[go: up one dir, main page]

CN112030161B - 一种用于激光熔覆的高熵合金粉末及其使用方法 - Google Patents

一种用于激光熔覆的高熵合金粉末及其使用方法 Download PDF

Info

Publication number
CN112030161B
CN112030161B CN202011052429.7A CN202011052429A CN112030161B CN 112030161 B CN112030161 B CN 112030161B CN 202011052429 A CN202011052429 A CN 202011052429A CN 112030161 B CN112030161 B CN 112030161B
Authority
CN
China
Prior art keywords
entropy alloy
alloy powder
powder
laser cladding
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011052429.7A
Other languages
English (en)
Other versions
CN112030161A (zh
Inventor
刘洪喜
刘径舟
郝轩弘
邸英南
蔺健全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202011052429.7A priority Critical patent/CN112030161B/zh
Publication of CN112030161A publication Critical patent/CN112030161A/zh
Priority to US17/486,062 priority patent/US11850659B2/en
Application granted granted Critical
Publication of CN112030161B publication Critical patent/CN112030161B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开一种用于激光熔覆的高熵合金粉末及其使用方法,属于激光熔覆领域。所述合金粉末为CoCrFeMnNiCx,x取值0.1~0.15。具体方法为:对45钢基材进行表面预处理,将称量好的CoCrFeMnNi高熵合金粉末与不同含量纳米C粉末混合均匀后预置在预处理基体表面形成预制层,然后置于80~90℃下恒温处理8~12h。在保护气氛下,将熔覆粉末在45钢表面进行激光熔覆。本发明所述方法制备出性能优于CoCrFeMnNi高熵合金涂层的CoCrFeMnNiCx高熵合金涂层,涂层与基体可以达到良好的冶金结合,涂层具有良好的宏观形貌与较高的硬度,可用于高温、耐磨、耐腐蚀等复杂工作情况。

Description

一种用于激光熔覆的高熵合金粉末及其使用方法
技术领域
本发明涉及一种用于激光熔覆的高熵合金粉末及其使用方法,属于激光表面改性领域。
背景技术
45钢是广泛应用于机械制造中各种重要的结构零件,特别是在交变负荷下工作的连杆、螺栓、齿轮及轴类等常用零件,经调制处理后具有良好的综合力学性能。但随着现代化生产工艺对一些主要零件性能的要求日益提高,45钢表面的硬度、耐磨性以及抗腐蚀能力已远远不能满足其需求。
高熵合金即含有多种主要元素的合金,合金元素数目n≥5。与传统合金以一种或两种元素为主要组元不同,高熵合金则是将多种元素以等摩尔或者近等摩尔混合在一起得到的新型合金,其中每种元素的含量远大于5%且不高于35%;由于高熵效应,高熵合金具备一系列优异的性能,如:高硬度、高耐磨性、高耐腐蚀性、高电阻率等。具有单一面心立方(fcc)相结构的等原子CoCrFeMnNi高熵合金的良好性能包括应变硬化,即使在低温条件下也会导致非常高的拉伸伸长和异常的断裂韧性,但CoCrFeMnNi高熵合金材料在硬度强度等方面仍存在一定的局限性,不能满足日趋复杂严苛的工作环境。
激光束功率密度高,熔池冷却速度快,可获得非平衡凝固组织;热输入小,基材热影响区小;自动化程度高,可实现三维自化加工和复杂曲面加工;界面冶金结合,结合强度高;熔池温度高,可加工高熔点材料;熔覆层的厚度范围大。单次涂覆厚度可在0.2~2.0mm灵活调整;能进行选区熔敷,材料消耗少,具有卓越的性能价格比。所以本发明采用激光熔覆方法,在45钢表面熔覆CoCrFeMnNiCx高熵合金材料涂层。
发明内容
本发明的目的在于提供一种用于激光熔覆的高熵合金粉末,所述合金粉末为CoCrFeMnNiCx,x取值0.1~0.15。
本发明的另一目的在于提供所述高熵合金粉末用于制备激光熔覆涂层的方法,具体包括以下步骤:
(1)对45钢基材进行表面预处理:打磨,清洗,干燥后备用;
(2)按比例称量等原子比的CoCrFeMnNi高熵合金粉末与纳米C粉末,称量完毕后进行机械混合;
(3)将混合好的粉末与无水乙醇混合调制成糊状,使用模具将其粘接在钢基体预定位置得到预制涂层,然后进行干燥,在保护气氛下,将熔覆粉末在45钢表面进行激光熔覆。
优选的,本发明步骤(2)中CoCrFeMnNi高熵合金粉末的平均粒度小于25μm,粉末纯度不小于99.9%;纳米C粉的平均粒度为30nm~50nm,纯度不小于99.99%。
优选的,本发明步骤(3)中干燥条件为:预制涂层厚度为0.2mm~2mm,于80~90℃下恒温处理8~12h。
优选的,本发明步骤(3)激光熔覆是通过CO2激光器进行的,具体条件为:激光功率为3.7~4.2kW,扫描速度为200~450mm/min,光斑直径为3.0~4.0mm,保护气体为氮气、氩气或二者混合气体,气体流量为15~35L/min,保护气氛的气压为0.80MPa~1.20MPa。
本发明的原理:具有单一面心立方(fcc)相结构的等原子CoCrFeMnNi高熵合金的良好性能包括应变硬化,即使在低温条件下也会导致非常高的拉伸伸长和异常的断裂韧性,但CoCrFeMnNi高熵合金材料在硬度强度等方面仍存在一定的局限性,不能满足日趋复杂严苛的工作环境。本发明添加纳米C粉,降低了CoCrFeMnNi高熵合金的层错能,增加了层间摩擦应力,导致了室温下的平面滑动;进一步提高了涂层材料的强度。
本发明的有益效果:
(1)激光熔覆法具有光束的能量密度高,加热、冷却速度快的优点;因此激光熔覆组织是一种快速凝固组织,有利于获得较好的性能;另外,激光熔覆涂层与基体材料之间呈冶金结合,使涂层与基体之间的结合较为紧密。
(2)本发明所用熔覆材料为CoCrFeMnNi高熵合金粉末,相较于其他单质、化合物材料熔覆后元素的扩散较少,保证涂层材料中不会大量含有其他非CoCrFeMnNi相。同时向CoCrFeMnNi高熵合金粉末中添加纳米C粉末,提高了涂层材料的强度。
(3)本发明通过激光熔覆技术制备的涂层宏观形貌良好,无明显气孔和裂纹等缺陷,稀释率低且界面冶金结合紧密;本发明制备的CoCrFeMnNi高熵合金的涂层具有较高硬度,耐磨及耐腐蚀性。
附图说明
图1为本发明实施例1激光熔覆涂层横截面的金相组织;
图2为本发明实施例1激光熔覆涂层结合区的金相组织;
图3为本发明实施例1激光熔覆涂层的XRD谱图;
图4为本发明实施例1熔覆涂层与基体的显微硬度。
具体实施方式
下面结合实施例对本发明作进一步说明,但本发明保护范围不局限于所述内容。
本发明的实施例1~3中基体材料45钢的化学成分如表1所示:
表145钢的化学成分
元素 C Si Mn Cr Ni Cu Fe
质量分数% 0.42~0.50 0.17~0.37 0.50~0.80 ≤0.25 ≤0.30 ≤0.25 余量
实施例1
一种高熵合金粉末用于制备激光熔覆层的方法,具体包括以下步骤:
(1)对45钢基材进行表面预处理:先用200~800目砂纸打磨金属基材表面去除氧化膜,并用水冲洗干净,然后在无水乙醇中进行超声波清洗,去除表面残存的油污及杂质;清洗完毕后,在60℃真空环境下干燥0.5h后备用;打磨要求完全去除金属基体表面氧化膜且无粗大划痕亮,磨痕的方向一致且表面光亮。
(2)按CoCrFeMnNiC0.1的原子比称量CoCrFeMnNi高熵合金粉末与纳米C粉末,称量完毕后进行机械混合,其中纳米C粉的平均粒度为50nm,纯度不小于99.99%。
(3)将称量好的混合粉末与纯度不低于99.7%的无水乙醇混合调制成糊状,使用模具将其粘接在45钢基体预定位置得到1mm厚的预制涂层,然后置于90℃下恒温处理10h;在保护气氛下,将熔覆粉末在45钢表面进行激光熔覆,得到由呈点阵分布的熔覆点构成的熔覆涂层;所述激光熔覆是通过CO2激光器进行的,激光功率为4.2kW,扫描速度为450mm/min,光斑直径为3mm,保护气体为Ar与N2的混合气体,气体流量为25L/min,保护气氛的气压为1.20MPa。
利用D/max-3BX型X射线衍射仪对此实施例中的CoCrFeMnNiC0.1高熵合金涂层进行物像表征;结果显示物像主要由FCC相构成。
通过使用HVS-1000A型显微硬度计测量熔覆层的显微硬度,压力为0.2kg,保压作用15s后测量涂层和金属基体的硬度;经过计算,45钢基材的平均显微硬度为163.4HV0.2,CoCrFeMnNi高熵合金涂层的平均硬度在211.2HV0.2,硬度是金属基体的1.29倍。
对涂层用王水进行腐蚀,借助Leica DFC280立式金相显微镜获得熔覆层的金相照片,如图1和图2所示,由图可以看出熔覆层结合情况良好,无明显裂纹、气孔且组织致密。利用D/max-3BX型X射线衍射仪对CoCrFeMnNiC0.1高熵合金材料涂层进行物像表征;结果如图3所示,主要由FCC相构成。
实施例2
本实施例所述高熵合金粉末用于制备激光熔覆层的方法,具体包括以下步骤:
(1)对基材进行预处理:先用200~800目砂纸打磨金属基材表面并用水冲洗干净,然后在无水乙醇中进行超声波清洗,在80℃真空环境下干燥0.5h后备用。打磨要求完全去除金属基体表面氧化膜且无粗大划痕亮,磨痕的方向一致且表面光亮。
(2)按CoCrFeMnNiC0.15的原子比称量CoCrFeMnNi高熵合金粉末与纳米C粉末,称量完毕后进行机械混合,其中纳米C粉的平均粒度为30nm,纯度不小于99.99%。
(3)将混合好的粉末与纯度不低于99.7%的无水乙醇混合调制成糊状,使用模具将其粘接在45钢基体预定位置得到1mm厚的预制涂层,然后置于85℃下恒温处理8h;在保护气氛下,将熔覆粉末在45钢表面进行激光熔覆,得到由呈点阵分布的熔覆点构成的熔覆涂层;所述激光熔覆是通过CO2激光器进行的,激光功率为3.7kW,扫描速度为200mm/min,光斑直径为4mm,保护气体为N2,气体流量为20L/min,,保护气氛的气压为1.10MPa。
利用D/max-3BX型X射线衍射仪对CoCrFeMnNiC0.15高熵合金涂层进行物像表征;结果显示物像主要由FCC相构成。
通过使用HVS-1000A型显微硬度计测量熔覆层的显微硬度,压力为0.2kg,保压作用15s后测量涂层和金属基体的硬度;经过计算,45钢基材的平均显微硬度为160.8HV0.2,CoCrFeMnNiC0.15高熵合金涂层的平均硬度在203.3HV0.2,硬度是金属基体的1.26倍。
对比实施例1
一种高熵合金粉末用于制备激光熔覆涂层的方法,具体包括以下步骤:
(1)对45钢基材进行表面预处理:先用200~800目砂纸打磨金属基材表面去除氧化膜,并用水冲洗干净,然后在无水乙醇中进行超声波清洗,去除表面残存的油污及杂质;清洗完毕后,在70℃真空环境下干燥1h后备用;打磨要求完全去除金属基体表面氧化膜且无粗大划痕亮,磨痕的方向一致且表面光亮。
(2)称量CoCrFeMnNi高熵合金粉末,将称量好的CoCrFeMnNi高熵合金粉末与纯度不低于99.7%的无水乙醇混合调制成糊状,使用模具将其粘接在45钢基体预定位置得到1mm厚的预制涂层,然后置于80℃下恒温处理8h;在保护气氛下,将熔覆粉末在45钢表面进行激光熔覆,得到由呈点阵分布的熔覆点构成的熔覆涂层;所述激光熔覆是通过CO2激光器进行,激光功率为3.7kW,扫描速度为200mm/min,光斑直径为3mm,保护气体为Ar,气体流量为15L/min,保护气氛的气压为1.00MPa。
通过使用HVS-1000A型显微硬度计测量熔覆层的显微硬度,压力为0.2kg,保压作用15s后测量涂层和金属基体的硬度,结果如图4所示;经过计算,45钢基材的平均显微硬度为158.4HV0.2,CoCrFeMnNi高熵合金涂层的平均硬度在188.1HV0.2,硬度是金属基体的1.19倍。
综上所述,利用D/max-3BX型X射线衍射仪对CoCrFeMnNiCx高熵合金涂层进行物像表征;结果显示实施例1、实施例2和对比实施例1中熔覆涂层物像皆主要由FCC相构成。通过使用HVS-1000A型显微硬度计测量熔覆层的显微硬度,压力为0.2kg,保压作用15s后测量涂层和金属基体的硬度,实施例1、实施例2和对比实施例1中的熔覆涂层的硬度相较于基体都有明显提升。但涂层硬度:实施例1>实施例2>对比实施例1。由此可见,随着C原子的增加,合金强度先增加后减少。但相比于对比实施例1中的CoCrFeMnNi高熵合金涂层,实施例1中的CoCrFeMnNiC0.1高熵合金涂层和实施例2中的CoCrFeMnNiC0.15高熵合金涂层强度都有明显的提高。

Claims (4)

1.一种用于激光熔覆的高熵合金粉末,其特征在于,所述合金粉末为CoCrFeMnNiCx,x取值0.1~0.15;
所述高熵合金粉末用于制备激光熔覆涂层的方法,具体包括以下步骤:
(1)对45钢基材进行表面预处理:打磨,清洗,干燥后备用;
(2)按比例称量等原子比的CoCrFeMnNi高熵合金粉末与纳米C粉末,称量完毕后进行机械混合;
(3)将混合好的粉末与无水乙醇混合调制成糊状,使用模具将其粘接在钢基体预定位置得到预制涂层,然后进行干燥,在保护气氛下,将熔覆粉末在45钢表面进行激光熔覆。
2.根据权利要求1所述用于激光熔覆的高熵合金粉末,其特征在于:步骤(2)中CoCrFeMnNi高熵合金粉末的平均粒度小于25μm,粉末纯度不小于99.9%;纳米C粉的平均粒度为30nm~50nm,纯度不小于99.99%。
3.根据权利要求1所述用于激光熔覆的高熵合金粉末,其特征在于:步骤(3)中干燥条件为:预制涂层厚度为0.2mm~2mm,于80~90℃下恒温处理8~12h。
4.根据权利要求1所述用于激光熔覆的高熵合金粉末,其特征在于:步骤(3)激光熔覆是通过CO2激光器进行的,具体条件为:激光功率为3.7~4.2kW,扫描速度为200~450mm/min,光斑直径为3.0~4.0mm,保护气体为氮气、氩气或二者混合气体,气体流量为15~35L/min,保护气氛的气压为0.80MPa~1.20MPa。
CN202011052429.7A 2020-09-29 2020-09-29 一种用于激光熔覆的高熵合金粉末及其使用方法 Active CN112030161B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011052429.7A CN112030161B (zh) 2020-09-29 2020-09-29 一种用于激光熔覆的高熵合金粉末及其使用方法
US17/486,062 US11850659B2 (en) 2020-09-29 2021-09-27 High entropy alloy powder for laser cladding and application method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011052429.7A CN112030161B (zh) 2020-09-29 2020-09-29 一种用于激光熔覆的高熵合金粉末及其使用方法

Publications (2)

Publication Number Publication Date
CN112030161A CN112030161A (zh) 2020-12-04
CN112030161B true CN112030161B (zh) 2021-09-28

Family

ID=73572572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011052429.7A Active CN112030161B (zh) 2020-09-29 2020-09-29 一种用于激光熔覆的高熵合金粉末及其使用方法

Country Status (2)

Country Link
US (1) US11850659B2 (zh)
CN (1) CN112030161B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293063B (zh) * 2021-12-29 2023-07-04 无锡市蓝格林金属材料科技有限公司 一种C、Si掺杂CuFeMnCoCr合金及其制备方法
CN114892159A (zh) * 2022-04-13 2022-08-12 哈尔滨工业大学 一种在铁素体/马氏体钢材表面激光熔覆FeCrNiMnAl高熵合金涂层的制备方法
CN114807928B (zh) * 2022-04-22 2023-05-16 西安石油大学 钛合金表面仿生高熵合金组织耐磨层及其制备方法和应用
CN114737101A (zh) * 2022-04-25 2022-07-12 东北电力大学 Cr12MoV冷作模具钢表面激光熔覆高熵合金粉末涂层的方法
CN114990542B (zh) * 2022-05-07 2023-11-07 中机新材料研究院(郑州)有限公司 高熵合金基梯度复合陶瓷耐磨涂层及其高速激光熔覆原位制备方法
CN115558921B (zh) * 2022-10-14 2024-04-12 山东银亿汇峰智能制造有限公司 一种激光熔覆制备钛合金非晶-中熵基耐磨材料的方法
US12103269B2 (en) 2022-10-14 2024-10-01 Halliburton Energy Services, Inc. High-entropy surface coating for protecting metal downhole
CN115505816B (zh) * 2022-10-27 2023-08-01 北京科技大学 一种抗空蚀Fe基高熵合金粉末、涂层及其制备方法
CN116240536B (zh) * 2022-12-29 2024-11-29 南京航空航天大学 一种AlCrFeMnTi高熵合金高温耐磨涂层及其制备方法
CN116180027B (zh) * 2023-03-01 2024-12-10 南京航空航天大学 Ti60合金表面耐热腐蚀CrHfNbTaTiCxNy梯度高熵陶瓷涂层及其制备方法
CN117070934B (zh) * 2023-08-22 2024-03-12 安徽工业大学 一种具有宽硬度梯度的高熵合金涂层及其制备方法
CN117230336B (zh) * 2023-09-19 2024-05-03 上海大学 一种制备高熵合金的方法
CN118931238A (zh) * 2024-09-07 2024-11-12 江门市金灏源科技有限公司 一种高熵基材纳米涂料、涂料产品及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290404A (zh) * 2013-05-06 2013-09-11 浙江工业大学 激光熔覆用高熵合金粉末和高熵合金涂层的制备方法
CN106191621A (zh) * 2016-08-16 2016-12-07 安徽瑞泰新材料科技有限公司 水泥回转窑托轮表面用高熵合金粉体、制备及其涂层制备
CN109097708A (zh) * 2018-09-06 2018-12-28 中国石油大学(华东) 一种提高单相高熵合金表面性能的方法
CN110202145A (zh) * 2019-06-20 2019-09-06 蓬莱市超硬复合材料有限公司 基于激光增材制造高熵合金金刚石复合材料的制备方法
CN111155083A (zh) * 2020-01-19 2020-05-15 珠海华瑞达电子科技有限公司 一种覆有涂层的热作模具钢及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9643144B2 (en) * 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
CN106086580A (zh) * 2016-07-29 2016-11-09 昆明理工大学 激光熔覆用高熵合金粉末及熔覆层制备方法
CN106425097B (zh) * 2016-11-15 2018-07-06 湖北三江航天红阳机电有限公司 一种飞行器金属测压毛细管的激光焊接方法
CN108103494A (zh) * 2016-11-25 2018-06-01 胡威 一种新型高熵合金涂层及其制备方法
KR101913029B1 (ko) * 2017-03-16 2018-10-29 서울대학교산학협력단 응력 감응 다단변형기구 발현가능 합금 및 그 제조방법
CN107299342A (zh) * 2017-07-05 2017-10-27 暨南大学 一种高熵合金涂层及其制备方法和用途
CN107881501A (zh) * 2017-11-22 2018-04-06 江门职业技术学院 一种用于制备高熵合金涂层用的合金粉末的添加剂组合物
CN108213422B (zh) * 2017-12-20 2020-02-11 中南大学 一种含碳高熵合金复合材料的制备方法
TWI674334B (zh) * 2018-11-13 2019-10-11 國立臺灣科技大學 高熵合金塗層的製造方法
CN109468638B (zh) * 2019-01-09 2020-08-28 苏州科技大学 一种金刚石增强高熵合金复合涂层的制备方法
CN110257682A (zh) * 2019-07-05 2019-09-20 昆明理工大学 一种高熵合金材料及其涂层的制备方法
CN110241354B (zh) * 2019-07-18 2020-03-17 南昌大学 一种含碳高熵合金涂层及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290404A (zh) * 2013-05-06 2013-09-11 浙江工业大学 激光熔覆用高熵合金粉末和高熵合金涂层的制备方法
CN106191621A (zh) * 2016-08-16 2016-12-07 安徽瑞泰新材料科技有限公司 水泥回转窑托轮表面用高熵合金粉体、制备及其涂层制备
CN109097708A (zh) * 2018-09-06 2018-12-28 中国石油大学(华东) 一种提高单相高熵合金表面性能的方法
CN110202145A (zh) * 2019-06-20 2019-09-06 蓬莱市超硬复合材料有限公司 基于激光增材制造高熵合金金刚石复合材料的制备方法
CN111155083A (zh) * 2020-01-19 2020-05-15 珠海华瑞达电子科技有限公司 一种覆有涂层的热作模具钢及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"investigation on high power diode laser cladding of Ni-Fe-Cr based alloy coatings";Zhang Yaocheng et al.;《Rare metal materials and engineering》;20110525;第199-202页 *
"激光熔覆FeMnNiCoCr高熵合金涂层的组织结构及腐蚀性能研究";刘涛等;《航空制造技术》;20191101;第59-63页 *
"退火对激光熔覆制备FeCrNiCoMn高熵合金涂层组织与性能影响";翁子清等;《第15届全国特种加工学术会议论文集(下)》;20131025;第153-159页 *

Also Published As

Publication number Publication date
US11850659B2 (en) 2023-12-26
CN112030161A (zh) 2020-12-04
US20220097133A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
CN112030161B (zh) 一种用于激光熔覆的高熵合金粉末及其使用方法
CN111270234B (zh) 一种在钛合金表面制备钛铝增强涂层的方法
CN103966598B (zh) 一种钛合金表面多元激光合金化层及其制备方法
CN105112907B (zh) 原位合成TiB2/TiC增强Ti2Ni/TiNi双相金属化合物基复合涂层及制备方法
CN115386779B (zh) 一种陶瓷相与高熔点相协同增强高熵合金涂层及其制备方法
CN101210325B (zh) 一种用于热锻模具的纳米复合耐磨涂层组合物及其应用
CN105937035A (zh) 一种用于钛合金的激光熔覆方法
CN106835126A (zh) 一种钛合金表面激光熔覆用陶瓷复合材料
CN111979451B (zh) 一种复合涂层材料、不锈钢表面复合涂层及其制备方法
CN109290583A (zh) 一种消除7075铝合金选择性激光熔化成型裂纹的方法
CN111020571B (zh) 一种不锈钢表面激光熔覆用合金粉末及其应用
CN111139474A (zh) 一种激光熔覆制备非晶复合涂层的方法
CN108315733A (zh) 一种激光熔覆铝青铜合金梯度涂层所用粉料及制备方法
CN114657554A (zh) 一种模具修复用激光熔覆高熵合金涂层及其制备方法
CN107557782A (zh) 钛合金表面激光原位合成TiBx‑TiN/Ti3Al复合涂层及制备方法
CN115976511A (zh) 一种氩弧熔覆高熵合金涂层及其制备方法
CN110923707B (zh) 基于激光熔覆的钛合金表面耐高温复合涂层材料
CN106319512A (zh) 一种耐腐蚀抗高温氧化的双相金属基复合涂层及制备方法
CN112626515A (zh) 一种提高Inconel625镍基粉末激光熔覆层性能的方法
CN110184601A (zh) 一种激光制备不锈钢表面石墨烯增强防护层的方法
JP5189222B1 (ja) 低摩擦化能が付与された超硬合金及びその製造方法、並びに超硬工具
CN110241419B (zh) 一种表面具有抗高温氧化和耐磨涂层的钛合金材料及应用
CN108213429B (zh) 一种激光熔化沉积不锈钢基复合材料所用粉料及制备方法
CN110106420B (zh) 一种Co基高温合金及其制备方法和应用
WO2022105528A1 (zh) 具有拉伸低各向异性的成形件、成形方法及其成形粉末

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant