[go: up one dir, main page]

CN112018096A - A three-dimensional integrated system of nanocapacitors for energy buffering and preparation method thereof - Google Patents

A three-dimensional integrated system of nanocapacitors for energy buffering and preparation method thereof Download PDF

Info

Publication number
CN112018096A
CN112018096A CN202010754765.XA CN202010754765A CN112018096A CN 112018096 A CN112018096 A CN 112018096A CN 202010754765 A CN202010754765 A CN 202010754765A CN 112018096 A CN112018096 A CN 112018096A
Authority
CN
China
Prior art keywords
copper
layer
insulating medium
tsv
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010754765.XA
Other languages
Chinese (zh)
Other versions
CN112018096B (en
Inventor
朱宝
陈琳
孙清清
张卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Shanghai IC Manufacturing Innovation Center Co Ltd
Original Assignee
Fudan University
Shanghai IC Manufacturing Innovation Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University, Shanghai IC Manufacturing Innovation Center Co Ltd filed Critical Fudan University
Priority to CN202010754765.XA priority Critical patent/CN112018096B/en
Publication of CN112018096A publication Critical patent/CN112018096A/en
Application granted granted Critical
Publication of CN112018096B publication Critical patent/CN112018096B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, the devices being individual devices of subclass H10D or integrated devices of class H10
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06524Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • H01L2225/06544Design considerations for via connections, e.g. geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06548Conductive via connections through the substrate, container, or encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明公开一种用于能量缓冲的纳米电容三维集成系统及其制备方法。该用于能量缓冲的纳米电容三维集成系统包括多片垂直堆叠并联的硅通孔‑纳米电容混合结构,可以极大增加电容密度和存储容量,从而在拥有较高功率密度的同时,也可以拥有较高的能量密度。

Figure 202010754765

The invention discloses a nano-capacitor three-dimensional integrated system for energy buffering and a preparation method thereof. The three-dimensional integrated system of nanocapacitors for energy buffering includes multiple vertically stacked through-silicon via-nanocapacitor hybrid structures, which can greatly increase the capacitance density and storage capacity, so that while having higher power density, it can also have higher energy density.

Figure 202010754765

Description

一种用于能量缓冲的纳米电容三维集成系统及其制备方法A three-dimensional integrated system of nanocapacitors for energy buffering and preparation method thereof

技术领域technical field

本发明属于集成电路封装领域,具体涉及一种用于能量缓冲的纳米电容三维集成系统及其制备方法。The invention belongs to the field of integrated circuit packaging, and in particular relates to a nano-capacitor three-dimensional integrated system for energy buffering and a preparation method thereof.

背景技术Background technique

目前,对于便携式电子设备来说,电池仍然是主要的能量供应部件。虽然电池技术在不断发展,然而在电池的容量与体积以及重量之间仍然需要作出折中。相应地,一些容量大、重量轻以及体积小的可替代供电部件被研究和开发,比如微型燃料电池、塑料太阳能电池以及能量收集系统。在以上所提到的所有情况下,通常都需要能量缓冲系统来维持连续和稳定的能量输出。比如,一般认为燃料电池系统拥有较慢的启动时间和较低的动能。因此,燃料电池提供基础功率,缓冲系统提供启动功率的混合系统是最佳解决方案。此外,能量收集系统依赖环境中无法持续获得的能量源;因此,需要能量缓冲系统来维持器件不中断的工作。进一步,能量缓冲系统能够提供峰值负载,然而能量产生系统却无法提供。一般来讲,能量缓冲系统或者是电池,或者是电容。电池的一个重要缺点是它有限的放电效率。相比之下,电容可以提供更大的放电电流。使用电容作为能量缓冲的其它优势还包括较长的循环寿命和较高的功率密度。除了以上提到的优势外,采用合适的材料和结构设计,电容相比较电池更容易缩小尺寸。通过引入高深宽比结构,比如碳纳米管、硅纳米线、硅纳米孔以及硅深槽结构,并在这些高深宽比结构中沉积高介电常数材料可以极大增加电容密度和存储容量。这种采用纳米结构来制备的电容可以称之为纳米电容。然而,当深宽比超过一定数值时,材料在高深宽比结构表面的台阶覆盖率以及完整性都会极大削弱,甚至所沉积的材料会出现孔洞现场,从而影响电容性能。此外,要刻蚀出深宽比非常大的结构,对于刻蚀设备的精度要求也会非常高。进一步,当这些高深宽比结构,比如硅纳米孔的横向尺寸非常小时,只能直接在其表面沉积金属、绝缘材料和金属形成纳米电容结构。由于硅材料的电阻率较高,从而导致纳米电容的串联电阻较大,进而会降低功率密度。At present, for portable electronic devices, batteries are still the main energy supply components. Although battery technology continues to evolve, there is still a trade-off between battery capacity and volume and weight. Accordingly, some alternative power supply components with large capacity, light weight and small volume have been researched and developed, such as micro fuel cells, plastic solar cells and energy harvesting systems. In all the cases mentioned above, an energy buffer system is generally required to maintain a continuous and stable energy output. For example, fuel cell systems are generally considered to have slower start-up times and lower kinetic energy. Therefore, a hybrid system in which the fuel cell provides the base power and the buffer system provides the starting power is the best solution. Furthermore, energy harvesting systems rely on energy sources that are not continuously available in the environment; therefore, energy buffering systems are required to maintain uninterrupted operation of the device. Further, energy buffering systems can provide peak loads, whereas energy generating systems cannot. In general, the energy buffer system is either a battery or a capacitor. An important disadvantage of the battery is its limited discharge efficiency. In contrast, capacitors can provide larger discharge currents. Other advantages of using capacitors as energy buffers include longer cycle life and higher power density. In addition to the advantages mentioned above, with proper material and structural design, capacitors are easier to downsize than batteries. Capacitive density and storage capacity can be greatly increased by introducing high aspect ratio structures, such as carbon nanotubes, silicon nanowires, silicon nanoholes, and silicon deep trenches, and depositing high dielectric constant materials in these high aspect ratio structures. Such capacitors prepared by using nanostructures can be called nanocapacitors. However, when the aspect ratio exceeds a certain value, the step coverage and integrity of the material on the surface of the high aspect ratio structure will be greatly weakened, and even the deposited material will have holes on site, which will affect the capacitance performance. In addition, in order to etch a structure with a very large aspect ratio, the precision requirements of the etching equipment are also very high. Further, when the lateral dimensions of these high aspect ratio structures, such as silicon nanopores, are very small, only metals, insulating materials and metals can be deposited directly on their surfaces to form nanocapacitive structures. Due to the high resistivity of silicon materials, the series resistance of nanocapacitors is large, which in turn reduces power density.

发明内容SUMMARY OF THE INVENTION

为了解决上述问题,本发明公开一种用于能量缓冲的纳米电容三维集成系统,包括:多片垂直堆叠的硅通孔-纳米电容混合结构,其中,单片硅通孔-纳米电容混合结构包括:In order to solve the above problems, the present invention discloses a three-dimensional integrated system of nanocapacitors for energy buffering, comprising: a plurality of vertically stacked TSV-nanocapacitor hybrid structures, wherein the monolithic TSV-nanocapacitor hybrid structure includes: :

贯穿硅衬底的硅通孔结构,分别位于硅通孔-纳米电容混合结构的左右两侧,其中,第一绝缘介质覆盖硅通孔的侧壁;第一铜扩散阻挡层覆盖第一绝缘介质的侧壁;第一铜籽晶层覆盖第一铜扩散阻挡层的侧壁;第一铜金属层覆盖第一铜籽晶层的侧壁,并完全填充硅通孔;The through-silicon via structure passing through the silicon substrate is located on the left and right sides of the through-silicon via-nano capacitor hybrid structure, wherein the first insulating medium covers the sidewall of the through-silicon hole; the first copper diffusion barrier layer covers the first insulating medium the sidewall of the first copper seed layer; the first copper seed layer covers the sidewall of the first copper diffusion barrier layer; the first copper metal layer covers the sidewall of the first copper seed layer and completely fills the TSV;

纳米电容结构,位于两个硅通孔结构之间,包括贯穿硅衬底的硅纳米孔阵列;隔离介质覆盖硅纳米孔表面;底部金属电极层覆盖隔离介质表面;第二绝缘介质覆盖底部金属电极层表面,并在靠近右边硅通孔的部分区域形成开口;顶部金属电极层覆盖第二绝缘介质表面,并完全填充硅纳米孔;A nanocapacitor structure, located between two through-silicon via structures, includes an array of silicon nanoholes penetrating a silicon substrate; an isolation medium covers the surface of the silicon nanoholes; the bottom metal electrode layer covers the surface of the isolation medium; the second insulating medium covers the bottom metal electrode layer surface, and an opening is formed in a part of the area close to the right TSV; the top metal electrode layer covers the surface of the second insulating medium and completely fills the silicon nanohole;

顶部金属接触,包括第三绝缘介质在左右两侧的硅通孔结构上表面形成第一沟槽结构和第四沟槽结构,所述第一沟槽结构和第四沟槽结构的底部露出第一铜扩散阻挡层、第一铜籽晶层和第一铜金属层;第三绝缘介质在顶部金属电极层表面形成第二沟槽结构,在底部金属电极层表面形成第三沟槽结构,所述第二沟槽结构邻近所述第一沟槽结构,所述第三沟槽结构邻近所述第四沟槽结构,中间区域的所述第三绝缘介质在所述开口处与所述底部金属电极层表面相接触;第二铜扩散阻挡层覆盖四个沟槽的表面,并在中间区域断裂不相连接;第二铜籽晶层覆盖所述第二铜扩散阻挡层表面;第二铜金属层覆盖所述第二铜籽晶层表面;The top metal contact includes a third insulating medium to form a first trench structure and a fourth trench structure on the upper surfaces of the through silicon via structure on the left and right sides, and the bottoms of the first trench structure and the fourth trench structure expose the first trench structure. a copper diffusion barrier layer, a first copper seed layer and a first copper metal layer; a third insulating medium forms a second trench structure on the surface of the top metal electrode layer, and a third trench structure is formed on the surface of the bottom metal electrode layer, so The second trench structure is adjacent to the first trench structure, the third trench structure is adjacent to the fourth trench structure, and the third insulating medium in the middle region is connected to the bottom metal at the opening. The surfaces of the electrode layers are in contact; the second copper diffusion barrier layer covers the surfaces of the four trenches, and is broken and disconnected in the middle region; the second copper seed layer covers the surface of the second copper diffusion barrier layer; the second copper metal a layer covering the surface of the second copper seed layer;

底部金属接触,包括第四绝缘介质在左右两侧的硅通孔结构下表面形成第五沟槽结构和第六沟槽结构,所述第五沟槽结构和所述第六沟槽结构的顶部露出第一铜扩散阻挡层、第一铜籽晶层和第一铜金属层;第三铜扩散阻挡层覆盖所述第五沟槽结构和第六沟槽结构的表面,并在中间区域断裂不相连接;第三铜籽晶层覆盖第三铜扩散阻挡层表面;第三铜金属层覆盖第三铜籽晶层表面;The bottom metal contact includes a fourth insulating medium. A fifth trench structure and a sixth trench structure are formed on the lower surfaces of the through silicon via structure on the left and right sides, and the fifth trench structure and the top of the sixth trench structure are formed The first copper diffusion barrier layer, the first copper seed layer and the first copper metal layer are exposed; the third copper diffusion barrier layer covers the surfaces of the fifth trench structure and the sixth trench structure, and is not fractured in the middle region. connected; the third copper seed layer covers the surface of the third copper diffusion barrier layer; the third copper metal layer covers the surface of the third copper seed layer;

上方的硅通孔-纳米电容混合结构的第三铜金属层和下方的硅通孔-纳米电容混合结构的第二铜金属层通过高温工艺实现铜-铜键合相连,从而上下硅通孔-纳米电容混合结构实现三维互连;上下纳米电容结构的顶部金属电极层通过左侧硅通孔结构电气连通,底部金属电极层通过右侧硅通孔电气连通。The third copper metal layer of the TSV-nano capacitor hybrid structure above and the second copper metal layer of the TSV-nano capacitor hybrid structure below are connected by copper-copper bonding through a high-temperature process, so that the upper and lower TSV- The nanocapacitor hybrid structure realizes three-dimensional interconnection; the top metal electrode layers of the upper and lower nanocapacitor structures are electrically connected through the left through-silicon via structure, and the bottom metal electrode layer is electrically connected through the right through-silicon via.

本发明的用于能量缓冲的纳米电容三维集成系统中,优选为硅纳米孔的直径范围为0.5~1μm,深度范围为10~20μm。In the three-dimensional integrated system of nanocapacitors for energy buffering of the present invention, preferably, the diameter of the silicon nanoholes ranges from 0.5 to 1 μm, and the depth ranges from 10 to 20 μm.

本发明的用于能量缓冲的纳米电容三维集成系统中,优选为隔离介质的厚度范围为100~200nm,底部金属电极层的厚度范围为50~150nm,第二绝缘介质的厚度范围为10~50nm,顶部金属电极层的厚度范围为100~300nm。In the three-dimensional integrated system of nanocapacitors for energy buffering of the present invention, preferably, the thickness of the isolation medium is in the range of 100-200 nm, the thickness of the bottom metal electrode layer is in the range of 50-150 nm, and the thickness of the second insulating medium is in the range of 10-50 nm. , the thickness of the top metal electrode layer ranges from 100 to 300 nm.

本发明的用于能量缓冲的纳米电容三维集成系统中,优选为所述隔离介质是SiO2、Si3N4、SiON、SiCOH、SiCOFH中的至少一种。In the three-dimensional integrated system of nanocapacitors for energy buffering of the present invention, preferably, the isolation medium is at least one of SiO 2 , Si 3 N 4 , SiON, SiCOH, and SiCOFH.

本发明的用于能量缓冲的纳米电容三维集成系统中,优选为所述底部金属电极层和所述顶部金属电极层是TaN、TiN、WN、MoN、Ni和Ru的至少一种。In the three-dimensional integrated system of nanocapacitors for energy buffering of the present invention, preferably, the bottom metal electrode layer and the top metal electrode layer are at least one of TaN, TiN, WN, MoN, Ni and Ru.

本发明还公开一种用于能量缓冲的纳米电容三维集成系统的制备方法,包括以下步骤:制作单片硅通孔-纳米电容混合结构;将多片硅通孔-纳米电容混合结构进行铜-铜键合,从而形成垂直堆叠相连;其中,制作单片硅通孔-纳米电容混合结构的步骤包括:The invention also discloses a preparation method of a nano-capacitor three-dimensional integrated system for energy buffering, which comprises the following steps: making a single-chip through-silicon via-nano-capacitor hybrid structure; The copper is bonded to form a vertical stack connection; wherein, the steps of making a monolithic through-silicon via-nano-capacitor hybrid structure include:

对硅衬底两侧的区域进行光刻、刻蚀形成硅通孔;依次形成第一绝缘介质、第一铜扩散阻挡层、第一铜籽晶层和第一铜金属层,其中,第一铜金属层完全填充硅通孔;采用化学机械抛光工艺去除顶部的第一铜金属层、第一铜籽晶层、第一铜扩散阻挡层以及第一绝缘介质;Photolithography and etching are performed on the areas on both sides of the silicon substrate to form through-silicon vias; the first insulating medium, the first copper diffusion barrier layer, the first copper seed crystal layer and the first copper metal layer are sequentially formed, wherein the first The copper metal layer completely fills the TSV; the first copper metal layer, the first copper seed layer, the first copper diffusion barrier layer and the first insulating medium are removed on the top by a chemical mechanical polishing process;

在相邻的两个硅通孔之间刻蚀出硅纳米孔阵列;在硅纳米孔表面依次形成隔离介质、底部金属电极层、第二绝缘介质和顶部金属电极层,获得纳米电容结构,其中,顶部金属电极层完全填充硅纳米孔;A silicon nanohole array is etched between two adjacent TSVs; an isolation medium, a bottom metal electrode layer, a second insulating medium and a top metal electrode layer are sequentially formed on the surface of the silicon nanohole to obtain a nanocapacitor structure, wherein , the top metal electrode layer is completely filled with silicon nanopores;

采用光刻和刻蚀工艺去除两侧硅通孔顶部的顶部金属电极层、第二绝缘介质层、底部金属电极层和隔离介质,从而露出硅通孔的顶部;采用光刻和刻蚀工艺去除纳米电容结构右侧的部分顶部金属电极层和部分第二绝缘介质层,从而露出部分底部金属电极层;The top metal electrode layer, the second insulating dielectric layer, the bottom metal electrode layer and the isolation medium on the tops of the TSVs on both sides are removed by photolithography and etching processes, thereby exposing the tops of the TSVs; photolithography and etching processes are used to remove Part of the top metal electrode layer and part of the second insulating dielectric layer on the right side of the nanocapacitor structure, thereby exposing part of the bottom metal electrode layer;

形成第三绝缘介质,并采用光刻和刻蚀工艺在第三绝缘介质表面刻蚀出沟槽结构,其中,第三绝缘介质在左右两侧的硅通孔结构上表面形成第一沟槽结构和第四沟槽结构,使第一铜扩散阻挡层、第一铜籽晶层和第一铜金属层露出;第三绝缘介质在顶部金属电极层表面形成第二沟槽结构,在底部金属电极层表面形成第三沟槽结构,而且第二沟槽结构邻近第一沟槽结构,第三沟槽结构邻近第四沟槽结构;A third insulating medium is formed, and a trench structure is etched on the surface of the third insulating medium by photolithography and etching processes, wherein the third insulating medium forms a first trench structure on the upper surface of the through silicon via structure on the left and right sides and a fourth trench structure to expose the first copper diffusion barrier layer, the first copper seed layer and the first copper metal layer; the third insulating medium forms a second trench structure on the surface of the top metal electrode layer, and the bottom metal electrode A third trench structure is formed on the surface of the layer, and the second trench structure is adjacent to the first trench structure, and the third trench structure is adjacent to the fourth trench structure;

依次形成第二铜扩散阻挡层和第二铜籽晶层;去除位于纳米电容结构上方的第三绝缘介质表面的第二铜籽晶层和第二铜扩散阻挡层,使第二铜籽晶层和第二铜扩散阻挡层断裂为左右两个区域;在第二铜籽晶层表面形成第二铜金属层;在中间区域的第三绝缘介质表面继续生长一定厚度的第三绝缘介质,使中间区域的第三绝缘介质顶部与第二铜金属层的顶部齐平;forming a second copper diffusion barrier layer and a second copper seed layer in sequence; removing the second copper seed layer and the second copper diffusion barrier layer on the surface of the third insulating medium above the nanocapacitor structure, so that the second copper seed layer and the second copper diffusion barrier layer is broken into two regions; the second copper metal layer is formed on the surface of the second copper seed layer; the third insulating medium with a certain thickness is continued to grow on the surface of the third insulating medium in the middle region, so that the middle the top of the third insulating medium of the region is flush with the top of the second copper metal layer;

减薄硅衬底露出硅通孔的底部,并使硅衬底的底部与纳米电容结构的隔离介质的底部齐平;Thinning the silicon substrate to expose the bottom of the TSV, and making the bottom of the silicon substrate flush with the bottom of the isolation medium of the nanocapacitor structure;

在上述结构的底部形成第四绝缘介质,采用光刻和刻蚀工艺在第四绝缘介质表面刻蚀出沟槽结构,其中,第四绝缘介质在左右两侧的硅通孔结构的下表面形成第五沟槽结构和第六沟槽结构,使第一铜扩散阻挡层、第一铜籽晶层和第一铜金属层下表面露出;在沟槽结构表面依次形成第三铜扩散阻挡层和第三铜籽晶层;去除位于纳米电容结构下方第四绝缘介质表面的部分第三铜籽晶层和第三铜扩散阻挡层,使第三铜籽晶层和第三铜扩散阻挡层断裂为左右两个区域;采用电镀工艺在第三铜籽晶层表面形成第三铜金属层;在中间区域的第四绝缘介质表面继续生长一定厚度的第四绝缘介质,使中间区域的第四绝缘介质底部与第三铜金属层的底部齐平。A fourth insulating medium is formed at the bottom of the above structure, and a trench structure is etched on the surface of the fourth insulating medium by photolithography and etching processes, wherein the fourth insulating medium is formed on the lower surfaces of the through silicon via structures on the left and right sides The fifth trench structure and the sixth trench structure expose the lower surfaces of the first copper diffusion barrier layer, the first copper seed crystal layer and the first copper metal layer; the third copper diffusion barrier layer and the first copper metal layer are sequentially formed on the surface of the trench structure. The third copper seed layer; the part of the third copper seed layer and the third copper diffusion barrier layer located on the surface of the fourth insulating medium under the nanocapacitor structure is removed, so that the third copper seed layer and the third copper diffusion barrier layer are broken into There are two areas on the left and right; a third copper metal layer is formed on the surface of the third copper seed layer by electroplating; The bottom is flush with the bottom of the third copper metal layer.

本发明的用于能量缓冲的纳米电容三维集成系统的制备方法中,优选为,将多片硅通孔-纳米电容混合结构进行铜-铜键合,从而形成垂直堆叠相连的步骤,具体包括:将多片硅通孔-纳米电容混合结构垂直堆叠在一起,并进行加热,使上方的硅通孔-纳米电容混合结构的第三铜金属层与下方的硅通孔-纳米电容混合结构的第二铜金属层在高温条件下发生铜-铜键合,并连接到一起,上下纳米电容结构的顶部金属电极层通过左侧硅通孔结构电气连通,底部金属电极层通过右侧硅通孔结构电气连通。In the preparation method of the nano-capacitor three-dimensional integrated system for energy buffering of the present invention, preferably, copper-copper bonding is performed on the multi-chip TSV-nano-capacitor hybrid structure to form a vertical stack connection, which specifically includes: A plurality of through-silicon via-nano-capacitor hybrid structures are vertically stacked together and heated, so that the third copper metal layer of the TSV-nano-capacitor hybrid structure above and the third copper metal layer of the TSV-nano-capacitor hybrid structure below the through-silicon via-nano capacitor hybrid structure are stacked vertically. The two copper metal layers undergo copper-copper bonding under high temperature conditions and are connected together. The top metal electrode layers of the upper and lower nanocapacitor structures are electrically connected through the left TSV structure, and the bottom metal electrode layer is connected through the right TSV structure. electrical connection.

本发明的用于能量缓冲的纳米电容三维集成系统的制备方法中,优选为,硅纳米孔的直径范围为0.5~1μm,深度范围为10~20μm。In the preparation method of the nanocapacitor three-dimensional integrated system for energy buffering of the present invention, preferably, the diameter of the silicon nanopore is in the range of 0.5-1 μm, and the depth is in the range of 10-20 μm.

本发明的用于能量缓冲的纳米电容三维集成系统的制备方法中,优选为,隔离介质的厚度范围为100~200nm,底部金属电极层的厚度范围为50~150nm,第二绝缘介质的厚度范围为10~50nm,顶部金属电极层的厚度范围为100~300nm。In the preparation method of the nanocapacitor three-dimensional integrated system for energy buffering of the present invention, preferably, the thickness of the isolation medium is in the range of 100-200 nm, the thickness of the bottom metal electrode layer is in the range of 50-150 nm, and the thickness of the second insulating medium is in the range of 100-200 nm. The thickness of the top metal electrode layer ranges from 100 to 300 nm.

本发明的用于能量缓冲的纳米电容三维集成系统的制备方法中,优选为,所述隔离介质是SiO2、Si3N4、SiON、SiCOH、SiCOFH中的至少一种。In the preparation method of the nanocapacitor three-dimensional integrated system for energy buffering of the present invention, preferably, the isolation medium is at least one of SiO 2 , Si 3 N 4 , SiON, SiCOH, and SiCOFH.

附图说明Description of drawings

图1是用于能量缓冲的纳米电容三维集成系统制备方法的流程图。Figure 1 is a flow chart of a method for fabricating a nanocapacitor three-dimensional integrated system for energy buffering.

图2~图21是用于能量缓冲的纳米电容三维集成系统制备方法各步骤的结构示意图2 to 21 are schematic structural diagrams of each step of a method for preparing a three-dimensional integrated system of nanocapacitors for energy buffering

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。In order to make the objectives, technical solutions and advantages of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. It should be understood that the specific The embodiments are only used to explain the present invention, and are not intended to limit the present invention. The described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

在本发明的描述中,需要说明的是,术语“上”、“下”、“垂直”“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。In the description of the present invention, it should be noted that the orientation or positional relationship indicated by the terms "upper", "lower", "vertical", "horizontal", etc. is based on the orientation or positional relationship shown in the accompanying drawings, and is only for convenience The invention is described and simplified without indicating or implying that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as limiting the invention. Furthermore, the terms "first" and "second" are used for descriptive purposes only and should not be construed to indicate or imply relative importance.

此外,在下文中描述了本发明的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本发明。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。除非在下文中特别指出,器件中的各个部分可以由本领域的技术人员公知的材料构成,或者可以采用将来开发的具有类似功能的材料。Furthermore, numerous specific details of the present invention are described below, such as device structures, materials, dimensions, processing techniques and techniques, in order to provide a clearer understanding of the present invention. However, as can be understood by one skilled in the art, the present invention may be practiced without these specific details. Unless specifically indicated below, various parts of the device may be constructed of materials known to those skilled in the art, or materials developed in the future with similar functions may be employed.

以下结合附图1~21对本发明的技术方案做进一步的说明。图1是用于能量缓冲的纳米电容三维集成系统制备方法的流程图,图2~图21示出了用于能量缓冲的纳米电容三维集成系统制备方法各步骤的结构示意图。如图1所示,具体制备步骤为:The technical solutions of the present invention will be further described below with reference to accompanying drawings 1-21. Fig. 1 is a flow chart of a method for preparing a three-dimensional integrated system of nanocapacitors for energy buffering, and Figs. 2 to 21 show structural schematic diagrams of each step of the method for preparing a three-dimensional integrated system of nanocapacitors for energy buffering. As shown in Figure 1, the specific preparation steps are:

步骤S1:制作硅通孔并在硅通孔内进行第一次布线。具体而言,首先,旋涂光刻胶并通过曝光和显影工艺定义出硅通孔的位置;紧跟着,采用深度等离子体刻蚀(DRIE)工艺对硅衬底200两侧的区域进行刻蚀形成硅通孔,所得结构如图2所示。其中硅通孔的直径范围为5~10μm,深度范围为20~50μm;刻蚀硅衬底200的等离子体可以选择CF4、SF6中的至少一种。Step S1 : making through-silicon vias and performing first wiring in the through-silicon vias. Specifically, first, the photoresist is spin-coated and the positions of the TSVs are defined by the exposure and development process; then, the regions on both sides of the silicon substrate 200 are etched by the deep plasma etching (DRIE) process. Through silicon vias are formed by etching, and the resulting structure is shown in FIG. 2 . The diameter of the TSV is 5-10 μm, and the depth is 20-50 μm; the plasma for etching the silicon substrate 200 can be selected from at least one of CF 4 and SF 6 .

接着,采用化学气相沉积工艺在硅通孔表面沉积一层SiO2薄膜作为第一绝缘介质201;随后,采用物理气相沉积工艺在第一绝缘介质201表面依次沉积一层TaN薄膜和一层Co薄膜,分别作为第一铜扩散阻挡层202和第一铜籽晶层203;进一步采用电镀工艺在第一铜籽晶层203表面电镀一层第一铜金属层204,而且第一铜金属层204完全填充硅通孔,所得结构如图3所示。Next, a chemical vapor deposition process is used to deposit a layer of SiO 2 film on the surface of the through silicon hole as the first insulating medium 201; then, a physical vapor deposition process is used to sequentially deposit a layer of TaN film and a layer of Co film on the surface of the first insulating medium 201 , respectively as the first copper diffusion barrier layer 202 and the first copper seed layer 203; further electroplating a first copper metal layer 204 on the surface of the first copper seed layer 203 by electroplating process, and the first copper metal layer 204 is completely The TSVs are filled and the resulting structure is shown in Figure 3.

最后,采用化学机械抛光工艺去除顶部的第一铜金属层204、第一铜籽晶层203、第一铜扩散阻挡层202以及第一绝缘介质201,所得结构如图4所示。在本实施方式中,采用深度反应离子刻蚀工艺来获得硅通孔结构,但是本发明不限定于此,可以选择干法刻蚀比如离子铣刻蚀、等离子刻蚀、反应离子刻蚀、深度反应离子刻蚀、激光烧蚀,或者通过使用蚀刻剂溶液的湿法刻蚀中的至少一种工艺。此外,在本实施方式中采用SiO2作为第一绝缘介质,采用TaN作为第一铜扩散阻挡层,Co薄膜作为第一铜籽晶层,但是本发明不限定于此,可以选择SiO2、Si3N4、SiON、SiCOH、SiCOFH中的至少一种作为第一绝缘介质;可以选择TaN、TiN、ZrN、MnSiO3中的至少一种作为第一铜扩散阻挡层;选择Cu、Ru、Co、RuCo、CuRu、CuCo中的至少一种作为第一铜籽晶层。第一绝缘介质、第一铜扩散阻挡层和第一铜籽晶层的生长方式可以选择物理气相沉积、化学气相沉积、原子层沉积中的至少一种。Finally, a chemical mechanical polishing process is used to remove the top first copper metal layer 204 , the first copper seed layer 203 , the first copper diffusion barrier layer 202 and the first insulating medium 201 , and the resulting structure is shown in FIG. 4 . In this embodiment, a deep reactive ion etching process is used to obtain the TSV structure, but the present invention is not limited to this, and dry etching such as ion milling etching, plasma etching, reactive ion etching, deep At least one of reactive ion etching, laser ablation, or wet etching by using an etchant solution. In addition, in this embodiment, SiO 2 is used as the first insulating medium, TaN is used as the first copper diffusion barrier layer, and Co thin film is used as the first copper seed layer, but the present invention is not limited to this, and SiO 2 , Si can be selected 3 At least one of N 4 , SiON, SiCOH, and SiCOFH is used as the first insulating medium; at least one of TaN, TiN, ZrN, and MnSiO 3 can be selected as the first copper diffusion barrier layer; Cu, Ru, Co, At least one of RuCo, CuRu, and CuCo serves as the first copper seed layer. The growth mode of the first insulating medium, the first copper diffusion barrier layer and the first copper seed layer can be selected from at least one of physical vapor deposition, chemical vapor deposition, and atomic layer deposition.

步骤S2:在相邻的两个硅通孔之间刻蚀出硅纳米孔阵列并制备纳米电容。具体地,首先,旋涂光刻胶并通过曝光和显影工艺定义出硅纳米孔的图形。然后,采用深度等离子体刻蚀(DRIE)工艺对两个硅通孔结构之间的硅衬底200的区域进行刻蚀形成硅纳米孔阵列,所得结构如图5所示。其中,硅纳米孔的直径范围为0.5~1μm,深度范围为10~20μm;刻蚀硅衬底200的等离子体可以选择CF4、SF6中的至少一种。Step S2: etching a silicon nanohole array between two adjacent through silicon vias and preparing a nanocapacitor. Specifically, first, a photoresist is spin-coated and a pattern of silicon nanoholes is defined through exposure and development processes. Then, a deep plasma etching (DRIE) process is used to etch the region of the silicon substrate 200 between the two TSV structures to form a silicon nanohole array, and the obtained structure is shown in FIG. 5 . The diameter of the silicon nanoholes ranges from 0.5 to 1 μm and the depth ranges from 10 to 20 μm; the plasma for etching the silicon substrate 200 can be selected from at least one of CF 4 and SF 6 .

然后,采用化学气相沉积工艺在硅纳米孔表面沉积一层SiO2薄膜作为隔离介质205;随后,采用物理气相沉积工艺在隔离介质205表面依次沉积一层TiN薄膜、一层Al2O3薄膜和一层TiN薄膜,分别作为底部金属电极层206、第二绝缘介质207和顶部金属电极层208,而且顶部金属电极层208完全填充硅纳米孔,所得结构如图6所示。其中,隔离介质205的厚度范围为100~200nm,底部金属电极层206的厚度范围为50~150nm,第二绝缘介质207的厚度范围为10~50nm,顶部金属电极层208的厚度范围为100~300nm。在本实施方式中,采用深度反应离子刻蚀工艺来获得硅通孔结构,但是本发明不限定于此,可以选择干法刻蚀比如离子铣刻蚀、等离子刻蚀、反应离子刻蚀、深度反应离子刻蚀、激光烧蚀,或者通过使用蚀刻剂溶液的湿法刻蚀中的至少一种工艺。此外,在本实施方式中采用SiO2作为隔离介质,采用TiN作为底部和顶部金属电极层,Al2O3薄膜作为第二绝缘介质层,但是本发明不限定于此,可以选择SiO2、Si3N4、SiON、SiCOH、SiCOFH中的至少一种作为隔离介质;可以选择TaN、TiN、WN、MoN、Ni和Ru的至少一种作为底部和顶部金属电极层;选择Al2O3、ZrO2、TiO2、HfO2、La2O3、HfZrO、HfAlO、HfTiO中的至少一种作为第二绝缘介质层。隔离介质、第二绝缘介质、底部金属电极层和顶部金属电极层的生长方式可以选择物理气相沉积、化学气相沉积、原子层沉积和脉冲激光沉积中的至少一种。Then, a chemical vapor deposition process is used to deposit a layer of SiO 2 film on the surface of the silicon nanopore as the isolation medium 205; then, a physical vapor deposition process is used to sequentially deposit a layer of TiN film, a layer of Al 2 O 3 film and A layer of TiN film is used as the bottom metal electrode layer 206, the second insulating medium 207 and the top metal electrode layer 208 respectively, and the top metal electrode layer 208 is completely filled with silicon nanopores, and the resulting structure is shown in FIG. 6 . The thickness of the isolation medium 205 is in the range of 100-200 nm, the thickness of the bottom metal electrode layer 206 is in the range of 50-150 nm, the thickness of the second insulating medium 207 is in the range of 10-50 nm, and the thickness of the top metal electrode layer 208 is in the range of 100-150 nm. 300nm. In this embodiment, a deep reactive ion etching process is used to obtain the TSV structure, but the present invention is not limited to this, and dry etching such as ion milling etching, plasma etching, reactive ion etching, deep At least one of reactive ion etching, laser ablation, or wet etching by using an etchant solution. In addition, in this embodiment, SiO 2 is used as the isolation medium, TiN is used as the bottom and top metal electrode layers, and the Al 2 O 3 film is used as the second insulating medium layer, but the invention is not limited to this, and SiO 2 , Si can be selected 3 At least one of N 4 , SiON, SiCOH, and SiCOFH is used as the isolation medium; at least one of TaN, TiN, WN, MoN, Ni and Ru can be selected as the bottom and top metal electrode layers; Al 2 O 3 , ZrO can be selected 2. At least one of TiO 2 , HfO 2 , La 2 O 3 , HfZrO, HfAlO, and HfTiO as the second insulating medium layer. The growth mode of the isolation medium, the second insulating medium, the bottom metal electrode layer and the top metal electrode layer can be selected from at least one of physical vapor deposition, chemical vapor deposition, atomic layer deposition and pulsed laser deposition.

步骤S3:在顶部进行第二次布线使得左右硅通孔结构分别与纳米电容的上下电极电气连通。首先,采用光刻和刻蚀工艺去除两侧硅通孔顶部的顶部金属电极层208、第二绝缘介质层207、底部金属电极层206和隔离介质205,从而露出硅通孔的顶部结构;接着采用光刻和刻蚀工艺去除纳米电容结构右侧的部分顶部金属电极层208和部分第二绝缘介质层207,从而露出部分底部金属电极层206,所得结构如图7所示。Step S3: Perform a second wiring on the top so that the left and right TSV structures are electrically connected to the upper and lower electrodes of the nanocapacitor respectively. First, the top metal electrode layer 208, the second insulating dielectric layer 207, the bottom metal electrode layer 206 and the isolation dielectric 205 on the tops of the TSVs on both sides are removed by photolithography and etching processes, thereby exposing the top structure of the TSVs; then Part of the top metal electrode layer 208 and part of the second insulating dielectric layer 207 on the right side of the nanocapacitor structure are removed by photolithography and etching, thereby exposing part of the bottom metal electrode layer 206. The resulting structure is shown in FIG. 7 .

然后,采用化学气相沉积工艺在上述结构的顶部沉积一层SiO2薄膜209作为第三绝缘介质,所得结构如图8所示。Then, a layer of SiO 2 film 209 is deposited on top of the above structure as a third insulating medium by using a chemical vapor deposition process, and the obtained structure is shown in FIG. 8 .

进一步采用光刻和刻蚀工艺在第三绝缘介质209表面刻蚀出沟槽结构,其中第三绝缘介质209在左右两侧的硅通孔结构上表面形成第一和第四沟槽结构,而且该第一和第四沟槽结构的底部露出第一铜扩散阻挡层202、第一铜籽晶层203和第一铜金属层204;第三绝缘介质209在顶部金属电极层208表面形成第二沟槽结构,在底部金属电极层206表面形成第三沟槽结构,而且第二沟槽结构邻近第一沟槽结构,第三沟槽结构邻近第四沟槽结构,所得沟槽结构如图9所示。A trench structure is further etched on the surface of the third insulating medium 209 by photolithography and etching processes, wherein the third insulating medium 209 forms first and fourth trench structures on the upper surfaces of the through silicon via structures on the left and right sides, and The bottoms of the first and fourth trench structures expose the first copper diffusion barrier layer 202 , the first copper seed layer 203 and the first copper metal layer 204 ; the third insulating medium 209 forms a second layer on the surface of the top metal electrode layer 208 For the trench structure, a third trench structure is formed on the surface of the bottom metal electrode layer 206, and the second trench structure is adjacent to the first trench structure, and the third trench structure is adjacent to the fourth trench structure. The resulting trench structure is shown in Figure 9 shown.

进一步采用化学气相沉积工艺在沟槽结构表面依次沉积一层TaN薄膜和一层Co薄膜,分别作为第二铜扩散阻挡层210和第二铜籽晶层211,所得结构如图10所示。A layer of TaN film and a layer of Co film are successively deposited on the surface of the trench structure by chemical vapor deposition process as the second copper diffusion barrier layer 210 and the second copper seed layer 211 respectively. The resulting structure is shown in FIG. 10 .

紧跟着,采用光刻和刻蚀工艺去除位于纳米电容结构上方第三绝缘介质209表面的第二铜籽晶层211和第二铜扩散阻挡层210,从而第二铜籽晶层211和第二铜扩散阻挡层210断裂为左右两个区域,所得结构如图11所示。Next, the second copper seed layer 211 and the second copper diffusion barrier layer 210 located on the surface of the third insulating medium 209 above the nanocapacitor structure are removed by photolithography and etching, so that the second copper seed layer 211 and the second copper seed layer 211 and the second copper diffusion barrier layer 210 are removed. The copper diffusion barrier layer 210 is broken into two regions on the left and right, and the resulting structure is shown in FIG. 11 .

随后,采用电镀工艺在第二铜籽晶层211表面电镀一层Cu材料,作为第二铜金属层212,所得结构如图12所示。Subsequently, a layer of Cu material is plated on the surface of the second copper seed layer 211 by an electroplating process as the second copper metal layer 212 , and the obtained structure is shown in FIG. 12 .

最后,采用化学气相沉积工艺在中间区域的第三绝缘介质209表面继续生长一定厚度的SiO2薄膜,保证中间区域的第三绝缘介质209顶部与第二铜金属层212的顶部齐平,所得结构如图13所示。在本实施方式中采用SiO2作为第三绝缘介质,采用TaN作为第二铜扩散阻挡层,Co薄膜作为第二铜籽晶层,但是本发明不限定于此,可以选择SiO2、Si3N4、SiON、SiCOH、SiCOFH中的至少一种作为第三绝缘介质;可以选择TaN、TiN、ZrN、MnSiO3中的至少一种作为第二铜扩散阻挡层;选择Cu、Ru、Co、RuCo、CuRu、CuCo中的至少一种作为第二铜籽晶层。第三绝缘介质、第二铜扩散阻挡层和第二铜籽晶层的生长方式可以选择物理气相沉积、化学气相沉积、原子层沉积中的至少一种。Finally, a SiO 2 film of a certain thickness is continued to grow on the surface of the third insulating medium 209 in the middle area by a chemical vapor deposition process to ensure that the top of the third insulating medium 209 in the middle area is flush with the top of the second copper metal layer 212, and the resulting structure As shown in Figure 13. In this embodiment, SiO 2 is used as the third insulating medium, TaN is used as the second copper diffusion barrier layer, and Co thin film is used as the second copper seed layer, but the invention is not limited to this, and SiO 2 and Si 3 N can be selected. 4. At least one of SiON, SiCOH, and SiCOFH is used as the third insulating medium; at least one of TaN, TiN, ZrN, and MnSiO can be selected as the second copper diffusion barrier; Cu, Ru, Co, RuCo, At least one of CuRu and CuCo serves as the second copper seed layer. The growth mode of the third insulating medium, the second copper diffusion barrier layer and the second copper seed layer can be selected from at least one of physical vapor deposition, chemical vapor deposition, and atomic layer deposition.

步骤S4:减薄硅片露出硅通孔结构的底部,并进行第三次布线引出硅通孔的底部金属接触。首先,采用机械磨削和化学机械抛光工艺减薄硅衬底200,从而露出硅通孔的底部结构,而且硅衬底200的底部与纳米电容的隔离介质205的底部齐平,所得结构如图14所示。Step S4 : thinning the silicon wafer to expose the bottom of the TSV structure, and performing a third wiring to lead out the bottom metal contact of the TSV. First, the silicon substrate 200 is thinned by mechanical grinding and chemical mechanical polishing, so as to expose the bottom structure of the TSV, and the bottom of the silicon substrate 200 is flush with the bottom of the isolation medium 205 of the nanocapacitor. The obtained structure is shown in the figure 14 shown.

然后,采用化学气相沉积工艺在上述结构的底部沉积一层SiO2薄膜作为第四绝缘介质213,所得结构如图15所示。Then, a chemical vapor deposition process is used to deposit a layer of SiO 2 film on the bottom of the above structure as the fourth insulating medium 213 , and the obtained structure is shown in FIG. 15 .

进一步,采用光刻和刻蚀工艺在第四绝缘介质213表面刻蚀出沟槽结构,其中,第四绝缘介质213在左右两侧的硅通孔结构下表面形成第五和第六沟槽结构,而且该第五和第六沟槽结构使第一铜扩散阻挡层202、第一铜籽晶层203和第一铜金属层204的下表面露出,所得沟槽结构如图16所示。Further, a trench structure is etched on the surface of the fourth insulating medium 213 by using photolithography and etching processes, wherein the fourth insulating medium 213 forms fifth and sixth trench structures on the lower surfaces of the through silicon via structures on the left and right sides , and the fifth and sixth trench structures expose the lower surfaces of the first copper diffusion barrier layer 202 , the first copper seed layer 203 and the first copper metal layer 204 , and the resulting trench structures are shown in FIG. 16 .

进一步,采用化学气相沉积工艺在沟槽结构表面依次沉积一层TaN薄膜和一层Co薄膜,分别作为第三铜扩散阻挡层214和第三铜籽晶层215,所得结构如图17所示。Further, a layer of TaN thin film and a layer of Co thin film are sequentially deposited on the surface of the trench structure by chemical vapor deposition process as the third copper diffusion barrier layer 214 and the third copper seed layer 215 respectively. The resulting structure is shown in FIG. 17 .

紧跟着,采用光刻和刻蚀工艺去除位于纳米电容结构下方第四绝缘介质213表面的部分第三铜籽晶层215和第三铜扩散阻挡层214,从而第三铜籽晶层215和第三铜扩散阻挡层214断裂为左右两个区域,所得结构如图18所示。Immediately after, photolithography and etching processes are used to remove part of the third copper seed layer 215 and the third copper diffusion barrier layer 214 located on the surface of the fourth insulating medium 213 under the nanocapacitor structure, so that the third copper seed layer 215 and the third copper diffusion barrier layer 214 are removed. The third copper diffusion barrier layer 214 is broken into left and right regions, and the resulting structure is shown in FIG. 18 .

随后,采用电镀工艺在第三铜籽晶层215表面电镀一层Cu材料,作为第三铜金属层216,所得结构如图19所示。Subsequently, a layer of Cu material is plated on the surface of the third copper seed layer 215 by an electroplating process as the third copper metal layer 216 , and the obtained structure is shown in FIG. 19 .

最后,采用化学气相沉积工艺在中间区域的第四绝缘介质213表面继续生长一定厚度的SiO2薄膜,保证中间区域的第四绝缘介质213底部与第三铜金属层216的底部齐平,所得结构如图20所示。在本实施方式中采用SiO2作为第四绝缘介质,采用TaN作为第三铜扩散阻挡层,Co薄膜作为第三铜籽晶层,但是本发明不限定于此,可以选择SiO2、Si3N4、SiON、SiCOH、SiCOFH中的至少一种作为第四绝缘介质;可以选择TaN、TiN、ZrN、MnSiO3中的至少一种作为第三铜扩散阻挡层;选择Cu、Ru、Co、RuCo、CuRu、CuCo中的至少一种作为第三铜籽晶层。第四绝缘介质、第三铜扩散阻挡层和第三铜籽晶层的生长方式可以选择物理气相沉积、化学气相沉积、原子层沉积中的至少一种。。Finally, a SiO 2 film of a certain thickness is continued to grow on the surface of the fourth insulating medium 213 in the middle area by a chemical vapor deposition process to ensure that the bottom of the fourth insulating medium 213 in the middle area is flush with the bottom of the third copper metal layer 216, and the resulting structure As shown in Figure 20. In this embodiment, SiO 2 is used as the fourth insulating medium, TaN is used as the third copper diffusion barrier layer, and Co thin film is used as the third copper seed layer, but the invention is not limited to this, and SiO 2 and Si 3 N can be selected. 4. At least one of SiON, SiCOH, and SiCOFH is used as the fourth insulating medium; at least one of TaN, TiN, ZrN, and MnSiO can be selected as the third copper diffusion barrier; Cu, Ru, Co, RuCo, At least one of CuRu and CuCo serves as the third copper seed layer. The growth mode of the fourth insulating medium, the third copper diffusion barrier layer and the third copper seed layer can be selected from at least one of physical vapor deposition, chemical vapor deposition, and atomic layer deposition. .

步骤S5:将两片相同的硅通孔-纳米电容结构进行铜-铜键合,从而形成垂直堆叠相连。首先,将两片通过上述步骤S1~S4形成的单片硅通孔-纳米电容混合结构垂直堆叠在一起;然后,放置在管式炉中进行加热,温度范围为300~400℃。上面一片硅通孔-纳米电容混合结构的第三铜金属层216与下面一片硅通孔-纳米电容混合结构的第二铜金属层212在高温条件下发生铜-铜键合,并连接到一起,所得结构如图21所示。上下两片纳米电容的顶部金属电极层通过左侧硅通孔电气连通,底部金属电极层通过右侧硅通孔电气连通;也就是说上下两片纳米电容是并联的。在本实施方式中将两片纳米电容结构通过硅通孔垂直并联到一起,但是本发明不限定于此,也可以采用上述方式将更多片纳米电容结构通过硅通孔实现垂直并联。Step S5 : copper-copper bonding is performed on two identical TSV-nanocapacitor structures to form a vertical stack connection. First, two monolithic through-silicon via-nanocapacitor hybrid structures formed by the above steps S1-S4 are vertically stacked together; then, they are placed in a tube furnace for heating at a temperature range of 300-400°C. The third copper metal layer 216 of the upper TSV-nanocapacitor hybrid structure and the second copper metal layer 212 of the lower TSV-nanocapacitor hybrid structure undergo copper-copper bonding under high temperature conditions and are connected together , the resulting structure is shown in Figure 21. The top metal electrode layers of the upper and lower nanocapacitors are electrically connected through the left through-silicon vias, and the bottom metal electrode layers are electrically connected through the right through-silicon vias; that is to say, the upper and lower nanocapacitors are connected in parallel. In this embodiment, two nanocapacitor structures are connected in vertical parallel through TSVs, but the present invention is not limited to this, and more nanocapacitor structures can also be vertically connected in parallel through TSVs in the above manner.

图21是本发明的一种用于能量缓冲的纳米电容三维集成系统的示意图。如图21所示,该纳米电容三维集成系统包括:两片垂直堆叠的硅通孔-纳米电容混合结构100。其中,单片硅通孔-纳米电容混合结构100包括:FIG. 21 is a schematic diagram of a three-dimensional integrated system of nanocapacitors for energy buffering according to the present invention. As shown in FIG. 21 , the nanocapacitor three-dimensional integrated system includes: two vertically stacked TSV-nanocapacitor hybrid structures 100 . Wherein, the monolithic TSV-nanocapacitor hybrid structure 100 includes:

贯穿硅衬底200的硅通孔结构,分别位于硅通孔-纳米电容混合结构的左右两侧。其中,第一绝缘介质201覆盖硅通孔的侧壁;第一铜扩散阻挡层202覆盖第一绝缘介质201的侧壁;第一铜籽晶层203覆盖第一铜扩散阻挡层202的侧壁;第一铜金属层204覆盖第一铜籽晶层203的侧壁,并完全填充硅通孔。The TSV structures penetrating the silicon substrate 200 are located on the left and right sides of the TSV-nanocapacitor hybrid structure, respectively. The first insulating medium 201 covers the sidewall of the TSV; the first copper diffusion barrier layer 202 covers the sidewall of the first insulating medium 201 ; the first copper seed layer 203 covers the sidewall of the first copper diffusion barrier layer 202 ; The first copper metal layer 204 covers the sidewall of the first copper seed layer 203 and completely fills the TSV.

纳米电容结构,位于两个硅通孔结构101之间。其中,纳米电容结构102的基本骨架是贯穿硅衬底200的硅纳米孔阵列;隔离介质205覆盖硅纳米孔表面;底部金属电极层206覆盖隔离介质205表面;第二绝缘介质207覆盖底部金属电极层206表面;顶部金属电极层208覆盖第二绝缘介质207表面,并完全填充硅纳米孔。此外,在靠近右边硅通孔的部分区域,底部金属电极层206暴露出来,没有被第二绝缘介质207所覆盖。The nanocapacitor structure is located between the two through-silicon via structures 101 . The basic skeleton of the nanocapacitor structure 102 is an array of silicon nanoholes penetrating the silicon substrate 200; the isolation medium 205 covers the surface of the silicon nanohole; the bottom metal electrode layer 206 covers the surface of the isolation medium 205; the second insulating medium 207 covers the bottom metal electrode The surface of the layer 206; the top metal electrode layer 208 covers the surface of the second insulating medium 207 and completely fills the silicon nanoholes. In addition, the bottom metal electrode layer 206 is exposed and not covered by the second insulating medium 207 in a partial area close to the right TSV.

顶部金属接触。其中第三绝缘介质209在左右两侧的硅通孔结构上表面形成第一和第四沟槽结构,而且该第一和第四沟槽结构的底部露出第一铜扩散阻挡层202、第一铜籽晶层203和第一铜金属层204;第三绝缘介质209在顶部金属电极层208表面形成第二沟槽结构,在底部金属电极层206表面形成第三沟槽结构,而且第二沟槽结构邻近第一沟槽结构,第三沟槽结构邻近第四沟槽结构。第二铜扩散阻挡层210覆盖四个沟槽的表面,并在中间区域断裂不相连接;第二铜籽晶层211覆盖第二铜扩散阻挡层210表面;第二铜金属层212覆盖第二铜籽晶层211表面。左侧硅通孔结构与纳米电容的顶部金属电极层208通过第一和第二沟槽结构实现电气连通;右侧硅通孔结构与纳米电容的底部金属电极层206通过第三和第四沟槽结构实现电气连通。Top metal contacts. The third insulating medium 209 forms first and fourth trench structures on the upper surfaces of the left and right TSV structures, and the bottoms of the first and fourth trench structures expose the first copper diffusion barrier layer 202, the first The copper seed layer 203 and the first copper metal layer 204; the third insulating medium 209 forms a second trench structure on the surface of the top metal electrode layer 208, and forms a third trench structure on the surface of the bottom metal electrode layer 206, and the second trench The trench structure is adjacent to the first trench structure, and the third trench structure is adjacent to the fourth trench structure. The second copper diffusion barrier layer 210 covers the surfaces of the four trenches, and is broken and disconnected in the middle region; the second copper seed layer 211 covers the surface of the second copper diffusion barrier layer 210; the second copper metal layer 212 covers the second The surface of the copper seed layer 211 . The left TSV structure and the top metal electrode layer 208 of the nanocapacitor are electrically connected through the first and second trench structures; the right TSV structure and the bottom metal electrode layer 206 of the nanocapacitor pass through the third and fourth trenches The slot structure enables electrical communication.

底部金属接触。其中第四绝缘介质213在左右两侧的硅通孔结构下表面形成第五和第六沟槽结构,而且该第五和第六沟槽结构的顶部露出第一铜扩散阻挡层202、第一铜籽晶层203和第一铜金属层204。第三铜扩散阻挡层214覆盖第五和第六沟槽的表面,并在中间区域断裂不相连接;第三铜籽晶层215覆盖第三铜扩散阻挡层214表面;第三铜金属层216覆盖第三铜籽晶层215表面。Bottom metal contact. The fourth insulating medium 213 forms fifth and sixth trench structures on the lower surfaces of the left and right TSV structures, and the tops of the fifth and sixth trench structures expose the first copper diffusion barrier layer 202, the first The copper seed layer 203 and the first copper metal layer 204 . The third copper diffusion barrier layer 214 covers the surfaces of the fifth and sixth trenches, and is broken and disconnected in the middle region; the third copper seed layer 215 covers the surface of the third copper diffusion barrier layer 214; the third copper metal layer 216 Cover the surface of the third copper seed layer 215 .

第二铜金属层212和第三铜金属层216通过高温工艺实现铜-铜键合相连,从而上下两片硅通孔-纳米电容混合结构100实现三维互连。此外,上下两片纳米电容的顶部金属电极层通过左侧硅通孔电气连通,底部金属电极层通过右侧硅通孔电气连通;也就是说上下两片纳米电容是并联的。The second copper metal layer 212 and the third copper metal layer 216 are connected by copper-copper bonding through a high-temperature process, so that the two upper and lower TSV-nanocapacitor hybrid structures 100 realize three-dimensional interconnection. In addition, the top metal electrode layers of the upper and lower nanocapacitors are electrically connected through the left through-silicon vias, and the bottom metal electrode layers are electrically connected through the right through-silicon vias; that is to say, the upper and lower nanocapacitors are connected in parallel.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art who is familiar with the technical scope disclosed by the present invention can easily think of changes or substitutions. All should be included within the protection scope of the present invention.

Claims (10)

1.一种用于能量缓冲的纳米电容三维集成系统,其特征在于,1. a nano-capacitor three-dimensional integrated system for energy buffering, is characterized in that, 包括:多片垂直堆叠的硅通孔-纳米电容混合结构,Including: multiple vertically stacked TSV-nanocapacitor hybrid structures, 其中,单片硅通孔-纳米电容混合结构包括:Among them, the monolithic TSV-nanocapacitor hybrid structure includes: 贯穿硅衬底(200)的硅通孔结构,分别位于硅通孔-纳米电容混合结构的左右两侧,其中,第一绝缘介质(201)覆盖硅通孔的侧壁;第一铜扩散阻挡层(202)覆盖所述第一绝缘介质(201)的侧壁;第一铜籽晶层(203)覆盖所述第一铜扩散阻挡层(202)的侧壁;第一铜金属层(204)覆盖所述第一铜籽晶层(203)的侧壁,并完全填充所述硅通孔;The TSV structure penetrating the silicon substrate (200) is located on the left and right sides of the TSV-nano capacitor hybrid structure, wherein the first insulating medium (201) covers the sidewalls of the TSV; the first copper diffusion barrier A layer (202) covers the sidewall of the first insulating medium (201); a first copper seed layer (203) covers the sidewall of the first copper diffusion barrier layer (202); a first copper metal layer (204) ) covers the sidewalls of the first copper seed layer (203) and completely fills the TSVs; 纳米电容结构,位于两个硅通孔结构之间,包括贯穿所述硅衬底(200)的硅纳米孔阵列;隔离介质(205)覆盖硅纳米孔表面;底部金属电极层(206)覆盖所述隔离介质(205)表面;第二绝缘介质(207)覆盖所述底部金属电极层(206)表面,并在靠近右侧所述硅通孔的部分区域形成开口;顶部金属电极层(208)覆盖所述第二绝缘介质(207)表面,并完全填充所述硅纳米孔;A nanocapacitor structure, located between two TSV structures, includes a silicon nanohole array penetrating the silicon substrate (200); an isolation medium (205) covers the surface of the silicon nanoholes; and a bottom metal electrode layer (206) covers the entire surface of the silicon nanoholes. the surface of the isolation medium (205); the second insulating medium (207) covers the surface of the bottom metal electrode layer (206), and forms an opening in a part of the region close to the through silicon via on the right side; the top metal electrode layer (208) Covering the surface of the second insulating medium (207) and completely filling the silicon nanopore; 顶部金属接触,包括第三绝缘介质(209)在左右两侧的硅通孔结构上表面形成的第一沟槽结构和第四沟槽结构,所述第一沟槽结构和所述第四沟槽结构的底部露出所述第一铜扩散阻挡层(202)、所述第一铜籽晶层(203)和所述第一铜金属层(204);第三绝缘介质(209)在所述顶部金属电极层(208)表面形成的第二沟槽结构,在所述底部金属电极层(206)表面形成的第三沟槽结构,所述第二沟槽结构邻近所述第一沟槽结构,所述第三沟槽结构邻近所述第四沟槽结构,中间区域的所述第三绝缘介质(209)在所述开口处与所述底部金属电极层(206)表面相接触;第二铜扩散阻挡层(210)覆盖四个沟槽的表面,并在中间区域断裂不相连接;第二铜籽晶层(211)覆盖所述第二铜扩散阻挡层(210)表面;第二铜金属层(212)覆盖所述第二铜籽晶层(211)表面;The top metal contact includes a first trench structure and a fourth trench structure formed by a third insulating medium (209) on the upper surfaces of the TSV structures on the left and right sides, the first trench structure and the fourth trench The bottom of the trench structure exposes the first copper diffusion barrier layer (202), the first copper seed layer (203) and the first copper metal layer (204); the third insulating medium (209) is in the a second trench structure formed on the surface of the top metal electrode layer (208), a third trench structure formed on the surface of the bottom metal electrode layer (206), the second trench structure adjacent to the first trench structure , the third trench structure is adjacent to the fourth trench structure, and the third insulating medium (209) in the middle region is in contact with the surface of the bottom metal electrode layer (206) at the opening; the second A copper diffusion barrier layer (210) covers the surfaces of the four trenches, and is broken and disconnected in the middle region; a second copper seed layer (211) covers the surface of the second copper diffusion barrier layer (210); a second copper A metal layer (212) covers the surface of the second copper seed layer (211); 底部金属接触,包括第四绝缘介质(213)在左右两侧的硅通孔结构下表面形成的第五沟槽结构和第六沟槽结构,所述第五沟槽结构和所述第六沟槽结构的顶部露出所述第一铜扩散阻挡层(202)、所述第一铜籽晶层(203)和所述第一铜金属层(204);第三铜扩散阻挡层(214)覆盖所述第五沟槽结构和第六沟槽结构的表面,并在中间区域断裂不相连接;第三铜籽晶层(215)覆盖所述第三铜扩散阻挡层(214)表面;第三铜金属层(216)覆盖所述第三铜籽晶层(215)表面;The bottom metal contact includes a fifth trench structure and a sixth trench structure formed by a fourth insulating medium (213) on the lower surfaces of the TSV structures on the left and right sides, the fifth trench structure and the sixth trench The top of the trench structure exposes the first copper diffusion barrier layer (202), the first copper seed layer (203) and the first copper metal layer (204); the third copper diffusion barrier layer (214) covers The surfaces of the fifth trench structure and the sixth trench structure are broken and disconnected in the middle region; the third copper seed layer (215) covers the surface of the third copper diffusion barrier layer (214); the third A copper metal layer (216) covers the surface of the third copper seed layer (215); 上方的硅通孔-纳米电容混合结构的所述第三铜金属层(216)和下方的硅通孔-纳米电容混合结构的所述第二铜金属层(212)通过高温工艺实现铜-铜键合相连,从而上下硅通孔-纳米电容混合结构实现三维互连;上下纳米电容结构的所述顶部金属电极层(208)通过左侧硅通孔结构电气连通,所述底部金属电极层(206)通过右侧硅通孔电气连通。The third copper metal layer (216) of the TSV-nanocapacitor hybrid structure above and the second copper metal layer (212) of the TSV-nanocapacitor hybrid structure below realize copper-copper through a high temperature process are bonded and connected, so that the upper and lower through-silicon via-nano-capacitor hybrid structures realize three-dimensional interconnection; the top metal electrode layers (208) of the upper and lower nano-capacitor structures are electrically connected through the left through-silicon via structure, and the bottom metal electrode layer (208) 206) Electrically connected through the right TSV. 2.根据权利要求1所述的用于能量缓冲的纳米电容三维集成系统,2. the nano-capacitor three-dimensional integrated system for energy buffering according to claim 1, 所述硅纳米孔的直径范围为0.5~1μm,深度范围为10~20μm。The diameter of the silicon nanopores ranges from 0.5 to 1 μm, and the depth ranges from 10 to 20 μm. 3.根据权利要求1所述的用于能量缓冲的纳米电容三维集成系统,3. The nanocapacitor three-dimensional integrated system for energy buffering according to claim 1, 所述隔离介质(205)的厚度范围为100~200nm,所述底部金属电极层(206)的厚度范围为50~150nm,所述第二绝缘介质(207)的厚度范围为10~50nm,所述顶部金属电极层(208)的厚度范围为100~300nm。The thickness of the isolation medium (205) is in the range of 100-200 nm, the thickness of the bottom metal electrode layer (206) is in the range of 50-150 nm, and the thickness of the second insulating medium (207) is in the range of 10-50 nm. The thickness of the top metal electrode layer (208) ranges from 100 to 300 nm. 4.根据权利要求1所述的用于能量缓冲的纳米电容三维集成系统,4. The nanocapacitor three-dimensional integrated system for energy buffering according to claim 1, 所述隔离介质(205)是SiO2、Si3N4、SiON、SiCOH、SiCOFH中的至少一种。The isolation medium (205) is at least one of SiO 2 , Si 3 N 4 , SiON, SiCOH, and SiCOFH. 5.根据权利要求1所述的用于能量缓冲的纳米电容三维集成系统,5. The nanocapacitor three-dimensional integrated system for energy buffering according to claim 1, 所述底部金属电极层(206)和所述顶部金属电极层(208)是TaN、TiN、WN、MoN、Ni和Ru的至少一种。The bottom metal electrode layer (206) and the top metal electrode layer (208) are at least one of TaN, TiN, WN, MoN, Ni, and Ru. 6.一种用于能量缓冲的纳米电容三维集成系统的制备方法,其特征在于,6. a preparation method of a nano-capacitor three-dimensional integrated system for energy buffering, characterized in that, 包括以下步骤:Include the following steps: 制作单片硅通孔-纳米电容混合结构;Fabrication of monolithic TSV-nanocapacitor hybrid structure; 将多片硅通孔-纳米电容混合结构进行铜-铜键合,从而形成垂直堆叠相连;Copper-copper bonding of multiple through-silicon via-nanocapacitor hybrid structures to form vertical stack connections; 其中,制作单片硅通孔-纳米电容混合结构的步骤包括:Wherein, the steps of fabricating the monolithic TSV-nano capacitor hybrid structure include: 对硅衬底(200)两侧的区域进行光刻、刻蚀形成硅通孔;依次形成第一绝缘介质(201)、第一铜扩散阻挡层(202)、第一铜籽晶层(203)和第一铜金属层(204);其中,第一铜金属层(204)完全填充硅通孔;采用化学机械抛光工艺去除顶部的所述第一铜金属层(204)、所述第一铜籽晶层(203)、所述第一铜扩散阻挡层(202)以及所述第一绝缘介质(201);Photolithography and etching are performed on regions on both sides of the silicon substrate (200) to form through silicon vias; a first insulating medium (201), a first copper diffusion barrier layer (202), and a first copper seed crystal layer (203) are sequentially formed ) and a first copper metal layer (204); wherein, the first copper metal layer (204) completely fills the through silicon vias; the first copper metal layer (204), the first copper metal layer (204) and the first copper metal layer (204) on the top are removed by chemical mechanical polishing process. a copper seed layer (203), the first copper diffusion barrier layer (202), and the first insulating medium (201); 在相邻的两个硅通孔之间刻蚀出硅纳米孔阵列;在硅纳米孔表面依次形成隔离介质(205)、底部金属电极层(206)、第二绝缘介质(207)和顶部金属电极层(208),获得纳米电容结构,其中,所述顶部金属电极层(208)完全填充硅纳米孔;A silicon nanohole array is etched between two adjacent TSVs; an isolation medium (205), a bottom metal electrode layer (206), a second insulating medium (207) and a top metal are sequentially formed on the surface of the silicon nanoholes an electrode layer (208) to obtain a nanocapacitive structure, wherein the top metal electrode layer (208) is completely filled with silicon nanopores; 采用光刻和刻蚀工艺去除两侧硅通孔顶部的所述顶部金属电极层(208)、所述第二绝缘介质层(207)、所述底部金属电极层(206)和所述隔离介质(205),从而露出硅通孔的顶部;采用光刻和刻蚀工艺去除纳米电容结构右侧的部分所述顶部金属电极层(208)和部分所述第二绝缘介质层(207),从而露出部分底部金属电极层(206);The top metal electrode layer (208), the second insulating dielectric layer (207), the bottom metal electrode layer (206) and the isolation dielectric on the tops of the TSVs on both sides are removed by photolithography and etching processes (205), thereby exposing the top of the TSV; using photolithography and etching processes to remove part of the top metal electrode layer (208) and part of the second insulating dielectric layer (207) on the right side of the nanocapacitor structure, thereby exposing part of the bottom metal electrode layer (206); 形成第三绝缘介质(209),并采用光刻和刻蚀工艺在所述第三绝缘介质(209)表面刻蚀出沟槽结构,其中,所述第三绝缘介质(209)在左右两侧的硅通孔结构上表面形成第一沟槽结构和第四沟槽结构,使所述第一铜扩散阻挡层(202)、所述第一铜籽晶层(203)和所述第一铜金属层(204)露出;所述第三绝缘介质(209)在所述顶部金属电极层(208)表面形成第二沟槽结构,在所述底部金属电极层(206)表面形成第三沟槽结构,而且所述第二沟槽结构邻近所述第一沟槽结构,所述第三沟槽结构邻近所述第四沟槽结构;A third insulating medium (209) is formed, and a trench structure is etched on the surface of the third insulating medium (209) using photolithography and etching processes, wherein the third insulating medium (209) is on the left and right sides A first trench structure and a fourth trench structure are formed on the upper surface of the TSV structure, so that the first copper diffusion barrier layer (202), the first copper seed layer (203) and the first copper The metal layer (204) is exposed; the third insulating medium (209) forms a second trench structure on the surface of the top metal electrode layer (208), and forms a third trench on the surface of the bottom metal electrode layer (206) structure, and the second trench structure is adjacent to the first trench structure, and the third trench structure is adjacent to the fourth trench structure; 依次形成第二铜扩散阻挡层(210)和第二铜籽晶层(211);去除位于纳米电容结构上方的所述第三绝缘介质(209)表面的所述第二铜籽晶层(211)和所述第二铜扩散阻挡层(210),使所述第二铜籽晶层(211)和所述第二铜扩散阻挡层(210)断裂为左右两个区域;在所述第二铜籽晶层(211)表面形成所述第二铜金属层(212);在中间区域的所述第三绝缘介质(209)表面继续生长一定厚度的第三绝缘介质,使中间区域的所述第三绝缘介质(209)顶部与所述第二铜金属层(212)的顶部齐平;forming a second copper diffusion barrier layer (210) and a second copper seed layer (211) in sequence; removing the second copper seed layer (211) on the surface of the third insulating medium (209) above the nanocapacitor structure ) and the second copper diffusion barrier layer (210), so that the second copper seed layer (211) and the second copper diffusion barrier layer (210) are broken into left and right regions; The second copper metal layer (212) is formed on the surface of the copper seed layer (211); the third insulating medium of a certain thickness is continuously grown on the surface of the third insulating medium (209) in the middle region, so that the third insulating medium in the middle region is The top of the third insulating medium (209) is flush with the top of the second copper metal layer (212); 减薄所述硅衬底(200)露出所述硅通孔的底部,并使所述硅衬底(200)的底部与所述纳米电容结构的所述隔离介质(205)的底部齐平;Thinning the silicon substrate (200) to expose the bottom of the TSV, and making the bottom of the silicon substrate (200) flush with the bottom of the isolation medium (205) of the nanocapacitor structure; 在上述结构的底部形成第四绝缘介质(213),采用光刻和刻蚀工艺在所述第四绝缘介质(213)表面刻蚀出沟槽结构,其中,所述第四绝缘介质(213)在左右两侧的硅通孔结构的下表面形成第五沟槽结构和第六沟槽结构,使所述第一铜扩散阻挡层(202)、所述第一铜籽晶层(203)和所述第一铜金属层(204)下表面露出;在沟槽结构表面依次形成第三铜扩散阻挡层(214)和第三铜籽晶层(215);去除位于纳米电容结构下方第四绝缘介质(213)表面的部分所述第三铜籽晶层(215)和所述第三铜扩散阻挡层(214),使所述第三铜籽晶层(215)和所述第三铜扩散阻挡层(214)断裂为左右两个区域;采用电镀工艺在所述第三铜籽晶层(215)表面形成第三铜金属层(216);在中间区域的所述第四绝缘介质(213)表面继续生长一定厚度的所述第四绝缘介质(213),使中间区域的所述第四绝缘介质(213)底部与所述第三铜金属层(216)的底部齐平。A fourth insulating medium (213) is formed at the bottom of the above structure, and a trench structure is etched on the surface of the fourth insulating medium (213) by using photolithography and etching processes, wherein the fourth insulating medium (213) A fifth trench structure and a sixth trench structure are formed on the lower surfaces of the TSV structures on the left and right sides, so that the first copper diffusion barrier layer (202), the first copper seed layer (203) and the The lower surface of the first copper metal layer (204) is exposed; a third copper diffusion barrier layer (214) and a third copper seed layer (215) are sequentially formed on the surface of the trench structure; the fourth insulating layer located under the nanocapacitor structure is removed part of the third copper seed layer (215) and the third copper diffusion barrier layer (214) on the surface of the dielectric (213), so that the third copper seed layer (215) and the third copper are diffused The barrier layer (214) is broken into left and right regions; a third copper metal layer (216) is formed on the surface of the third copper seed layer (215) by an electroplating process; the fourth insulating medium (213) in the middle region ) surface continues to grow the fourth insulating medium (213) with a certain thickness, so that the bottom of the fourth insulating medium (213) in the middle region is flush with the bottom of the third copper metal layer (216). 7.根据权利要求6所述的用于能量缓冲的纳米电容三维集成系统的制备方法,其特征在于,7. the preparation method of the nano-capacitor three-dimensional integrated system for energy buffering according to claim 6, is characterized in that, 将多片硅通孔-纳米电容混合结构进行铜-铜键合,从而形成垂直堆叠相连的步骤,具体包括:The steps of copper-copper bonding of multiple through-silicon via-nanocapacitor hybrid structures to form a vertical stack connection, specifically including: 将多片硅通孔-纳米电容混合结构垂直堆叠在一起,并进行加热,使上方的硅通孔-纳米电容混合结构的所述第三铜金属层(216)与下方的硅通孔-纳米电容混合结构的所述第二铜金属层(212)在高温条件下发生铜-铜键合,并连接到一起,A plurality of TSV-nano capacitor hybrid structures are vertically stacked together and heated, so that the third copper metal layer (216) of the upper TSV-nano capacitor hybrid structure is connected to the lower TSV-nano capacitor. The second copper metal layer (212) of the capacitive hybrid structure undergoes copper-copper bonding under high temperature conditions and is connected together, 上下纳米电容结构的顶部金属电极层(208)通过左侧硅通孔结构电气连通,底部金属电极层(206)通过右侧硅通孔结构电气连通。The top metal electrode layers (208) of the upper and lower nanocapacitor structures are electrically connected through the left TSV structure, and the bottom metal electrode layer (206) is electrically connected through the right TSV structure. 8.根据权利要求6所述的用于能量缓冲的纳米电容三维集成系统的制备方法,其特征在于,8. the preparation method of the nano-capacitor three-dimensional integrated system for energy buffering according to claim 6, is characterized in that, 所述硅纳米孔的直径范围为0.5~1μm,深度范围为10~20μm。The diameter of the silicon nanopores ranges from 0.5 to 1 μm, and the depth ranges from 10 to 20 μm. 9.根据权利要求6所述的用于能量缓冲的纳米电容三维集成系统的制备方法,其特征在于,9. The preparation method of the nanocapacitor three-dimensional integrated system for energy buffering according to claim 6, wherein, 所述隔离介质(205)的厚度范围为100~200nm,所述底部金属电极层(206)的厚度范围为50~150nm,所述第二绝缘介质(207)的厚度范围为10~50nm,所述顶部金属电极层(208)的厚度范围为100~300nm。The thickness of the isolation medium (205) is in the range of 100-200 nm, the thickness of the bottom metal electrode layer (206) is in the range of 50-150 nm, and the thickness of the second insulating medium (207) is in the range of 10-50 nm. The thickness of the top metal electrode layer (208) ranges from 100 to 300 nm. 10.根据权利要求6所述的用于能量缓冲的纳米电容三维集成系统的制备方法,其特征在于,10. The preparation method of the nanocapacitor three-dimensional integrated system for energy buffering according to claim 6, wherein, 所述隔离介质(205)是SiO2、Si3N4、SiON、SiCOH、SiCOFH中的至少一种。The isolation medium (205) is at least one of SiO 2 , Si 3 N 4 , SiON, SiCOH, and SiCOFH.
CN202010754765.XA 2020-07-31 2020-07-31 A three-dimensional integrated system of nanocapacitors for energy buffering and preparation method thereof Active CN112018096B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010754765.XA CN112018096B (en) 2020-07-31 2020-07-31 A three-dimensional integrated system of nanocapacitors for energy buffering and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010754765.XA CN112018096B (en) 2020-07-31 2020-07-31 A three-dimensional integrated system of nanocapacitors for energy buffering and preparation method thereof

Publications (2)

Publication Number Publication Date
CN112018096A true CN112018096A (en) 2020-12-01
CN112018096B CN112018096B (en) 2022-05-24

Family

ID=73498541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010754765.XA Active CN112018096B (en) 2020-07-31 2020-07-31 A three-dimensional integrated system of nanocapacitors for energy buffering and preparation method thereof

Country Status (1)

Country Link
CN (1) CN112018096B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652621A (en) * 2020-12-22 2021-04-13 复旦大学 Three-dimensional integrated structure and manufacturing method thereof
CN112652620A (en) * 2020-12-22 2021-04-13 复旦大学 Three-dimensional integrated structure and manufacturing method thereof
CN112670285A (en) * 2020-12-22 2021-04-16 复旦大学 Three-dimensional integrated structure and preparation method thereof
CN112908990A (en) * 2021-01-26 2021-06-04 复旦大学 Three-dimensional integrated structure and manufacturing method thereof
CN113035812A (en) * 2020-12-22 2021-06-25 复旦大学 Three-dimensional integrated structure and manufacturing method thereof
CN114496773A (en) * 2022-01-27 2022-05-13 苏州聚谦半导体有限公司 Method for manufacturing storage capacitor and storage capacitor
CN116072607A (en) * 2023-03-07 2023-05-05 湖北江城实验室 Package structure, forming method thereof and electronic equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116976A (en) * 2003-10-10 2005-04-28 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
WO2009133510A1 (en) * 2008-04-29 2009-11-05 Nxp B.V. Method of manufacturing a capacitor on a nanowire and integrated circuit having such a capacitor
CN101946304A (en) * 2008-02-20 2011-01-12 Nxp股份有限公司 Ultra high density capacity comprising pillar-shaped capacitors formed on both sides of a substrate
CN102103979A (en) * 2009-12-16 2011-06-22 中国科学院微电子研究所 A method of fabricating a three-dimensional silicon-based passive circuit formed by through-silicon vias
CN102104009A (en) * 2009-12-16 2011-06-22 中国科学院微电子研究所 Manufacturing method of three-dimensional silicon-based capacitor
US20120080772A1 (en) * 2010-10-04 2012-04-05 Denso Corporation Semiconductor device and method of manufacturing the same
US20150028450A1 (en) * 2013-07-25 2015-01-29 Jae-hwa Park Integrated circuit device including through-silicon via structure and decoupling capacitor and method of manufacturing the same
CN110326073A (en) * 2017-03-24 2019-10-11 株式会社村田制作所 Capacitor
US20200058732A1 (en) * 2018-08-08 2020-02-20 Shenzhen Weitongbo Technology Co., Ltd. Double-sided capacitor and method for fabricating the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116976A (en) * 2003-10-10 2005-04-28 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
CN101946304A (en) * 2008-02-20 2011-01-12 Nxp股份有限公司 Ultra high density capacity comprising pillar-shaped capacitors formed on both sides of a substrate
WO2009133510A1 (en) * 2008-04-29 2009-11-05 Nxp B.V. Method of manufacturing a capacitor on a nanowire and integrated circuit having such a capacitor
CN102103979A (en) * 2009-12-16 2011-06-22 中国科学院微电子研究所 A method of fabricating a three-dimensional silicon-based passive circuit formed by through-silicon vias
CN102104009A (en) * 2009-12-16 2011-06-22 中国科学院微电子研究所 Manufacturing method of three-dimensional silicon-based capacitor
US20120080772A1 (en) * 2010-10-04 2012-04-05 Denso Corporation Semiconductor device and method of manufacturing the same
US20150028450A1 (en) * 2013-07-25 2015-01-29 Jae-hwa Park Integrated circuit device including through-silicon via structure and decoupling capacitor and method of manufacturing the same
CN110326073A (en) * 2017-03-24 2019-10-11 株式会社村田制作所 Capacitor
US20200058732A1 (en) * 2018-08-08 2020-02-20 Shenzhen Weitongbo Technology Co., Ltd. Double-sided capacitor and method for fabricating the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652621A (en) * 2020-12-22 2021-04-13 复旦大学 Three-dimensional integrated structure and manufacturing method thereof
CN112652620A (en) * 2020-12-22 2021-04-13 复旦大学 Three-dimensional integrated structure and manufacturing method thereof
CN112670285A (en) * 2020-12-22 2021-04-16 复旦大学 Three-dimensional integrated structure and preparation method thereof
CN113035812A (en) * 2020-12-22 2021-06-25 复旦大学 Three-dimensional integrated structure and manufacturing method thereof
CN112908990A (en) * 2021-01-26 2021-06-04 复旦大学 Three-dimensional integrated structure and manufacturing method thereof
CN112908990B (en) * 2021-01-26 2022-08-05 复旦大学 Three-dimensional integrated structure and manufacturing method thereof
CN114496773A (en) * 2022-01-27 2022-05-13 苏州聚谦半导体有限公司 Method for manufacturing storage capacitor and storage capacitor
CN116072607A (en) * 2023-03-07 2023-05-05 湖北江城实验室 Package structure, forming method thereof and electronic equipment

Also Published As

Publication number Publication date
CN112018096B (en) 2022-05-24

Similar Documents

Publication Publication Date Title
CN112018096B (en) A three-dimensional integrated system of nanocapacitors for energy buffering and preparation method thereof
CN112018070B (en) A kind of nano-capacitor three-dimensional integrated structure and preparation method thereof
CN112151535B (en) A kind of silicon-based nanocapacitor three-dimensional integrated structure and preparation method thereof
CN104025225B (en) Energy storing structure, the method and micromodule and system comprising energy storing structure that manufacture supporting structure for energy storing structure
CN112151538B (en) Three-dimensional integrated structure of nano capacitor and manufacturing method thereof
CN111882017A (en) RFID chip and super capacitor three-dimensional integrated system and preparation method thereof
CN112151536B (en) Three-dimensional integrated structure of nano capacitor and preparation method thereof
CN111769077A (en) A through-silicon via structure for three-dimensional integrated circuit packaging and its manufacturing method
CN112018071B (en) Multifunctional TSV structure and preparation method thereof
CN112151537B (en) High-energy-density nano-capacitor three-dimensional integrated structure and preparation method thereof
CN112908992B (en) Three-dimensional integrated structure and manufacturing method thereof
CN113035812B (en) Three-dimensional integrated structure and manufacturing method thereof
CN112466842B (en) A kind of multifunctional TSV structure and preparation method thereof
CN112071935B (en) Three-dimensional integrated system based on solar energy and preparation method
CN112652620B (en) Three-dimensional integrated structure and manufacturing method thereof
CN112151539B (en) A three-dimensional integrated structure of nanocapacitor with high storage capacity and preparation method thereof
CN112201655B (en) Three-dimensional integrated structure of nano capacitor and manufacturing method thereof
CN111769075B (en) A TSV passive adapter board for system-in-package and its manufacturing method
CN112151496B (en) TSV structure with embedded inductor and preparation method thereof
CN111883479B (en) A preparation method of TSV active adapter board for system-in-package
CN112908991B (en) Three-dimensional integrated structure and manufacturing method thereof
CN112071974A (en) A three-dimensional integrated system and preparation method
CN112908990B (en) Three-dimensional integrated structure and manufacturing method thereof
CN111900127A (en) Preparation method of TSV (through silicon via) passive adapter plate for three-dimensional system-in-package
CN112670285A (en) Three-dimensional integrated structure and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant