun Microsystems, Inc. | Power sequence controller with wakeup logic for enabling a wakeup interrupt handler procedure |
WO2019055066A1 (en) * | 2017-09-12 | 2019-03-21 | Ambiq Micro, Inc. | Very low power microcontroller system |
CN109375954B (en) * | 2018-09-20 | 2020-07-14 | 上海移芯通信科技有限公司 | Internet of things chip control method based on cellular technology and internet of things chip |
CN109799898A (en) * | 2019-01-21 | 2019-05-24 | 珠海格力电器股份有限公司 | Chip power supply control device, chip and power supply control method thereof |
CN110334445A (en) * | 2019-07-05 | 2019-10-15 | 上海华虹集成电路有限责任公司 | A kind of control method of low power dissipation design |
CN111176408B (en) * | 2019-12-06 | 2021-07-16 | 瑞芯微电子股份有限公司 | SoC low-power-consumption processing method and device |
-
2020
- 2020-09-15 CN CN202010969527.0A patent/CN112083791B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112083791A (en) | 2020-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112083791B (en) | Chip power consumption optimization method, apparatus, computer equipment and storage medium | |
US10365704B2 (en) | Discrete power control of components within a computer system | |
US7529958B2 (en) | Programmable power transition counter | |
US9037890B2 (en) | Ultra-deep power-down mode for memory devices | |
US7181188B2 (en) | Method and apparatus for entering a low power mode | |
US9471140B2 (en) | Valid context status retention in processor power mode management | |
US20120042184A1 (en) | Computer motherboard capable of reducing power consumption in suspend | |
CN106020417B (en) | Memory device and energy-saving control method thereof | |
CN110058672B (en) | Method for managing power domains in an integrated circuit | |
US9880610B2 (en) | Power supplying method, power supplying system, and electronic device | |
JP2004192350A (en) | Computer device, electric power management method and program | |
KR20120030763A (en) | Hierarchical power management circuit, hierarchical power management method using the same, and system on chip thereof | |
CN103294641A (en) | Finite state machine for system management | |
CN107168798A (en) | A kind of device sleeps method and device, device sleeps awakening method and device | |
CN113253824B (en) | MCU system based on RISC-V kernel, power supply method and terminal equipment | |
WO2020151263A1 (en) | Power supply control device for chip, chip, and power supply control method therefor | |
CN219574672U (en) | Low-power consumption system, microcontroller and chip | |
CN109613970B (en) | Low-power-consumption processing method based on FPGA and DSP framework | |
US20110043275A1 (en) | System and method for controlling an integrated circuit in different operational modes | |
US8423802B2 (en) | Power scaling module and power scaling unit of an electronic system having a function unit in a standby state which is insensitive to change in frequency or voltage during synchronization | |
CN113672072B (en) | Method and apparatus for saving microcontroller power | |
US10289492B2 (en) | System for data retention and method of operating system | |
US9779788B1 (en) | Sub-threshold enabled flash memory system | |
US10338664B2 (en) | Control module for data retention and method of operating control module | |
US7707445B2 (en) | Integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: Room 86, room 406, No. 1, Yichuang street, Zhongxin knowledge city, Huangpu District, Guangzhou, Guangdong 510700 Patentee after: Southern Power Grid Digital Grid Research Institute Co.,Ltd. Country or region after: China Patentee after: China South Power Grid International Co.,Ltd. Patentee after: ZHEJIANG University Address before: Room 86, room 406, No. 1, Yichuang street, Zhongxin knowledge city, Huangpu District, Guangzhou, Guangdong 510700 Patentee before: Southern Power Grid Digital Grid Research Institute Co.,Ltd. Country or region before: China Patentee before: China South Power Grid International Co.,Ltd. Patentee before: ZHEJIANG University |
|
CP03 | Change of name, title or address | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240822 Address after: Room 86, room 406, No. 1, Yichuang street, Zhongxin knowledge city, Huangpu District, Guangzhou, Guangdong 510700 Patentee after: Southern Power Grid Digital Grid Research Institute Co.,Ltd. Country or region after: China Address before: Room 86, room 406, No. 1, Yichuang street, Zhongxin knowledge city, Huangpu District, Guangzhou, Guangdong 510700 Patentee before: Southern Power Grid Digital Grid Research Institute Co.,Ltd. Country or region before: China Patentee before: China South Power Grid International Co.,Ltd. Patentee before: ZHEJIANG University |
|
TR01 | Transfer of patent right |