CN112068424A - Discrete repetitive control method of ellipse approximation law adopting disturbance compensation - Google Patents
Discrete repetitive control method of ellipse approximation law adopting disturbance compensation Download PDFInfo
- Publication number
- CN112068424A CN112068424A CN202010787437.XA CN202010787437A CN112068424A CN 112068424 A CN112068424 A CN 112068424A CN 202010787437 A CN202010787437 A CN 202010787437A CN 112068424 A CN112068424 A CN 112068424A
- Authority
- CN
- China
- Prior art keywords
- servo system
- time
- controller
- ellipse
- reaching law
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003252 repetitive effect Effects 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000000737 periodic effect Effects 0.000 claims abstract description 15
- 238000013461 design Methods 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 abstract description 4
- 238000013459 approach Methods 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 42
- 238000005070 sampling Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 7
- 230000001629 suppression Effects 0.000 description 5
- 230000002357 endometrial effect Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 244000145845 chattering Species 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种采用扰动补偿的椭圆趋近律的离散重复控制方法,用于电机伺服系统的位置精确控制,也适用于其他含有周期运行过程的工业场合。The invention relates to a discrete repetitive control method using an ellipse reaching law of disturbance compensation, which is used for precise position control of a motor servo system, and is also suitable for other industrial occasions with periodic running processes.
背景技术Background technique
重复控制以跟踪误差信号来修正前时刻的控制器,形成当前时刻的控制器输入,故重复控制具有完全抑制周期性干扰,实现精确控制的特点。目前重复控制方法在各种高精度伺服电机驱动系统中得到了广泛的应用。The repetitive control uses the tracking error signal to correct the controller at the previous moment to form the input of the controller at the current moment, so the repetitive control has the characteristics of completely suppressing periodic interference and realizing precise control. At present, repetitive control methods have been widely used in various high-precision servo motor drive systems.
重复控制技术是基于内膜控制的一种控制方法。所谓的内膜原理就是,当把某信号看成是一个自治系统的输出,并把该信号的模型“嵌入”在稳定的闭环系统中,被控的输出量能够完全跟踪参考信号。因此,依据内膜原理设计控制器,就需要构造一个周期T的周期参考内膜它可由以这个含周期时延(e-Ts)的正反馈回路实现,不考虑输入信号的具体形式,只要给定初始段信号,内模模块就会对输入信号逐周期累加,重复输出与上周期相同的信号。The repetitive control technique is a control method based on endometrial control. The so-called endometrial principle is that when a signal is regarded as the output of an autonomous system, and the model of the signal is "embedded" in a stable closed-loop system, the controlled output can completely track the reference signal. Therefore, to design the controller according to the endometrial principle, it is necessary to construct a period T reference endometrial It can be realized by this positive feedback loop with periodic delay (e -Ts ), regardless of the specific form of the input signal, as long as the initial segment signal is given, the internal model module will accumulate the input signal cycle by cycle, repeat the output and the above signals with the same period.
以趋近律方法设计确定性系统的滑模控制器,设计过程清晰,控制器参数调整方法明确,易于实现;但对于不确定系统,采用同一趋近律进行控制器设计,所导致的切换动态依赖于不确定性项,不确定性项对于切换动态的影响程度决定了系统的控制性能。这样,需要对趋近律进行修正,将干扰抑制措施“嵌入”切换动态中,以获得理想切换动态,以能使趋近律方法适用于不确定系统。设计离散控制器时,刻画跟踪误差瞬态和稳态行为的指标可由理想切换动态给出,具体有下述三个指标:单调收敛层边界、绝对收敛层边界和拟滑模带边界。实际上,三个指标的具体取值依赖于控制器参数,控制器参数不同,三个指标的取值也不同。一旦给定理想切换动态形式,可预先给出三个指标的具体表达式,用于控制器参数整定。Using the approach law method to design the sliding mode controller of the deterministic system, the design process is clear, the controller parameter adjustment method is clear, and it is easy to implement; but for the uncertain system, the same approach law is used to design the controller, resulting in the switching dynamic Depending on the uncertainty term, the degree of influence of the uncertainty term on the switching dynamics determines the control performance of the system. In this way, it is necessary to modify the reaching law and "embed" the interference suppression measures in the switching dynamics, so as to obtain the ideal switching dynamics, so that the reaching law method can be applied to the uncertain system. When designing a discrete controller, the indicators describing the transient and steady-state behavior of the tracking error can be given by the ideal switching dynamics. Specifically, there are the following three indicators: the monotonic convergence layer boundary, the absolute convergence layer boundary and the quasi-sliding mode zone boundary. In fact, the specific values of the three indicators depend on the controller parameters. Different controller parameters have different values of the three indicators. Once the ideal switching dynamic form is given, the specific expressions of the three indicators can be given in advance, which can be used for controller parameter tuning.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术的不足,本发明提出一种采用扰动补偿的椭圆趋近律用于电机伺服系统的离散重复控制方法。为使得闭环系统具有预先设定的期望误差跟踪性能,且能有效抑制抖振,提出一种新颖的趋近律——椭圆趋近律,并依据此趋近律构造的理想切换动态设计电机伺服重复控制器。在实现对周期干扰成分完全抑制的同时,又考虑到扰动存在非周期成分,在闭环系统中引入等效扰动补偿来抑制非周期性干扰,以提高控制性能,使得电机伺服系统实现高速、高精度跟踪。In order to overcome the deficiencies of the prior art, the present invention proposes a discrete repetitive control method for a motor servo system using a disturbance-compensated ellipse reaching law. In order to make the closed-loop system have the preset expected error tracking performance, and can effectively suppress chattering, a novel reaching law-elliptic reaching law is proposed, and the motor servo is designed according to the ideal switching dynamic constructed by the reaching law. Duplicate controller. While realizing the complete suppression of periodic interference components, considering the existence of aperiodic components of the disturbance, equivalent disturbance compensation is introduced into the closed-loop system to suppress the aperiodic interference, so as to improve the control performance and enable the motor servo system to achieve high speed and high precision. track.
