CN112067079A - Array type automobile oil tank liquid level measurement pressure sensor and preparation method thereof - Google Patents
Array type automobile oil tank liquid level measurement pressure sensor and preparation method thereof Download PDFInfo
- Publication number
- CN112067079A CN112067079A CN202010978512.0A CN202010978512A CN112067079A CN 112067079 A CN112067079 A CN 112067079A CN 202010978512 A CN202010978512 A CN 202010978512A CN 112067079 A CN112067079 A CN 112067079A
- Authority
- CN
- China
- Prior art keywords
- liquid level
- pressure sensor
- array type
- preparation
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 238000005259 measurement Methods 0.000 title claims description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000000137 annealing Methods 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 11
- 239000010703 silicon Substances 0.000 claims abstract description 11
- 238000005530 etching Methods 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 20
- 239000002828 fuel tank Substances 0.000 claims description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 238000000206 photolithography Methods 0.000 claims description 12
- 239000010408 film Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 229910052786 argon Inorganic materials 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- 235000012239 silicon dioxide Nutrition 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 230000001681 protective effect Effects 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 5
- 238000000059 patterning Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 239000005388 borosilicate glass Substances 0.000 claims description 4
- 239000002019 doping agent Substances 0.000 claims description 4
- 238000002161 passivation Methods 0.000 claims description 4
- 238000011282 treatment Methods 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000003486 chemical etching Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 229920002120 photoresistant polymer Polymers 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 239000000758 substrate Substances 0.000 abstract description 5
- 230000006866 deterioration Effects 0.000 abstract description 3
- 238000005224 laser annealing Methods 0.000 abstract description 2
- 239000013307 optical fiber Substances 0.000 abstract description 2
- 239000003921 oil Substances 0.000 abstract 1
- 238000001259 photo etching Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 16
- 239000000243 solution Substances 0.000 description 5
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/14—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/02—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
- G01L9/06—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
技术领域technical field
本发明属于压力传感器技术领域,具体涉及一种阵列式汽车油箱液位测量压力传感器及其制备方法。The invention belongs to the technical field of pressure sensors, in particular to an array type pressure sensor for measuring the liquid level of an automobile fuel tank and a preparation method thereof.
背景技术Background technique
在汽车的使用过程中,油箱液位测量是十分必要的,在保证司机实时了解油箱的油量的同时,可以防止汽车油箱泄漏问题所造成的各种事故。早期的油箱液位测量多采用机械原理,然而随着汽车电子化进程的发展,现在对于油量的测量基于液位改变引起电量或者非电量的物理参数变化来实现的。During the use of the car, it is very necessary to measure the fuel tank level. While ensuring that the driver knows the fuel level of the fuel tank in real time, it can prevent various accidents caused by the leakage of the automobile fuel tank. The early fuel tank level measurement mostly used mechanical principles. However, with the development of automotive electronics, the current measurement of fuel volume is based on changes in electrical or non-electrical physical parameters caused by changes in liquid level.
目前,液位测量方法主要有光纤传感技术、导波雷达液位计、电容式真空压力传感器、压阻式压力传感器等。其中,硅压阻式压力传感器基于其精度高、测量范围广、寿命长、结构简单,频响特性好等优点应用最为广泛。当流体施加作用在压敏电阻上时,会引起膜的变形并导致压敏电阻受到应力的影响,半导体的电阻值发生改变,通过电阻的变化量可以获取待测流体的压力值。然而这种传感器的压阻系数受温度的影响比较大,为了利于温度补偿,则需要使用高浓度注入的压敏电阻。在高浓度注入情况下,压阻系数跟温度的相关性比较小,进而可以获取较小的温度系数。传统向硅片引入杂质的方法主要有扩散和离子注入两种方式,然而这两种方式都存在自身的弊端,例如扩散方式难以实现选择性扩散并且扩散浓度分布难以控制,而离子注入的方式耗时较长并且设备昂贵,并且注入的杂质多处于非激活状态,需要靠热处理来进行激活。在高温退火过程中,还会导致注入图形发生畸变,注入杂质析出等一系列问题。At present, the liquid level measurement methods mainly include optical fiber sensing technology, guided wave radar liquid level gauge, capacitive vacuum pressure sensor, piezoresistive pressure sensor, etc. Among them, silicon piezoresistive pressure sensors are the most widely used because of their high precision, wide measurement range, long life, simple structure, and good frequency response characteristics. When the fluid acts on the varistor, it will cause the deformation of the membrane and cause the varistor to be affected by stress, and the resistance value of the semiconductor will change. The pressure value of the fluid to be measured can be obtained through the change in resistance. However, the piezoresistive coefficient of this sensor is greatly affected by temperature. In order to facilitate temperature compensation, it is necessary to use a varistor injected with a high concentration. In the case of high-concentration injection, the piezoresistive coefficient has a relatively small correlation with temperature, and thus a small temperature coefficient can be obtained. The traditional methods of introducing impurities into silicon wafers mainly include diffusion and ion implantation. However, both methods have their own drawbacks. For example, the diffusion method is difficult to achieve selective diffusion and the diffusion concentration distribution is difficult to control, while the ion implantation method consumes It takes a long time and the equipment is expensive, and the implanted impurities are mostly in an inactive state, which needs to be activated by heat treatment. In the process of high temperature annealing, it will also lead to a series of problems such as distortion of the implantation pattern and precipitation of implanted impurities.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的上述问题,本发明提出了一种阵列式汽车油箱液位测量压力传感器及其制备方法,整体采用高浓度注入的压敏电阻构成惠斯通电桥结构,桥臂电阻采用飞秒激光光丝实现高效快速图案化高浓度掺杂,基于飞秒激光直写系统对注入层进行退火处理。In order to solve the above-mentioned problems existing in the prior art, the present invention proposes an array type pressure sensor for measuring the liquid level of an automobile fuel tank and a preparation method thereof. The Wheatstone bridge structure is formed by a varistor injected with high concentration as a whole, and the bridge arm resistance A femtosecond laser filament is used to achieve high-efficiency and fast patterning of high-concentration doping, and the implanted layer is annealed based on a femtosecond laser direct writing system.
本发明通过如下技术方案实现:The present invention is achieved through the following technical solutions:
一种阵列式汽车油箱液位测量压力传感器的制备方法,具体步骤如下:A preparation method of an array type automobile fuel tank liquid level measurement pressure sensor, the specific steps are as follows:
步骤一:在晶圆表面的正面涂覆一层硼掺杂源,在涂源表面磁控溅射一层厚度为200nm的二氧化硅薄膜,以防止掺杂源在脉冲激光照射时挥发,采用飞秒激光光丝在晶圆表面上实现高效快速图案化高浓度掺杂,制备出高浓度注入的压敏电阻,其中激光的运动轨迹通过扫描振镜进行控制;Step 1: Coating a layer of boron dopant source on the front of the wafer surface, and magnetron sputtering a layer of silicon dioxide film with a thickness of 200nm on the surface of the coating source to prevent the dopant source from volatilizing during pulsed laser irradiation. The femtosecond laser filament realizes high-efficiency and fast patterning of high-concentration doping on the surface of the wafer, and prepares a high-concentration implanted varistor, in which the trajectory of the laser is controlled by a scanning galvanometer;
步骤二:采用飞秒直写系统对高浓度注入的压敏电阻进行退火处理,退火处理后杂质被电激活并且分布均匀,退火过程在氩气的保护下进行;Step 2: use a femtosecond direct writing system to anneal the high-concentration implanted varistor. After the annealing treatment, the impurities are electrically activated and evenly distributed, and the annealing process is carried out under the protection of argon gas;
步骤三:在晶圆正面及反面均沉积一层Si3N4,相比于氧化层会起到更好的钝化作用,通过光刻、ICP刻蚀得到接触孔;Step 3: deposit a layer of Si 3 N 4 on both the front and the back of the wafer, which has a better passivation effect than the oxide layer, and obtains contact holes through photolithography and ICP etching;
步骤四:通过光刻形成金属电极层的掩膜,然后磁控溅射一层Al薄膜,除去光刻胶完成金属层剥离后形成导线和焊盘,完成铝与压敏电阻欧姆接触;Step 4: forming a mask for the metal electrode layer by photolithography, then magnetron sputtering a layer of Al film, removing the photoresist to complete the stripping of the metal layer, forming wires and pads, and completing the ohmic contact between the aluminum and the varistor;
步骤五:将正面进行保护,对背面沉积的Si3N4层进行光刻刻蚀,进而得到硅杯窗口,经过化学腐蚀得到厚度为25-50μm的应变膜;Step 5: Protect the front side, perform photolithography etching on the Si 3 N 4 layer deposited on the back side, and then obtain a silicon cup window, and obtain a strained film with a thickness of 25-50 μm through chemical etching;
步骤六:将制备好的器件与硼硅玻璃进行键合,中间形成真空密封腔,制备出硅杯型压力传感器。Step 6: bonding the prepared device with borosilicate glass, forming a vacuum sealed cavity in the middle, and preparing a silicon cup-type pressure sensor.
优选地,步骤一中所述的飞秒激光光丝是激光束通过焦距为100cm的石英透镜在空气中聚焦所形成的,形成的光丝的长度约为3cm,光丝的直径约为100μm,采用的激光中心波长为800nm,重复频率为500Hz,脉冲宽度为35fs,单脉冲能量为0-3.5mJ,采用氩气作为保护气体。Preferably, the femtosecond laser filament described in step 1 is formed by focusing a laser beam in the air through a quartz lens with a focal length of 100 cm, the length of the formed filament is about 3 cm, and the diameter of the filament is about 100 μm, The center wavelength of the laser used is 800 nm, the repetition frequency is 500 Hz, the pulse width is 35 fs, the single pulse energy is 0-3.5 mJ, and argon is used as the protective gas.
优选地,步骤一中所述的晶圆厚度为300μm,所述硼掺杂源为三氧化二硼与无水乙醇按照质量体积比为10g:100ml混合而成,所述二氧化硅薄膜的厚度为200nm,所述高浓度掺杂的浓度为1020/cm2以上。Preferably, the thickness of the wafer in step 1 is 300 μm, the boron doping source is a mixture of boron trioxide and anhydrous ethanol according to a mass-to-volume ratio of 10g:100ml, and the thickness of the silicon dioxide film is is 200 nm, and the concentration of the high-concentration doping is 10 20 /cm 2 or more.
优选地,步骤二中所述飞秒激光直写系统采用激光中心波长为800nm,脉冲宽度为100fs,重复频率为2.5kHz,采用氩气作为保护气体。Preferably, the femtosecond laser direct writing system described in step 2 uses a laser with a center wavelength of 800 nm, a pulse width of 100 fs, a repetition frequency of 2.5 kHz, and argon as the protective gas.
优选地,步骤四中所述的Al薄膜的厚度为100nm-120nm。Preferably, the thickness of the Al thin film described in step 4 is 100nm-120nm.
与现有技术相比,本发明的优点如下:Compared with the prior art, the advantages of the present invention are as follows:
1.本发明采用飞秒激光光丝实现晶圆高浓度掺杂,操作简单、掺杂效率高,并且可以选择性地在晶圆表面进行激光处理。1. The present invention adopts femtosecond laser filament to achieve high-concentration doping of wafers, with simple operation and high doping efficiency, and can selectively perform laser treatment on the wafer surface.
2.本发明采用飞秒直写系统对注入层进行退火处理,设备简单、操作容易、有效的吸除晶圆表面各种缺陷,并且可以避免热退火所导致的衬底电学参数变坏、注入杂质再分布以及注入图形发生畸变的问题。2. The present invention adopts the femtosecond direct writing system to anneal the implanted layer, the equipment is simple, the operation is easy, and various defects on the wafer surface can be effectively absorbed, and the deterioration of the electrical parameters of the substrate caused by thermal annealing and implantation can be avoided. Impurity redistribution and implant pattern distortion.
3.本发明提出的油箱液位测量压力传感器采用阵列式结构,便于液面不同高度的检测。3. The fuel tank liquid level measurement pressure sensor proposed by the present invention adopts an array structure, which is convenient for the detection of different heights of the liquid level.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。In order to illustrate the specific embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that are required to be used in the description of the specific embodiments or the prior art. Similar elements or parts are generally identified by similar reference numerals throughout the drawings. In the drawings, each element or section is not necessarily drawn to actual scale.
图1为本发明的阵列式汽车油箱液位测量压力传感器的结构示意图;Fig. 1 is the structural representation of the array type automobile fuel tank liquid level measuring pressure sensor of the present invention;
图2为本发明的阵列式汽车油箱液位测量压力传感器的制备工艺流程图。FIG. 2 is a flow chart of the preparation process of the array type automobile fuel tank liquid level measurement pressure sensor of the present invention.
具体实施方式Detailed ways
下面将结合附图对本发明技术方案的实施例进行详细的描述,以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。The embodiments of the technical solutions of the present invention will be described in detail below with reference to the accompanying drawings. The following embodiments are only used to illustrate the technical solutions of the present invention more clearly, so they are only used as examples, and cannot be used to limit the protection scope of the present invention.
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。It should be noted that, unless otherwise specified, the technical or scientific terms used in this application should have the usual meanings understood by those skilled in the art to which the present invention belongs.
实施例1Example 1
本发明公开一种阵列式汽车油箱液位测量压力传感器制备方法,基于惠斯通电桥结构的电路,首先采用飞秒激光光丝在涂源晶圆表面上实现高效快速图案化高浓度掺杂,制备出高浓度注入的压敏电阻,并采用飞秒直写系统对注入层进行退火处理,进而沉积钝化层并通过光刻、刻蚀得到接触孔,通过光刻、磁控溅射得到金属铝导线和焊盘。进而在背面通过光刻、刻蚀得到硅杯窗口,并通过腐蚀得到特定厚度的应变膜。最终将制备好的器件与硼硅玻璃进行键合,制备出阵列式硅杯型压力传感器。The invention discloses a preparation method of an array type automobile fuel tank liquid level measurement pressure sensor. Based on a circuit with a Wheatstone bridge structure, firstly, a femtosecond laser filament is used to realize high-efficiency, rapid patterning and high-concentration doping on the surface of a coating source wafer, and a circuit is prepared. The high-concentration implanted varistor, and the femtosecond direct writing system is used to anneal the implanted layer, and then the passivation layer is deposited and the contact hole is obtained by photolithography and etching, and the metal aluminum wire is obtained by photolithography and magnetron sputtering. and pads. Then, a silicon cup window is obtained by photolithography and etching on the back side, and a strained film of a specific thickness is obtained by etching. Finally, the prepared device is bonded with borosilicate glass to prepare an array silicon cup pressure sensor.
实施例2Example 2
便于对本实施例进行理解,首先对本发明实施例提出的一种阵列式汽车油箱液位测量压力传感器制备方法进行详细介绍,整体采用高浓度注入的压敏电阻构成的惠斯通电桥结构(图1),桥臂电阻采用飞秒激光光丝实现高效快速图案化高浓度掺杂,基于飞秒激光直写系统对注入层进行退火处理。To facilitate the understanding of this embodiment, first of all, the preparation method of an array type automobile fuel tank liquid level measurement pressure sensor proposed in the embodiment of the present invention will be introduced in detail. ), the bridge arm resistance adopts femtosecond laser filament to achieve high-efficiency and fast patterning and high-concentration doping, and the injection layer is annealed based on the femtosecond laser direct writing system.
一种阵列式汽车油箱液位测量压力传感器制备方法,具体步骤如下:A preparation method of an array type automobile fuel tank liquid level measurement pressure sensor, the specific steps are as follows:
步骤1:在厚度为300μm晶圆表面(正面)涂覆一层硼掺杂源(三氧化二硼:无水乙醇=10g:100ml),在涂源表面磁控溅射一层厚度为200nm的二氧化硅薄膜,以防止掺杂源在脉冲激光照射时挥发,采用飞秒激光光丝在晶圆表面上实现图案化高浓度掺杂(图2a),通过改变激光扫描速度(对应于样品相同位置的激光脉冲数)来控制晶圆的掺杂深度,在掺杂过程中采用氩气作为保护气体,制备出高浓度注入的压敏电阻,其表面浓度可以达到1020/cm2以上,其中激光的运动轨迹通过扫描振镜进行控制,在这里,基于飞秒激光光丝直径大的优势可以实现晶圆高效快速掺杂。Step 1: Coat a layer of boron doping source (diboron trioxide: anhydrous ethanol = 10g:100ml) on the surface (front side) of the wafer with a thickness of 300 μm, and magnetron sputter a layer of 200nm thick on the surface of the coating source. A silicon dioxide film to prevent the doping source from volatilizing when irradiated by a pulsed laser, a femtosecond laser filament was used to achieve patterned high-concentration doping on the wafer surface (Fig. 2a), by changing the laser scanning speed (corresponding to the same sample The number of laser pulses at the position) to control the doping depth of the wafer. In the doping process, argon is used as the protective gas to prepare a high-concentration implanted varistor whose surface concentration can reach more than 10 20 /cm 2 , where The trajectory of the laser is controlled by a scanning galvanometer. Here, the wafer can be efficiently and rapidly doped based on the advantage of the large diameter of the femtosecond laser filament.
步骤2:采用飞秒直写系统对高浓度注入的压敏电阻进行退火处理(图2b),使用Spectra-Physics公司生产的掺钛蓝宝石飞秒激光放大器,聚焦后晶圆表面的光斑直径为260μm,退火处理后杂质被电激活并且分布均匀,退火过程在氩气的保护下进行,相对于传统的热退火处理,采用飞秒激光退火可以有效的吸除晶圆表面各种缺陷,并且可以避免热退火所导致的衬底电学参数变坏、注入杂质再分布以及注入图形发生畸变的问题。Step 2: Use a femtosecond direct writing system to anneal the high-concentration implanted varistor (Figure 2b), use a titanium-doped sapphire femtosecond laser amplifier produced by Spectra-Physics, and the spot diameter on the wafer surface after focusing is 260 μm , the impurities are electrically activated and evenly distributed after the annealing treatment. The annealing process is carried out under the protection of argon gas. Compared with the traditional thermal annealing treatment, femtosecond laser annealing can effectively absorb various defects on the wafer surface, and can avoid Thermal annealing leads to the deterioration of the electrical parameters of the substrate, the redistribution of implanted impurities and the distortion of the implanted pattern.
步骤3:在晶圆正面及反面均沉积一层Si3N4,相比于氧化层会起到更好的钝化作用,通过光刻、ICP刻蚀得到接触孔(图2c),此为铝与压敏电阻实现欧姆接触的过孔。Step 3: A layer of Si 3 N 4 is deposited on both the front and back of the wafer, which has a better passivation effect than the oxide layer. Contact holes are obtained by photolithography and ICP etching (Fig. 2c). This is Vias for ohmic contact between aluminum and varistor.
步骤4:通过光刻形成金属电极层的掩膜,然后磁控溅射一层厚度为100nm-120nm的Al薄膜,除去光刻胶完成金属层剥离后形成导线和焊盘(图2d),完成铝与压敏电阻欧姆接触。Step 4: Form a mask for the metal electrode layer by photolithography, then magnetron sputter an Al thin film with a thickness of 100nm-120nm, remove the photoresist and complete the metal layer stripping to form wires and pads (Figure 2d), complete The aluminum is in ohmic contact with the varistor.
步骤5:将正面进行保护,对背面沉积的Si3N4层进行光刻刻蚀,进而得到硅杯窗口,经过化学腐蚀得到厚度为25-50μm的应变膜(图2e),此步骤需要保证压敏电阻正好处于应变膜上并且相互对称。Step 5: Protect the front side, perform photolithography etching on the Si 3 N 4 layer deposited on the back side, and then obtain the silicon cup window. After chemical etching, a strained film with a thickness of 25-50 μm is obtained (Figure 2e). This step needs to ensure that The varistors are just on the strained membrane and are symmetrical to each other.
步骤6:将制备好的器件与硼硅玻璃在高真空下进行键合(图2f),采用阳极键合技术,中间形成真空密封腔,制备出硅杯型压力传感器,选取玻璃作为材料的基底可以减少芯片与基底之间热失配所带来的误差。Step 6: Bond the prepared device with borosilicate glass under high vacuum (Fig. 2f), adopt anodic bonding technology, form a vacuum sealed cavity in the middle, prepare a silicon cup-type pressure sensor, and select glass as the substrate of the material Errors caused by thermal mismatch between the chip and the substrate can be reduced.
在本实施例中,所述的飞秒激光光丝是激光束通过焦距为100cm的石英透镜在空气中聚焦所形成的,形成的光丝的长度约为3cm,光丝的直径约为100μm,采用的激光中心波长为800nm,重复频率为500Hz,脉冲宽度为35fs,单脉冲能量为0-3.5mJ,采用氩气作为保护气体。In this embodiment, the femtosecond laser filament is formed by focusing a laser beam in the air through a quartz lens with a focal length of 100 cm. The length of the formed filament is about 3 cm, and the diameter of the filament is about 100 μm. The center wavelength of the laser used is 800 nm, the repetition frequency is 500 Hz, the pulse width is 35 fs, the single pulse energy is 0-3.5 mJ, and argon is used as the protective gas.
在本实例中,所述飞秒激光直写系统采用激光中心波长为800nm,脉冲宽度为100fs,重复频率为2.5kHz,采用氩气作为保护气体。In this example, the femtosecond laser direct writing system uses a laser with a center wavelength of 800 nm, a pulse width of 100 fs, a repetition frequency of 2.5 kHz, and argon as a protective gas.
在本实例中,所述的阵列式汽车油箱液位测量压力传感器采用阵列式结构(图1),便于液面不同高度的检测。In this example, the array type pressure sensor for measuring the liquid level of the automobile fuel tank adopts an array type structure (Fig. 1), which is convenient for the detection of different heights of the liquid level.
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings. However, the present invention is not limited to the specific details of the above-mentioned embodiments. Within the scope of the technical concept of the present invention, various simple modifications can be made to the technical solutions of the present invention, These simple modifications all belong to the protection scope of the present invention.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。In addition, it should be noted that the specific technical features described in the above-mentioned specific embodiments can be combined in any suitable manner unless they are inconsistent. In order to avoid unnecessary repetition, the present invention provides The combination method will not be specified otherwise.
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。In addition, the various embodiments of the present invention can also be combined arbitrarily, as long as they do not violate the spirit of the present invention, they should also be regarded as the contents disclosed in the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010978512.0A CN112067079B (en) | 2020-09-17 | 2020-09-17 | An array type automobile fuel tank liquid level measuring pressure sensor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010978512.0A CN112067079B (en) | 2020-09-17 | 2020-09-17 | An array type automobile fuel tank liquid level measuring pressure sensor and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112067079A true CN112067079A (en) | 2020-12-11 |
CN112067079B CN112067079B (en) | 2021-08-17 |
Family
ID=73680757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010978512.0A Expired - Fee Related CN112067079B (en) | 2020-09-17 | 2020-09-17 | An array type automobile fuel tank liquid level measuring pressure sensor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112067079B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114087099A (en) * | 2021-12-08 | 2022-02-25 | 安徽江淮汽车集团股份有限公司 | Fuel supply system and method for cargo vehicle |
CN115890021A (en) * | 2023-01-05 | 2023-04-04 | 成都功成半导体有限公司 | Wafer laser cutting method and wafer |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101071085A (en) * | 2007-06-21 | 2007-11-14 | 复旦大学 | Organic pressure sensor and its use method |
CN101487747A (en) * | 2009-02-10 | 2009-07-22 | 中国科学院上海微系统与信息技术研究所 | Absolute pressure sensor chip based on surface micromachining and manufacturing method |
US20100307255A1 (en) * | 2009-06-01 | 2010-12-09 | Denso Corporation | Physical quantity sensor device and method of manufacturing the same |
WO2011138148A2 (en) * | 2010-05-07 | 2011-11-10 | Endress+Hauser Gmbh+Co.Kg | Counterbearing with aspherical membrane bed, pressure sensor comprising such a counterbearing and method for the production thereof |
CN102903781A (en) * | 2012-08-28 | 2013-01-30 | 中国科学院半导体研究所 | Silicon-based near-infrared photodetector structure and fabrication method |
CN103107483A (en) * | 2013-01-05 | 2013-05-15 | 中国计量科学研究院 | Infrared source and manufacturing method thereof |
CN103268858A (en) * | 2013-05-13 | 2013-08-28 | 华南师范大学 | A kind of preparation method of near-infrared photoelectric silicon material |
CN103794563A (en) * | 2014-02-19 | 2014-05-14 | 金蔚 | Infrared response method for strengthening silicon-based image device CCD or CMOS device |
CN105092137A (en) * | 2014-05-21 | 2015-11-25 | 中芯国际集成电路制造(上海)有限公司 | MEMS pressure sensor and preparation method thereof |
CN105424236A (en) * | 2015-11-19 | 2016-03-23 | 南京信息工程大学 | Multi-range array pressure sensing chip and detection method thereof |
CN108831827A (en) * | 2018-07-31 | 2018-11-16 | 山东大学 | A thermally assisted femtosecond laser annealing device for amorphous silicon |
CN109437094A (en) * | 2018-10-29 | 2019-03-08 | 北京大学第三医院 | A kind of pliable pressure sensor array and preparation method thereof |
CN210400683U (en) * | 2019-10-25 | 2020-04-24 | 北京先智集成技术有限公司 | Novel high-sensitivity multi-channel flexible pressure sensor |
-
2020
- 2020-09-17 CN CN202010978512.0A patent/CN112067079B/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101071085A (en) * | 2007-06-21 | 2007-11-14 | 复旦大学 | Organic pressure sensor and its use method |
CN101487747A (en) * | 2009-02-10 | 2009-07-22 | 中国科学院上海微系统与信息技术研究所 | Absolute pressure sensor chip based on surface micromachining and manufacturing method |
US20100307255A1 (en) * | 2009-06-01 | 2010-12-09 | Denso Corporation | Physical quantity sensor device and method of manufacturing the same |
WO2011138148A2 (en) * | 2010-05-07 | 2011-11-10 | Endress+Hauser Gmbh+Co.Kg | Counterbearing with aspherical membrane bed, pressure sensor comprising such a counterbearing and method for the production thereof |
CN102903781A (en) * | 2012-08-28 | 2013-01-30 | 中国科学院半导体研究所 | Silicon-based near-infrared photodetector structure and fabrication method |
CN103107483A (en) * | 2013-01-05 | 2013-05-15 | 中国计量科学研究院 | Infrared source and manufacturing method thereof |
CN103268858A (en) * | 2013-05-13 | 2013-08-28 | 华南师范大学 | A kind of preparation method of near-infrared photoelectric silicon material |
CN103794563A (en) * | 2014-02-19 | 2014-05-14 | 金蔚 | Infrared response method for strengthening silicon-based image device CCD or CMOS device |
CN105092137A (en) * | 2014-05-21 | 2015-11-25 | 中芯国际集成电路制造(上海)有限公司 | MEMS pressure sensor and preparation method thereof |
CN105424236A (en) * | 2015-11-19 | 2016-03-23 | 南京信息工程大学 | Multi-range array pressure sensing chip and detection method thereof |
CN108831827A (en) * | 2018-07-31 | 2018-11-16 | 山东大学 | A thermally assisted femtosecond laser annealing device for amorphous silicon |
CN109437094A (en) * | 2018-10-29 | 2019-03-08 | 北京大学第三医院 | A kind of pliable pressure sensor array and preparation method thereof |
CN210400683U (en) * | 2019-10-25 | 2020-04-24 | 北京先智集成技术有限公司 | Novel high-sensitivity multi-channel flexible pressure sensor |
Non-Patent Citations (1)
Title |
---|
刘颂豪: "《光子学技术与应用 下》", 30 September 2006, 广东科技出版社,安徽科学技术出版社 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114087099A (en) * | 2021-12-08 | 2022-02-25 | 安徽江淮汽车集团股份有限公司 | Fuel supply system and method for cargo vehicle |
CN115890021A (en) * | 2023-01-05 | 2023-04-04 | 成都功成半导体有限公司 | Wafer laser cutting method and wafer |
CN115890021B (en) * | 2023-01-05 | 2023-05-16 | 成都功成半导体有限公司 | Wafer laser cutting method and wafer |
Also Published As
Publication number | Publication date |
---|---|
CN112067079B (en) | 2021-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4188258A (en) | Process for fabricating strain gage transducer | |
CN112067079B (en) | An array type automobile fuel tank liquid level measuring pressure sensor and preparation method thereof | |
JP2001510641A (en) | Thermal diaphragm sensor and method of manufacturing the same | |
CN112129786B (en) | A transmission electron microscope high-resolution in-situ suspended temperature difference pressurization chip and its preparation method | |
US4287772A (en) | Strain gage transducer and process for fabricating same | |
CN114076617B (en) | Surface acoustic wave temperature and pressure double-parameter sensing device and preparation method thereof | |
CN107403655B (en) | X-ray neutral attenuation sheet and preparation method thereof | |
CN106093138B (en) | Pass through the manufacturing method and sensor of the sensor of metal oxide detection gas | |
US4680243A (en) | Method for producing a mask for use in X-ray photolithography and resulting structure | |
US5703287A (en) | Measuring element for a flow sensor | |
CN112768598B (en) | A kind of infrared pyroelectric detector and preparation method thereof | |
CN111879796B (en) | A transmission electron microscope high-resolution in-situ fluid freezing chip and its preparation method | |
CN112501593B (en) | Manufacturing method of flow sensor chip | |
CN218646885U (en) | Novel penetration type multi-channel gas sensor of MEMS (micro-electromechanical systems) process | |
CN115896698A (en) | A method for quantitatively regulating heterogeneous vanadium oxide and the application of heterogeneous vanadium oxide | |
CN109728123B (en) | Ultrathin silicon PIN radiation detector based on bonded substrate and preparation method | |
US6221726B1 (en) | Process for fabricating device structures for real-time process control of silicon doping | |
JPH01315172A (en) | Stress conversion element and its manufacturing method | |
JPS6261374A (en) | Manufacture of silicon diaphragm | |
CN111180571A (en) | A structure suitable for measuring piezoelectric strain constant of piezoelectric thin film d33 and its preparation process | |
CN116202661B (en) | Pressure sensor and manufacturing method thereof | |
CN113916255B (en) | Manufacturing method of MEMS inertial device accurate positioning structure for irradiation test | |
CN118010808B (en) | MEMS micro-hot plate gas sensor with thermal magnetic temperature measurement structure and preparation method thereof | |
JP2003523079A (en) | Method of fabricating a polycrystalline silicon region defined in an amorphous silicon layer | |
JPS5940548A (en) | Semiconductor ic circuit and laser processing thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210817 |