本发明解决上述技术问题采用的技术方案是:The technical scheme adopted by the present invention to solve the above-mentioned technical problems is:
一种采用扰动补偿的椭圆趋近律的离散重复控制方法,所述控制方法包括以下步骤:A discrete repetitive control method using a disturbance-compensated ellipse reaching law, the control method comprising the following steps:
1)伺服系统的差分方程模型1) Differential equation model of servo system
e(k+1)=Ae(k)+b(u(k)+w(k)) (1)e(k+1)=Ae(k)+b(u(k)+w(k)) (1)
其中,e(k),e(k+1)表示伺服系统在k,k+1时刻的跟踪误差,u(k)表示伺服系统k时刻的输入控制,w(k)表示伺服系统在k时刻的干扰信号,A表示伺服系统矩阵,b表示系统的控制系数;Among them, e(k), e(k+1) represent the tracking error of the servo system at time k, k+1, u(k) represents the input control of the servo system at time k, w(k) represents the servo system at time k The interference signal, A represents the servo system matrix, b represents the control coefficient of the system;
2)给定周期参考信号,满足2) Given a periodic reference signal, satisfy
r(k)=r(k-N) (2)r(k)=r(k-N) (2)
其中,N表示参考信号的周期,r(k)表示伺服系统在k时刻的参考信号,r(k-N)表示伺服系统在上一周期的第k时刻的参考信号;Among them, N represents the period of the reference signal, r(k) represents the reference signal of the servo system at time k, and r(k-N) represents the reference signal of the servo system at the kth time of the previous cycle;
3)定义跟踪误差3) Define the tracking error
e(k)=y(k)-r(k)e(k)=y(k)-r(k)
(3)(3)
其中,y(k)表示伺服系统在k时刻的系统输出;Among them, y(k) represents the system output of the servo system at time k;
4)选取线性切换函数为s(k)=cTe(k),cT为增益参数,其选取决定了系统在滑模面上的收敛性和收敛速度;4) The linear switching function is selected as s(k)=c T e(k), c T is the gain parameter, and its selection determines the convergence and convergence speed of the system on the sliding mode surface;
5)构造等效扰动5) Construct equivalent disturbance
d(k)=cTb(w(k)-w(k-N)) (4)d(k)=c T b(w(k)-w(kN)) (4)
其中,d(k)表示伺服系统在k时刻的等效扰动信号,w(k-N)表示伺服系统在上一周期的第k时刻的干扰信号;Among them, d(k) represents the equivalent disturbance signal of the servo system at time k, and w(k-N) represents the disturbance signal of the servo system at the kth time of the previous cycle;
6)构造离散时间椭圆趋近律6) Constructing discrete-time ellipse reaching law
s(k+1)=(1-ρ)s(k)-εfal(s(k),δ) (5)s(k+1)=(1-ρ)s(k)-εfal(s(k),δ) (5)
其中,s(k+1)表示k+1时刻的切换函数;趋近律中构造的椭圆函数为ρ、ε和δ均为可调参数,且0<ρ<1,δ>0,ε>0;Among them, s(k+1) represents the switching function at time k+1; the elliptic function constructed in the reaching law is ρ, ε and δ are all adjustable parameters, and 0<ρ<1, δ>0, ε>0;
7)根据上述的椭圆趋近律,构造理想切换动态7) According to the above-mentioned ellipse reaching law, construct the ideal switching dynamics
s(k+1)=(1-ρ)s(k)-εfal(s(k),δ)+d(k)-d*(k) (6)s(k+1)=(1-ρ)s(k)-εfal(s(k),δ)+d(k)-d * (k) (6)
其中,d*(k)表示k时刻d(k)的补偿量;记du,dl分别为d(k)的上下限,d(k)满足du≥d(k)≥dl,取得|d*(k)-d(k)|≤Δ,其中Δ为理想切换动态公式(6)中干扰的界;Among them, d * (k) represents the compensation amount of d(k) at time k; denote d u and d l as the upper and lower limits of d(k) respectively, and d(k) satisfies d u ≥d(k)≥d l , Pick get |d * (k)-d(k)|≤Δ, where Δ is the boundary of interference in the ideal switching dynamic formula (6);
8)根据所述的理想切换动态构造离散滑模重复控制器的模型:8) Construct the model of discrete sliding mode repetitive controller according to the described ideal switching dynamics:
u(k)=u(k-N)+(cTb)-1[(1-ρ)s(k)-εfal(s(k),δ)-s(k+1-N)-cTA(e(k)-e(k-N))-d*(k)] (7)u(k)=u(kN)+(c T b) -1 [(1-ρ)s(k)-εfal(s(k),δ)-s(k+1-N)-c T A (e(k)-e(kN))-d * (k)] (7)
其中,u(k-N)表示伺服系统在上一周期的第k时刻的控制变量,(cTb)-1表示矩阵系数,s(k+1-N)表示伺服系统在上一周期的第k+1时刻的切换函数,cTA表示增益系数,e(k-N)表示伺服系统在上一周期的第k时刻的跟踪误差变量;Among them, u(kN) represents the control variable of the servo system at the kth time of the previous cycle, (c T b) -1 represents the matrix coefficient, and s(k+1-N) represents the kth time of the servo system in the previous cycle. The switching function at time +1, c T A represents the gain coefficient, and e(kN) represents the tracking error variable of the servo system at the k-th time of the previous cycle;
将u(k)作为伺服对象的控制器输入信号,测量获得伺服系统输出信号y(k),跟随参考信号r(k)变化。Taking u(k) as the input signal of the controller of the servo object, the output signal y(k) of the servo system is obtained by measurement, which changes with the reference signal r(k).
进一步,在重复控制器设计完成之后,具控制器参数整定依据表征系统收敛性能的指标进行,为表征系统收敛性能,引入单调收敛层边界、绝对收敛层边界和拟滑模带边界概念,具体定义如下:Further, after the repetitive controller design is completed, the controller parameters are tuned according to the indicators that characterize the convergence performance of the system. In order to characterize the convergence performance of the system, the concepts of monotonic convergence layer boundary, absolute convergence layer boundary and pseudo-sliding mode zone boundary are introduced. as follows:
单调收敛层边界ΔMDR:在单调收敛层边界外,s(k)同号单调递减,即Monotonic convergence layer boundary Δ MDR : outside the monotone convergence layer boundary, s(k) monotonically decreases with the same sign, that is
绝对收敛层边界ΔAL:在绝对收敛层外,|s(k)|单调递减,即Absolute convergence layer boundary Δ AL : outside the absolute convergence layer, |s(k)| decreases monotonically, namely
拟滑模带边界ΔQSM:系统在切换平面s(k)=cTe(k)=0的一个领域内运动,一旦进入该领域内,就会稳定于其内,即The quasi-sliding mode band boundary Δ QSM : the system moves in a field where the switching plane s(k)=c T e(k)=0, once it enters the field, it will stabilize in it, that is,
①单调收敛层边界ΔMDR ① Monotonic convergence layer boundary Δ MDR
其中in
②绝对收敛层边界ΔAL ②Absolute convergence layer boundary Δ AL
其中in
③拟滑模带边界ΔQSM ③ Pseudo sliding mode zone boundary Δ QSM
(i)δ≤Z1 (i)δ≤Z 1
(ii)Z1<δ<Z2 (ii) Z 1 <δ<Z 2
(iii)Z1<Z2<δ(iii) Z 1 <Z 2 <δ
其中in
再进一步,该控制器的可调整参数包括ρ、ε和δ;参数整定依据表征收敛过程的指标。Still further, the adjustable parameters of the controller include ρ, ε and δ; the parameter setting is based on the index characterizing the convergence process.
更进一步,所述步骤5)中,假设du≥d(k)≥dl,则 Further, in the step 5), assuming that d u ≥ d(k) ≥ d l , then
本发明的技术构思是,设计电机伺服系统的离散重复控制器是基于离散时间椭圆趋近律进行的,是一种时域设计方法,它不同于目前普遍采用的频域方法。在设计控制器时考虑给定参考信号,设计出的控制器更直观、简便,易于刻画系统跟踪性能。控制器的时域设计也易于结合现有的干扰抑制手段,所设计的重复控制器能够实现对周期干扰信号的完全抑制并且减少非周期干扰信号所产生的误差,实现对给定参考信号的快速高精度跟踪。The technical idea of the present invention is that the discrete repetitive controller of the motor servo system is designed based on the discrete time ellipse reaching law, which is a time domain design method, which is different from the frequency domain method commonly used at present. Considering the given reference signal when designing the controller, the designed controller is more intuitive and simple, and it is easy to describe the tracking performance of the system. The time domain design of the controller is also easy to combine with the existing interference suppression methods. The designed repetitive controller can completely suppress the periodic interference signal and reduce the error caused by the aperiodic interference signal, so as to realize the fast response to the given reference signal. High precision tracking.
本发明效果主要表现在:具有快速收敛性能、加速干扰抑制和较高控制精度。The effects of the invention are mainly manifested in: fast convergence performance, accelerated interference suppression and high control precision.
附图说明Description of drawings
图1是交流永磁同步电机伺服系统方框图。Figure 1 is a block diagram of an AC permanent magnet synchronous motor servo system.
图2是椭圆趋近律的重复控制控制器结构方框图。Fig. 2 is the structure block diagram of the repetitive control controller of the ellipse reaching law.
图3是当c=-0.5,ε=0.1,ρ=0.6,δ=0.8,Δ=0.3时的ΔMDR,ΔAL及ΔQSM示意图。3 is a schematic diagram of ΔMDR , ΔAL and ΔQSM when c=−0.5, ε=0.1, ρ=0.6, δ=0.8, Δ=0.3.
图4是当c=-0.5,ε=0.1,ρ=0.5,δ=0.9,Δ=0.3时的ΔMDR,ΔAL及ΔQSM示意图。FIG. 4 is a schematic diagram of ΔMDR , ΔAL and ΔQSM when c=−0.5, ε=0.1, ρ=0.5, δ=0.9, Δ=0.3.
图5-12是反馈控制器参数c=-0.5,ρ=0.5,ε=0.5,δ=0.9时,永磁同步电机控制系统的实验结果,其中:Figure 5-12 shows the experimental results of the PMSM control system when the feedback controller parameters are c=-0.5, ρ=0.5, ε=0.5, and δ=0.9, where:
图5是基于椭圆趋近律的反馈控制器作用下的参考位置信号和实际位置信号。Figure 5 shows the reference position signal and the actual position signal under the action of the feedback controller based on the ellipse reaching law.
图6是基于椭圆趋近律的反馈控制器作用下的控制器电压信号。Figure 6 is the controller voltage signal under the action of the feedback controller based on the elliptic reaching law.
图7是基于椭圆趋近律的反馈控制器作用下的切换函数曲线图。FIG. 7 is a graph of the switching function under the action of the feedback controller based on the ellipse reaching law.
图8是基于椭圆趋近律的反馈控制器作用下的切换函数分布直方图。Fig. 8 is a histogram of switching function distribution under the action of a feedback controller based on elliptic reaching law.
图9是基于椭圆趋近律和等效扰动补偿的反馈控制器作用下的参考位置信号和实际位置信号。Figure 9 shows the reference position signal and the actual position signal under the action of the feedback controller based on the ellipse reaching law and equivalent disturbance compensation.
图10是基于椭圆趋近律和等效扰动补偿的反馈控制器作用下的控制器电压信号。Figure 10 is the controller voltage signal under the action of the feedback controller based on elliptic reaching law and equivalent disturbance compensation.
图11是基于椭圆趋近律和等效扰动补偿的反馈控制器作用下的切换函数曲线图。Figure 11 is a graph of the switching function under the action of a feedback controller based on elliptic reaching law and equivalent disturbance compensation.
图12是基于椭圆趋近律和等效扰动补偿的反馈控制器作用下的切换函数分布直方图。Figure 12 is a histogram of switching function distribution under the action of a feedback controller based on elliptic reaching law and equivalent disturbance compensation.
图13-20是重复控制器参数c=-0.5,ρ=0.5,ε=0.5,δ=0.9时,永磁同步电机控制系统的实验结果,其中:Figure 13-20 shows the experimental results of the PMSM control system when the repeated controller parameters are c=-0.5, ρ=0.5, ε=0.5, and δ=0.9, where:
图13是基于椭圆趋近律的重复控制器作用下的参考位置信号和实际位置信号。Fig. 13 is the reference position signal and the actual position signal under the action of the repetitive controller based on the ellipse reaching law.
图14是基于椭圆趋近律的重复控制器作用下的控制器电压信号。Figure 14 is the controller voltage signal under the action of the repetitive controller based on the elliptic reaching law.
图15是基于椭圆趋近律的重复控制器作用下的切换函数曲线图。Figure 15 is a graph of the switching function under the action of the repetitive controller based on the ellipse reaching law.
图16是基于椭圆趋近律的重复控制器作用下的切换函数分布直方图。Figure 16 is a histogram of the distribution of switching functions under the action of a repetitive controller based on the ellipse reaching law.
图17是基于椭圆趋近律和等效扰动补偿的重复控制器作用下的参考位置信号和实际位置信号。Fig. 17 is the reference position signal and the actual position signal under the action of the repetitive controller based on the ellipse reaching law and equivalent disturbance compensation.
图18是基于椭圆趋近律和等效扰动补偿的重复控制器作用下的控制器电压信号。Figure 18 is the controller voltage signal under the action of the repetitive controller based on elliptic reaching law and equivalent disturbance compensation.
图19是基于椭圆趋近律和等效扰动补偿的重复控制器作用下的切换函数曲线图。Figure 19 is a graph of the switching function under the action of a repetitive controller based on elliptic reaching law and equivalent disturbance compensation.
图20是基于椭圆趋近律和等效扰动补偿的重复控制器作用下的切换函数分布直方图。Figure 20 is a histogram of the switching function distribution under the action of a repetitive controller based on elliptic reaching law and equivalent disturbance compensation.
图21-28是反馈控制器参数c=-0.5,ρ=0.7,ε=0.3,δ=0.8时,永磁同步电机控制系统的实验结果,其中:Figures 21-28 are the experimental results of the PMSM control system when the feedback controller parameters are c=-0.5, ρ=0.7, ε=0.3, and δ=0.8, where:
图21是基于椭圆趋近律的反馈控制器作用下的参考位置信号和实际位置信号。Figure 21 shows the reference position signal and the actual position signal under the action of the feedback controller based on the ellipse reaching law.
图22是基于椭圆趋近律的反馈控制器作用下的控制器电压信号。Figure 22 is the controller voltage signal under the action of the feedback controller based on the elliptic reaching law.
图23是基于椭圆趋近律的反馈控制器作用下的切换函数曲线图。FIG. 23 is a graph of the switching function under the action of the feedback controller based on the ellipse reaching law.
图24是基于椭圆趋近律的反馈控制器作用下的切换函数分布直方图。Figure 24 is a histogram of switching function distribution under the action of a feedback controller based on elliptic reaching law.
图25是基于椭圆趋近律和等效扰动补偿的反馈控制器作用下的参考位置信号和实际位置信号。Figure 25 shows the reference position signal and the actual position signal under the action of the feedback controller based on the ellipse reaching law and equivalent disturbance compensation.
图26是基于椭圆趋近律和等效扰动补偿的反馈控制器作用下的控制器电压信号。Figure 26 is the controller voltage signal under the action of the feedback controller based on elliptic reaching law and equivalent disturbance compensation.
图27是基于椭圆趋近律和等效扰动补偿的反馈控制器作用下的切换函数曲线图。Figure 27 is a graph of the switching function under the action of a feedback controller based on elliptic reaching law and equivalent disturbance compensation.
图28是基于椭圆吸引律和等效扰动补偿的反馈控制器作用下的切换函数分布直方图。Figure 28 is a histogram of the switching function distribution under the action of a feedback controller based on the elliptic attraction law and equivalent disturbance compensation.
图29-36是重复控制器参数c=-0.5,ρ=0.7,ε=0.3,δ=0.8时,永磁同步电机控制系统的实验结果,其中:Figure 29-36 shows the experimental results of the permanent magnet synchronous motor control system when the repeated controller parameters are c=-0.5, ρ=0.7, ε=0.3, and δ=0.8, where:
图29是基于椭圆趋近律的重复控制器作用下的参考位置信号和实际位置信号。Figure 29 is the reference position signal and the actual position signal under the action of the repetitive controller based on the ellipse reaching law.
图30是基于椭圆趋近律的重复控制器作用下的控制器电压信号。Figure 30 is the controller voltage signal under the action of the repetitive controller based on the elliptic reaching law.
图31是基于椭圆趋近律的重复控制器作用下的切换函数曲线图。Figure 31 is a graph of the switching function under the action of the repetitive controller based on the ellipse reaching law.
图32是基于椭圆趋近律的重复控制器作用下的切换函数分布直方图。Figure 32 is a histogram of the distribution of switching functions under the action of a repetitive controller based on the ellipse reaching law.
图33是基于椭圆趋近律和等效扰动补偿的重复控制器作用下的参考位置信号和实际位置信号。Figure 33 shows the reference position signal and the actual position signal under the action of the repetitive controller based on the ellipse reaching law and equivalent disturbance compensation.
图34是基于椭圆趋近律和等效扰动补偿的重复控制器作用下的控制器电压信号。Figure 34 is the controller voltage signal under the action of the repetitive controller based on elliptic reaching law and equivalent disturbance compensation.
图35是基于椭圆趋近律和等效扰动补偿的重复控制器作用下的切换函数曲线图。Figure 35 is a graph of the switching function under the action of a repetitive controller based on elliptic reaching law and equivalent disturbance compensation.
图36是基于椭圆趋近律和等效扰动补偿的重复控制器作用下的切换函数分布直方图。Figure 36 is a histogram of the switching function distribution under the action of a repetitive controller based on elliptic reaching law and equivalent disturbance compensation.
具体实施方式Detailed ways
结合附图对本发明具体实施方式作进一步描述。The specific embodiments of the present invention will be further described with reference to the accompanying drawings.
参照图1和图2,一种采用等效扰动补偿的椭圆趋近律的离散重复控制方法,其中,图1是电机伺服系统方框图;图2是椭圆趋近律的重复控制控制器结构示意图;所述控制方法包括以下步骤:With reference to Fig. 1 and Fig. 2, a kind of discrete repetitive control method adopting the ellipse reaching law of equivalent disturbance compensation, wherein, Fig. 1 is a block diagram of a motor servo system; Fig. 2 is the repetitive control controller structure schematic diagram of ellipse reaching law; The control method includes the following steps:
1)伺服系统的差分方程模型1) Differential equation model of servo system
e(k+1)=Ae(k)+b(u(k)+w(k)) (1)e(k+1)=Ae(k)+b(u(k)+w(k)) (1)
其中,e(k),e(k+1)表示伺服系统在k,k+1时刻的跟踪误差,u(k)表示伺服系统k时刻的输入控制,w(k)表示伺服系统在k时刻的干扰信号,A表示伺服系统矩阵,b表示系统的控制系数;Among them, e(k), e(k+1) represent the tracking error of the servo system at time k, k+1, u(k) represents the input control of the servo system at time k, w(k) represents the servo system at time k The interference signal, A represents the servo system matrix, b represents the control coefficient of the system;
2)给定周期参考信号,满足2) Given a periodic reference signal, satisfy
r(k)=r(k-N) (2)r(k)=r(k-N) (2)
其中,N表示参考信号的周期,r(k)表示伺服系统在k时刻的参考信号,r(k-N)表示伺服系统在上一周期的第k时刻的参考信号;Among them, N represents the period of the reference signal, r(k) represents the reference signal of the servo system at time k, and r(k-N) represents the reference signal of the servo system at the kth time of the previous cycle;
3)定义跟踪误差3) Define the tracking error
e(k)=y(k)-r(k) (3)e(k)=y(k)-r(k) (3)
其中,y(k)表示伺服系统在k时刻的系统输出;Among them, y(k) represents the system output of the servo system at time k;
4)选取线性切换函数为s(k)=cTe(k),cT为增益参数,其选取决定了系统在滑模面上的收敛性和收敛速度;4) The linear switching function is selected as s(k)=c T e(k), c T is the gain parameter, and its selection determines the convergence and convergence speed of the system on the sliding mode surface;
5)构造等效扰动5) Construct equivalent disturbance
d(k)=cTb(w(k)-w(k-N)) (4)d(k)=c T b(w(k)-w(kN)) (4)
其中,d(k)表示伺服系统在k时刻的等效扰动信号,w(k-N)表示伺服系统在上一周期的第k时刻的干扰信号;Among them, d(k) represents the equivalent disturbance signal of the servo system at time k, and w(k-N) represents the disturbance signal of the servo system at the kth time of the previous cycle;
6)构造离散时间椭圆趋近律6) Constructing discrete-time ellipse reaching law
s(k+1)=(1-ρ)s(k)-εfal(s(k),δ) (5)s(k+1)=(1-ρ)s(k)-εfal(s(k),δ) (5)
其中,s(k+1)表示k+1时刻的切换函数;趋近律中构造的椭圆函数为ρ、ε和δ均为可调参数,且0<ρ<1,δ>0,ε>0;Among them, s(k+1) represents the switching function at
7)根据上述的椭圆趋近律,构造理想切换动态7) According to the above-mentioned ellipse reaching law, construct the ideal switching dynamics
s(k+1)=(1-ρ)s(k)-εfal(s(k),δ)+d(k)-d*(k) (6)s(k+1)=(1-ρ)s(k)-εfal(s(k),δ)+d(k)-d * (k) (6)
其中,d*(k)表示k时刻d(k)的补偿量;记du,dl分别为d(k)的上下限,d(k)满足du≥d(k)≥dl,取得|d*(k)-d(k)|≤Δ,其中Δ为理想切换动态公式(6)中干扰的界;Among them, d * (k) represents the compensation amount of d(k) at time k; denote d u and d l as the upper and lower limits of d(k) respectively, and d(k) satisfies d u ≥d(k)≥d l , Pick get |d * (k)-d(k)|≤Δ, where Δ is the boundary of interference in the ideal switching dynamic formula (6);
8)根据所述的理想切换动态构造离散滑模重复控制器的模型:8) Construct the model of discrete sliding mode repetitive controller according to the described ideal switching dynamics:
u(k)=u(k-N)+(cTb)-1[(1-ρ)s(k)-εfal(s(k),δ)-s(k+1-N)-cTA(e(k)-e(k-N))-d*(k)] (7)u(k)=u(kN)+(c T b) -1 [(1-ρ)s(k)-εfal(s(k),δ)-s(k+1-N)-c T A (e(k)-e(kN))-d * (k)] (7)
其中,u(k-N)表示伺服系统在上一周期的第k时刻的控制变量,(cTb)-1表示矩阵系数,s(k+1-N)表示伺服系统在上一周期的第k+1时刻的切换函数,cTA表示增益系数,e(k-N)表示伺服系统在上一周期的第k时刻的跟踪误差变量;Among them, u(kN) represents the control variable of the servo system at the kth time of the previous cycle, (c T b) -1 represents the matrix coefficient, and s(k+1-N) represents the kth time of the servo system in the previous cycle. The switching function at time +1, c T A represents the gain coefficient, and e(kN) represents the tracking error variable of the servo system at the k-th time of the previous cycle;
将u(k)作为伺服对象的控制器输入信号,测量获得伺服系统输出信号y(k),跟随参考信号r(k)变化。Taking u(k) as the input signal of the controller of the servo object, the output signal y(k) of the servo system is obtained by measurement, which changes with the reference signal r(k).
进一步,在重复控制器设计完成之后,具控制器参数整定依据表征系统收敛性能的指标进行,为表征系统收敛性能,引入单调收敛层边界、绝对收敛层边界和拟滑模带边界概念,具体定义如下:Further, after the repetitive controller design is completed, the controller parameters are tuned according to the indicators that characterize the convergence performance of the system. In order to characterize the convergence performance of the system, the concepts of monotonic convergence layer boundary, absolute convergence layer boundary and pseudo-sliding mode zone boundary are introduced. as follows:
单调收敛层边界ΔMDR:在单调收敛层边界外,s(k)同号单调递减,即Monotonic convergence layer boundary Δ MDR : outside the monotone convergence layer boundary, s(k) monotonically decreases with the same sign, that is
绝对收敛层边界ΔAL:在绝对收敛层外,|s(k)|单调递减,即Absolute convergence layer boundary Δ AL : outside the absolute convergence layer, |s(k)| decreases monotonically, namely
拟滑模带边界ΔQSM:系统在切换平面s(k)=cTe(k)=0的一个领域内运动,一旦进入该领域内,就会稳定于其内,即The quasi-sliding mode band boundary Δ QSM : the system moves in a field where the switching plane s(k)=c T e(k)=0, once it enters the field, it will stabilize in it, that is,
①单调收敛层边界ΔMDR ① Monotonic convergence layer boundary Δ MDR
其中in
②绝对收敛层边界ΔAL ②Absolute convergence layer boundary Δ AL
其中in
③拟滑模带边界ΔQSM ③ Pseudo sliding mode zone boundary Δ QSM
(i)δ≤Z1 (i)δ≤Z 1
(ii)Z1<δ<Z2 (ii) Z 1 <δ<Z 2
(iii)Z1<Z2<δ(iii) Z 1 <Z 2 <δ
其中in
再进一步,该控制器的可调整参数包括ρ、ε和δ;参数整定依据表征收敛过程的指标。Still further, the adjustable parameters of the controller include ρ, ε and δ; the parameter setting is based on the index characterizing the convergence process.
更进一步,所述步骤5)中,假设du≥d(k)≥dl,则 Further, in the step 5), assuming that d u ≥ d(k) ≥ d l , then
实施例:一种采用等效扰动补偿的椭圆趋近律的用于电机伺服系统的离散重复控制方法,包括以下步骤:Embodiment: a discrete repetitive control method for a motor servo system using an ellipse reaching law of equivalent disturbance compensation, comprising the following steps:
第一步.电机伺服对象的二阶差分方程模型
y(k+1)+a1y(k)+a2y(k-1)=b1u(k)+b2u(k-1)+w(k)y(k+1)+a 1 y(k)+a 2 y(k-1)=b 1 u(k)+b 2 u(k-1)+w(k)
其中,y(k+1)、y(k)和y(k-1)分别表示是伺服系统在k+1,k和k-1时刻的输出信号,u(k)和u(k-1)分别表示伺服系统在k和k-1时刻的输入信号,w(k)表示系统k时刻的干扰信号,a1、a2、b1、b2表示伺服系统的系统参数,其取值通过参数估计获得;Among them, y(k+1), y(k) and y(k-1) represent the output signals of the servo system at times k+1, k and k-1, respectively, u(k) and u(k-1 ) represent the input signal of the servo system at time k and k-1, respectively, w(k) represents the disturbance signal of the system at time k, a 1 , a 2 , b 1 , and b 2 represent the system parameters of the servo system, which are obtained by parameter estimation is obtained;
第二步.给定周期参考信号,满足
r(k)=r(k-N) (2)r(k)=r(k-N) (2)
其中,N表示参考信号的周期,r(k)表示伺服系统在k时刻的参考信号,r(k-N)表示伺服系统在上一周期的第k时刻的参考信号;Among them, N represents the period of the reference signal, r(k) represents the reference signal of the servo system at time k, and r(k-N) represents the reference signal of the servo system at the kth time of the previous cycle;
第三步.构造离散时间椭圆趋近律
s(k+1)=(1-ρ)s(k)-εfal(s(k),δ) (5)s(k+1)=(1-ρ)s(k)-εfal(s(k),δ) (5)
其中,趋近律中椭圆函数为ρ、ε和δ均为可调参数,且0<ρ<1,δ>0,ε>0;Among them, the elliptic function in the reaching law is ρ, ε and δ are all adjustable parameters, and 0<ρ<1, δ>0, ε>0;
第四步.引入等效扰动,构造带干扰抑制作用的椭圆趋近律
s(k+1)=(1-ρ)s(k)-εfal(s(k),δ)+d(k)-d*(k) (6)s(k+1)=(1-ρ)s(k)-εfal(s(k),δ)+d(k)-d * (k) (6)
其中,d(k)表示永磁同步电机在k时刻的等效扰动信号,d*(k)表示k时刻d(k)的补偿量;Among them, d(k) represents the equivalent disturbance signal of the permanent magnet synchronous motor at time k, and d * (k) represents the compensation amount of d(k) at time k;
第五步.给定参考信号r(k),由电机伺服对象的二阶差分方程模型写出系统方程
e(k+1)=Ae(k)+b(v(k)+w(k)) (1)e(k+1)=Ae(k)+b(v(k)+w(k)) (1)
其中,e(k)=[e1(k) e2(k)]T,e1(k)=y(k-1)-e(k-1),e2(k)=y(k)-e(k),e1(k)为k-1时刻的跟踪误差,e2(k)为k时刻的跟踪误差,输入为系统跟踪误差方程中定义的控制输入,且系统矩阵和控制系数分别为 Where, e(k)=[e 1 (k) e 2 (k)] T , e 1 (k)=y(k-1)-e(k-1), e 2 (k)=y(k )-e(k), e 1 (k) is the tracking error at time k-1, e 2 (k) is the tracking error at time k, input is the control input defined in the system tracking error equation, and the system matrix and control coefficient are respectively
第六步.选取线性切换函数为s(k)=cTe(k),其中,c选取为c=[-0.5 1]T;
第七步.针对电机伺服对象的二阶差分方程模型,为实现理想切换动态,离散滑模重复控制器应设计为:
对于上述重复控制器设计,做以下说明:For the repeating controller design above, do the following:
1)e(k)、y(k)、y(k-1)和y(k-1-N)均可通过测量得到,u(k-1)和u(k-1-N)表示控制信号的存储值,可以从内存中读取。1) e(k), y(k), y(k-1) and y(k-1-N) can be obtained by measurement, u(k-1) and u(k-1-N) represent control The stored value of the signal, which can be read from memory.
2)当参考信号满足r(k)=r(k-1),该离散重复控制器也适用于常值调节问题,这时的等效扰动为d(k)=w(k)-w(k-1);其中,r(k-1)表示伺服系统在k-1时刻的参考信号,w(k-1)表示伺服系统在k-1时刻的干扰信号;2) When the reference signal satisfies r(k)=r(k-1), the discrete repetitive controller is also suitable for the constant regulation problem, and the equivalent disturbance at this time is d(k)=w(k)-w( k-1); wherein, r(k-1) represents the reference signal of the servo system at time k-1, and w(k-1) represents the interference signal of the servo system at time k-1;
3)上述重复控制器针对二阶系统,按照相同的方法同样可以给出更高阶系统的设计结果。3) The above-mentioned repetitive controller is aimed at the second-order system, and the design result of the higher-order system can also be given according to the same method.
第八步.根据表征系统收敛速度的单调收敛层边界ΔMDR,绝对收敛层边界ΔAL以及拟滑模带边界ΔQSM对控制器参数进行整定,以达到最佳的控制效果。其中控制器参数主要包括:椭圆参数δ、可调整参数ρ、ε和等效扰动界Δ;
依据上述ΔMDR、ΔAL及ΔQSM的定义,确定的各边界取值如下:According to the above definitions of Δ MDR , Δ AL and Δ QSM , the determined boundary values are as follows:
单调收敛层边界ΔMDR Monotonic Convergence Layer Boundary Δ MDR
绝对收敛层边界ΔAL Absolutely convergent layer boundary Δ AL
拟滑模带边界ΔQSM Pseudo-Sliding Mode Band Boundary Δ QSM
①单调收敛层边界ΔMDR ① Monotonic convergence layer boundary Δ MDR
其中in
②绝对收敛层边界ΔAL ②Absolute convergence layer boundary Δ AL
其中in
③拟滑模带边界ΔQSM ③ Pseudo sliding mode zone boundary Δ QSM
(i)δ≤Z1 (i)δ≤Z 1
(ii)Z1<δ<Z2 (ii) Z 1 <δ<Z 2
(iii)Z1<Z2<δ(iii) Z 1 <Z 2 <δ
其中in
依据式(11)-(16)计算出各边界取值,以确定闭环系统的跟踪性能。According to equations (11)-(16), the value of each boundary is calculated to determine the tracking performance of the closed-loop system.
本实施例以永磁同步电机伺服系统在固定区间上执行重复跟踪任务为例,其位置参考信号具有周期对称特性。以TMS320F2812DSP作为控制器,交流伺服电机APM-SB01AGN作为控制对象,与ELMO交流伺服驱动器以及上位机构成永磁同步电机伺服系统,进行电机位置控制。其中伺服系统采用三环控制,电流环与速度环控制器由ELMO驱动器提供,位置环由DSP开发板提供。In this embodiment, the permanent magnet synchronous motor servo system performs the repetitive tracking task in a fixed interval as an example, and the position reference signal thereof has the characteristic of periodic symmetry. With TMS320F2812DSP as the controller, AC servo motor APM-SB01AGN as the control object, and ELMO AC servo driver and host computer to form a permanent magnet synchronous motor servo system to control the motor position. The servo system adopts three-loop control, the current loop and speed loop controllers are provided by the ELMO driver, and the position loop is provided by the DSP development board.
设计位置环控制器,需建立除位置环以外的伺服对象的数学模型,包括电流环、速度环、功率驱动器、交流永磁同步伺服电机本体以及检测装置。通过参数估计获得伺服对象的数学模型为To design a position loop controller, it is necessary to establish mathematical models of servo objects other than the position loop, including current loop, speed loop, power driver, AC permanent magnet synchronous servo motor body and detection device. The mathematical model of the servo object obtained by parameter estimation is
y(k+1)-1.8949y(k)+0.8949y(k-1)=1.7908u(k)-0.5704u(k-1)+w(k) (17)y(k+1)-1.8949y(k)+0.8949y(k-1)=1.7908u(k)-0.5704u(k-1)+w(k) (17)
其中,y(k),u(k)分别表示位置伺服系统的位置输出与速度给定信号(控制输入),w(k)表示干扰信号。Among them, y(k), u(k) respectively represent the position output and speed given signal (control input) of the position servo system, and w(k) represent the interference signal.
由于本实施例以正弦信号作为系统的参考信号,重复控制器可采取式(6)给出的控制器形式,其具体表达式可写成 Since the sinusoidal signal is used as the reference signal of the system in this embodiment, the repetitive controller can take the form of the controller given by equation (6), and its specific expression can be written as
该实施例中将通过数值仿真和实验结果说明本发明给出重复控制器的有效性。In this example, numerical simulation and experimental results will be used to illustrate the effectiveness of the repetitive controller given by the present invention.
给定位置参考信号为r(k)=10sin(2πfkTs),其单位为度(deg),频率f=1Hz,采样周期Ts=0.001s,采样周期N=1000。仿真时,选取的干扰信号w(k)由周期扰动和非周期随机干扰构成,其具体形式为The given position reference signal is r(k)=10sin( 2πfkTs ), the unit is degree (deg), the frequency f=1Hz, the sampling period Ts =0.001s, and the sampling period N=1000. During the simulation, the selected interference signal w(k) is composed of periodic disturbance and aperiodic random disturbance, and its specific form is
w(k)=2sin(2πfkTs)+0.15sgn(sin(2kπ/150)) (19)w(k)=2sin(2πfkT s )+0.15sgn(sin(2kπ/150)) (19)
在重复控制器(18)作用下,选取不同的控制器参数ρ、ε和δ,伺服系统的三个边界层也各不相同。为说明本发明专利关于单调收敛层边界ΔMDR、绝对收敛层边界ΔAL和拟滑模带边界ΔQSM的理论正确性,进行了数值仿真。Under the action of the repetitive controller (18), different controller parameters ρ, ε and δ are selected, and the three boundary layers of the servo system are also different. In order to illustrate the theoretical correctness of the patent of the present invention about the monotonic convergence layer boundary Δ MDR , the absolute convergence layer boundary Δ AL and the quasi-sliding mode zone boundary Δ QSM , numerical simulations are carried out.
1)当控制器参数c=-0.5,ε=0.1,ρ=0.6,δ=0.8,Δ=0.3时,根据三个边界值的计算公式,可以得1) When the controller parameters c=-0.5, ε=0.1, ρ=0.6, δ=0.8, Δ=0.3, according to the calculation formula of the three boundary values, we can get
ΔMDR=0.9926,ΔAL=0.6642,ΔQSM=0.3145Δ MDR = 0.9926, Δ AL = 0.6642, Δ QSM = 0.3145
2)当控制器参数c=-0.5,ε=0.1,ρ=0.5,δ=0.9,Δ=0.3时,根据三个边界值的计算公式,可以得2) When the controller parameters c=-0.5, ε=0.1, ρ=0.5, δ=0.9, Δ=0.3, according to the calculation formula of the three boundary values, we can get
ΔMDR=ΔAL=0.7987,ΔQSM=0.3109Δ MDR = Δ AL = 0.7987, Δ QSM = 0.3109
仿真结果见图3-4。在给定系统模型、参考信号和干扰信号的情况下,上述数值结果验证了本专利给出的重复控制器作用下表征系统收敛速度的单调收敛层边界ΔMDR、绝对收敛层边界ΔAL和拟滑模带边界ΔQSM的准确性。The simulation results are shown in Figure 3-4. Given the system model, reference signal and interference signal, the above numerical results verify the monotonic convergence layer boundary Δ MDR , the absolute convergence layer boundary Δ AL and the pseudo-convergence layer boundary Δ MDR , which characterize the system convergence rate under the action of the repetitive controller given in this patent. Accuracy of the sliding mode band boundary Δ QSM .
实验所用永磁同步电机控制系统的方框图见图1所示。通过设置不同控制器参数,验证基于椭圆趋近律的离散重复控制的跟踪性能。给定位置信号为rk=A(sin(2πfkTs)+1),其中,幅值A=135deg,采样周期Ts=5ms,频率f=1Hz。The block diagram of the permanent magnet synchronous motor control system used in the experiment is shown in Figure 1. By setting different controller parameters, the tracking performance of discrete repetitive control based on elliptic reaching law is verified. The given position signal is r k =A(sin(2πfkT s )+1), wherein, the amplitude A=135deg, the sampling period T s =5ms, and the frequency f=1Hz.
采用反馈控制器采取如下形式Using a feedback controller takes the form
采用基于扰动补偿的反馈控制器如下形式The feedback controller based on disturbance compensation is adopted in the following form
采用重复控制器如下形式Use a repeating controller of the form
采用基于扰动补偿的重复控制器如下形式The repetitive controller based on disturbance compensation is of the following form
A.控制器参数取c=-0.5,ρ=0.5,ε=0.5,δ=0.9,参考信号周期T=4s,采样周期Ts=0.005s。A. The controller parameters take c=-0.5, ρ=0.5, ε=0.5, δ=0.9, the reference signal period T=4s, and the sampling period Ts=0.005s.
采用反馈控制器(20),位置信号、控制器电压、切换函数曲线以及切换函数直方图如图5-8所示,图中ΔQSM=0.12deg。Using the feedback controller (20), the position signal, the controller voltage, the switching function curve and the switching function histogram are shown in Figures 5-8, where ΔQSM = 0.12deg.
B.控制器参数取c=-0.5,ρ=0.5,ε=0.5,δ=0.9,参考信号周期T=4s,采样周期Ts=0.005s。B. The controller parameters take c=-0.5, ρ=0.5, ε=0.5, δ=0.9, the reference signal period T=4s, and the sampling period Ts=0.005s.
采用基于扰动补偿的反馈控制器(21),位置信号、控制器电压、切换函数曲线以及切换函数直方图如图9-12所示,图中ΔQSM=0.1deg。Using the feedback controller (21) based on disturbance compensation, the position signal, controller voltage, switching function curve and switching function histogram are shown in Figures 9-12, where ΔQSM = 0.1deg.
C.控制器参数取c=-0.5,ρ=0.5,ε=0.5,δ=0.9,参考信号周期T=4s,采样周期Ts=0.005s。C. The controller parameters take c=-0.5, ρ=0.5, ε=0.5, δ=0.9, the reference signal period T=4s, and the sampling period Ts=0.005s.
采用重复控制器(22),位置信号、控制器电压、切换函数曲线以及切换函数直方图如图13-16所示,图中ΔQSM=0.07deg。Using the repetitive controller (22), the position signal, controller voltage, switching function curve and switching function histogram are shown in Figures 13-16, where ΔQSM = 0.07deg.
D.控制器参数取c=-0.5,ρ=0.5,ε=0.5,δ=0.9,参考信号周期T=4s,采样周期Ts=0.005s。D. The controller parameters take c=-0.5, ρ=0.5, ε=0.5, δ=0.9, the reference signal period T=4s, and the sampling period Ts=0.005s.
采用基于扰动补偿的重复控制器(23),位置信号、控制器电压、切换函数曲线以及切换函数直方图如图17-20所示,图中ΔQSM=0.05deg。Using the repetitive controller (23) based on disturbance compensation, the position signal, controller voltage, switching function curve and switching function histogram are shown in Figures 17-20, where ΔQSM = 0.05deg.
E.控制器参数取c=-0.5,ρ=0.7,ε=0.3,δ=0.8,参考信号周期T=4s,采样周期Ts=0.005s。E. The controller parameters take c=-0.5, ρ=0.7, ε=0.3, δ=0.8, the reference signal period T=4s, and the sampling period Ts=0.005s.
采用反馈控制器(20),位置信号、控制器电压、切换函数曲线以及切换函数直方图如图21-24所示,图中ΔQSM=0.11deg。Using the feedback controller (20), the position signal, the controller voltage, the switching function curve and the switching function histogram are shown in Figures 21-24, where Δ QSM =0.11deg.
F.控制器参数取为c=-0.5,ρ=0.7,ε=0.3,δ=0.8,参考信号周期T=4s,采样周期Ts=0.005s。F. The controller parameters are taken as c=-0.5, ρ=0.7, ε=0.3, δ=0.8, reference signal period T=4s, sampling period Ts=0.005s.
采用基于扰动补偿的反馈控制器(21),位置信号、控制器电压、切换函数曲线以及切换函数直方图如图25-28所示,图中ΔQSM=0.09deg。Using the feedback controller (21) based on disturbance compensation, the position signal, controller voltage, switching function curve and switching function histogram are shown in Figures 25-28, where ΔQSM = 0.09deg.
G.控制器参数取c=-0.5,ρ=0.7,ε=0.3,δ=0.8,参考信号周期T=4s,采样周期Ts=0.005s。G. The controller parameters take c=-0.5, ρ=0.7, ε=0.3, δ=0.8, the reference signal period T=4s, and the sampling period Ts=0.005s.
采用重复控制器(22),位置信号、控制器电压、切换函数曲线以及切换函数直方图如图29-32所示,图中ΔQSM=0.07deg。Using the repetitive controller (22), the position signal, controller voltage, switching function curve and switching function histogram are shown in Figures 29-32, where ΔQSM = 0.07deg.
H.控制器参数取c=-0.5,ρ=0.7,ε=0.3,δ=0.8,参考信号周期T=4s,采样周期Ts=0.005s。H. The controller parameters take c=-0.5, ρ=0.7, ε=0.3, δ=0.8, the reference signal period T=4s, and the sampling period Ts=0.005s.
采用基于扰动补偿的重复控制器(23),位置信号、控制器电压、切换函数曲线以及切换函数直方图如图33-36所示,图中ΔQSM=0.05deg。Using the repetitive controller (23) based on disturbance compensation, the position signal, controller voltage, switching function curve and switching function histogram are shown in Figures 33-36, where ΔQSM =0.05deg.
I.控制器参数取c=-0.5,ρ=0.8,ε=0.1,δ=0.7,参考信号周期T=4s,采样周期Ts=0.005s。I. The controller parameters take c=-0.5, ρ=0.8, ε=0.1, δ=0.7, the reference signal period T=4s, and the sampling period Ts=0.005s.
上述实验结果表明,本发明提出的一种椭圆趋近律,能够有效抑制系统轨迹跟踪时的抖振现象;引入等效扰动,利用等效扰动补偿作为建模特性和外部未知扰动的补偿,有效抑制了未知扰动;再结合重复控制对周期扰动进行完全抑制,进一步提高了系统的控制性能。The above experimental results show that an ellipse reaching law proposed in the present invention can effectively suppress the chattering phenomenon during system trajectory tracking; introduce equivalent disturbances and use equivalent disturbance compensation as the compensation for modeling characteristics and external unknown disturbances, effectively The unknown disturbance is suppressed; combined with the repetitive control, the periodic disturbance is completely suppressed, which further improves the control performance of the system.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010787437.XA CN112068424B (en) | 2020-08-07 | 2020-08-07 | Discrete repeated control method of elliptic approach law adopting disturbance compensation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010787437.XA CN112068424B (en) | 2020-08-07 | 2020-08-07 | Discrete repeated control method of elliptic approach law adopting disturbance compensation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112068424A true CN112068424A (en) | 2020-12-11 |
CN112068424B CN112068424B (en) | 2024-06-18 |
Family
ID=73660841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010787437.XA Active CN112068424B (en) | 2020-08-07 | 2020-08-07 | Discrete repeated control method of elliptic approach law adopting disturbance compensation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112068424B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112117945A (en) * | 2020-08-07 | 2020-12-22 | 浙江工业大学 | Discrete repetitive control method of parabola approximation law adopting disturbance compensation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5374884A (en) * | 1992-11-18 | 1994-12-20 | University Of Michigan, The Board Of Regents Acting . . . | Model-based position-repeatable disturbance compensation |
KR19980020999A (en) * | 1996-09-13 | 1998-06-25 | 조동일 | Speed and Position Control Method of AC Servo Motor Using Variable Structure Disturbance Observer and Variable Structure Controller |
CN107544244A (en) * | 2017-08-25 | 2018-01-05 | 浙江工业大学 | Discrete repetitive control method for motor servo system based on elliptic attraction law and equivalent disturbance expansion state compensation |
CN109358502A (en) * | 2018-10-20 | 2019-02-19 | 台州学院 | A discrete multi-cycle sliding mode repetitive control method for motor servo system |
CN110658719A (en) * | 2019-09-27 | 2020-01-07 | 浙江工业大学 | A non-switching attraction repetitive control method of servo system using equivalent disturbance compensation |
-
2020
- 2020-08-07 CN CN202010787437.XA patent/CN112068424B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5374884A (en) * | 1992-11-18 | 1994-12-20 | University Of Michigan, The Board Of Regents Acting . . . | Model-based position-repeatable disturbance compensation |
KR19980020999A (en) * | 1996-09-13 | 1998-06-25 | 조동일 | Speed and Position Control Method of AC Servo Motor Using Variable Structure Disturbance Observer and Variable Structure Controller |
CN107544244A (en) * | 2017-08-25 | 2018-01-05 | 浙江工业大学 | Discrete repetitive control method for motor servo system based on elliptic attraction law and equivalent disturbance expansion state compensation |
CN109358502A (en) * | 2018-10-20 | 2019-02-19 | 台州学院 | A discrete multi-cycle sliding mode repetitive control method for motor servo system |
CN110658719A (en) * | 2019-09-27 | 2020-01-07 | 浙江工业大学 | A non-switching attraction repetitive control method of servo system using equivalent disturbance compensation |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112117945A (en) * | 2020-08-07 | 2020-12-22 | 浙江工业大学 | Discrete repetitive control method of parabola approximation law adopting disturbance compensation |
CN112117945B (en) * | 2020-08-07 | 2024-06-18 | 浙江工业大学 | Discrete repeated control method of parabolic approach law adopting disturbance compensation |
Also Published As
Publication number | Publication date |
---|---|
CN112068424B (en) | 2024-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107544245B (en) | Discrete repetitive control method for motor servo system using first-order inertial attraction law with disturbance expansion compensation | |
CN109450307B (en) | Discrete repetitive control method for motor servo system based on similar normal distribution attraction law and adopting disturbance expansion state compensation | |
CN107544244B (en) | Discrete repetitive control method for motor servo system based on elliptic attraction law and equivalent disturbance expansion state compensation | |
CN110134010B (en) | Power attraction repetitive control method adopting equivalent disturbance compensation servo system | |
CN107797448B (en) | Motor position discrete repetitive control method adopting disturbance expansion compensation | |
CN107121932B (en) | A Robust Adaptive Control Method of Error Symbol Integral for Motor Servo System | |
CN103197556B (en) | Based on 1/2nd cycle repetitive control attracting rule | |
CN104614984B (en) | High-precision control method of motor position servo system | |
CN110032073B (en) | 1/2 power attraction repetitive control method with equivalent disturbance compensation | |
CN108958041B (en) | A Discrete Bicycle Repetitive Control Method Based on Hyperbolic Secant Law of Attraction | |
Levant | Finite-time stability and high relative degrees in sliding-mode control | |
CN103048921A (en) | Half-cycle repetitive controller for position servo system | |
CN110716430B (en) | A fast attracting repetitive control method of servo system using equivalent disturbance compensation | |
CN110658719A (en) | A non-switching attraction repetitive control method of servo system using equivalent disturbance compensation | |
CN110134014B (en) | Equivalent Disturbance Compensation Method for Power-attracting Repeated Control of Periodic Servo System | |
CN105867110A (en) | Discrete repetition control method for motor servo system | |
CN109188908A (en) | Attract the Design Methods of Digital Controller of rule without switching based on exponential type | |
CN112068424A (en) | Discrete repetitive control method of ellipse approximation law adopting disturbance compensation | |
CN108828958B (en) | A Design Method of Non-Switching Law of Attraction for Discrete-Time Controller Using Disturbance Differential Suppression Strategy | |
CN112117945A (en) | Discrete repetitive control method of parabola approximation law adopting disturbance compensation | |
CN106125551B (en) | Integral Sliding Mode repetitive controller suitable for period servo-system | |
CN109100938B (en) | Discrete time controller attraction law design method adopting interference differential compensation | |
CN110412876B (en) | Inverter repetitive control method based on attraction law | |
CN112068423B (en) | Design method of finite power attraction repetitive controller | |
CN111835250B (en) | A 1/2-power finite-value attraction-repetitive control method for a servo motor drive system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |