CN111987442A - Radiation patch array and planar microstrip array antenna - Google Patents
Radiation patch array and planar microstrip array antenna Download PDFInfo
- Publication number
- CN111987442A CN111987442A CN202010794340.1A CN202010794340A CN111987442A CN 111987442 A CN111987442 A CN 111987442A CN 202010794340 A CN202010794340 A CN 202010794340A CN 111987442 A CN111987442 A CN 111987442A
- Authority
- CN
- China
- Prior art keywords
- array
- radiation patch
- patch
- port
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明提供一种辐射贴片阵列及平面微带阵列天线。其中辐射贴片阵列由n列辐射贴片线阵构成。辐射贴片线阵由m行辐射贴片单元构成。辐射贴片单元包括十字型功分网络和两个矩形贴片。十字形功分网络为四端口结构,左端口和右两个端口分别连一个接矩形贴片,以并联的形式激发所述的矩形贴片;上端口和下端口分别以串联的形式连接同一列相邻的十字型功分网络的上端口或下端口。辐射贴片线阵以并行串馈的形式激励矩形贴片,在矩形真贴片宽边方向实现构造性的辐射叠加并减少1倍传输线的长度,同时减少天线尺寸,有效的降低天线成本。同时由于减少了馈电损耗,阵列噪声性能会得以改善,从而提高了辐射效率和阵列的增益带宽性能。
The invention provides a radiation patch array and a plane microstrip array antenna. The radiation patch array is composed of n columns of radiation patch linear arrays. The radiation patch line array consists of m rows of radiation patch units. The radiation patch unit includes a cross-type power division network and two rectangular patches. The cross-shaped power division network is a four-port structure. The left port and the right two ports are respectively connected to a rectangular patch, and the rectangular patch is excited in parallel; the upper port and the lower port are connected in series to the same column. The upper or lower port of the adjacent cross-type power division network. The radiating patch linear array excites the rectangular patch in the form of parallel serial feed, realizes the structural radiation superposition in the direction of the wide side of the rectangular real patch, reduces the length of the transmission line by one time, and reduces the size of the antenna, effectively reducing the cost of the antenna. At the same time, due to the reduced feed loss, the array noise performance will be improved, thereby increasing the radiation efficiency and the gain bandwidth performance of the array.
Description
技术领域technical field
本发明涉及微带天线技术领域,特别涉及一种辐射贴片阵列及平面微带阵列天线。The invention relates to the technical field of microstrip antennas, in particular to a radiating patch array and a planar microstrip array antenna.
背景技术Background technique
在现代移动通信领域中,天线作为无线微波通信的核心器件,其包络特性和可集成度对通信质量的影响越来越重要。与常用的微波天线相比,微带天线具有体积小、重量轻、制作简单、易于集成、方便共形等优点。微带天线可广泛地应用于机载雷达、卫星通信、移动通信和卫星电视系统,显著减少通信设备所占空间并提高通信设备的性能。In the field of modern mobile communication, as the core device of wireless microwave communication, the influence of its envelope characteristics and integration degree on the communication quality is more and more important. Compared with commonly used microwave antennas, microstrip antennas have the advantages of small size, light weight, simple fabrication, easy integration, and convenient conformality. Microstrip antennas can be widely used in airborne radar, satellite communication, mobile communication and satellite TV systems, significantly reducing the space occupied by communication equipment and improving the performance of communication equipment.
由于微带天线单元增益低、波束宽且辐射效率低,为了实现窄波束高增益的辐射性能,通常采用低介电常数低损耗的介质板设计并馈或者串馈的组阵形式构成微带平面阵列天线。并馈微带阵列天线需要大量传输线设计馈电网络,路径损耗大。随着阵面增大天线的增益无法一直增大,不适合设计高增益的微带阵列天线。串馈微带阵列天线传输线路径短,损耗小,但微带天线阻抗带宽较窄,一般的微带天线带宽仅有0.6%~3%左右。Due to the low unit gain, wide beam and low radiation efficiency of the microstrip antenna, in order to achieve the radiation performance of narrow beam and high gain, the microstrip plane is usually formed in the form of a parallel-feed or series-fed array of dielectric plates with low dielectric constant and low loss. array antenna. The parallel-fed microstrip array antenna requires a large number of transmission lines to design the feeding network, and the path loss is large. With the increase of the array, the gain of the antenna cannot be increased all the time, so it is not suitable to design a high-gain microstrip array antenna. The transmission line path of the series-fed microstrip array antenna is short and the loss is small, but the impedance bandwidth of the microstrip antenna is narrow, and the bandwidth of the general microstrip antenna is only about 0.6% to 3%.
中国专利申请公开号为CN110649394A,发明名称为“一种微带行波阵列天线采用多层微带基板的串馈馈电网络”中,通过铜柱连接带状微带线的N个辐射贴片,第一层微带基板第二侧设置有第一至第N-1阻抗变换线,用于调节第一至第N辐射贴片之间的阻抗匹配,相对带宽为4%。但随频率改变,天线的波束指向会偏离法线方向,产生信号跌落,金属化孔和铜柱增加了天线结构复杂度,增加了加工成本和装配难度。The Chinese patent application publication number is CN110649394A, and the name of the invention is "a microstrip traveling wave array antenna using a multi-layer microstrip substrate series feeder network". N radiation patches of the strip-shaped microstrip line are connected by copper pillars , the second side of the first-layer microstrip substrate is provided with the first to N-1th impedance transformation lines, which are used to adjust the impedance matching between the first to the Nth radiation patches, and the relative bandwidth is 4%. However, as the frequency changes, the beam pointing of the antenna will deviate from the normal direction, resulting in signal drop. The metallized holes and copper pillars increase the complexity of the antenna structure, increase the processing cost and assembly difficulty.
中国专利申请公开号为CN210350087U,发明名称为“一种偏心馈电的平面微带阵列天线包括PCB介质板、馈针”中,PCB介质板的正面附上有辐射片。微带馈线包括横向微带馈线、纵向微带馈线,多个微带片阵元之间排成多行和多列,所有微带片阵元在PCB介质板上分别关于中心短轴和中心长轴对称,可以实现固定的波束波束指向。但辐射元件仅连接到用于每个串联馈电子阵列的馈线的一侧,天线的带宽较窄,损耗较大。The Chinese patent application publication number is CN210350087U, and the name of the invention is "An eccentrically fed planar microstrip array antenna includes a PCB dielectric board and a feed pin", and a radiating sheet is attached to the front of the PCB dielectric board. Microstrip feeders include horizontal microstrip feeders and vertical microstrip feeders. Multiple microstrip array elements are arranged in multiple rows and columns. All microstrip array elements are on the PCB medium board about the center short axis and center length respectively. Axisymmetric, can achieve fixed beam beam pointing. But the radiating element is only connected to one side of the feed line for each serial feed sub array, the bandwidth of the antenna is narrow and the loss is large.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种辐射贴片阵列及平面微带阵列天线,可以解决现有技术中微带阵列天线成本高、带宽窄和损耗大的问题。The purpose of the present invention is to provide a radiating patch array and a planar microstrip array antenna, which can solve the problems of high cost, narrow bandwidth and large loss of the microstrip array antenna in the prior art.
本发明的目的是通过以下技术方案实现的:The purpose of this invention is to realize through the following technical solutions:
第一方面,本发明提供一种辐射贴片阵列,由n列辐射贴片线阵构成;所述的辐射贴片线阵由m行辐射贴片单元构成;所述的辐射贴片单元包括十字型功分网络和两个矩形贴片;所述的十字形功分网络为四端口结构,包括上端口、下端口、左端口和右端口;左端口和右两个端口分别连一个接矩形贴片,以并联的形式激发所述的矩形贴片;上端口和下端口分别以串联的形式连接同一列相邻的十字型功分网络的上端口或下端口。In a first aspect, the present invention provides a radiation patch array, which is composed of n rows of radiation patch linear arrays; the radiation patch linear array is composed of m rows of radiation patch units; the radiation patch units include a cross type power division network and two rectangular patches; the cross-shaped power division network is a four-port structure, including an upper port, a lower port, a left port and a right port; the left port and the right two ports are respectively connected to a rectangular patch The rectangular patch is excited in parallel; the upper port and the lower port are respectively connected in series to the upper port or the lower port of the adjacent cross-type power division network in the same column.
进一步地,所述的辐射贴片单元之间的间距等于0.75个中心频点的自由空间波长,所述的辐射贴片单元采用磁边界馈电形式。Further, the spacing between the radiation patch units is equal to the free space wavelength of 0.75 center frequency points, and the radiation patch units are in the form of magnetic boundary feeding.
第二方面,本发明提供一种平面微带阵列天线,包括第一介质基板、金属地板、第二介质基板;所述的第一介质基板的背面与所述的金属地板的一个面相接触,所述的金属地板的另一个面与所述的第二介质基板的一个面相接触;所述的第一介质基板的正面附有上述辐射贴片阵列;所述的第二介质基板的另一个面设置馈电网络;所述的辐射贴片阵列的中心位置设置有金属化通孔;所述的金属化通孔贯穿第一介质基板、金属地板和第二介质基板;所述的金属化通孔中设置有探针,所述的探针用于连接辐射贴片阵列与馈电网络。In a second aspect, the present invention provides a planar microstrip array antenna, comprising a first dielectric substrate, a metal floor, and a second dielectric substrate; the back of the first dielectric substrate is in contact with one surface of the metal floor, so The other surface of the metal floor is in contact with one surface of the second dielectric substrate; the front surface of the first dielectric substrate is attached with the above-mentioned radiation patch array; the other surface of the second dielectric substrate is provided a feeding network; a metallized through hole is arranged at the center of the radiation patch array; the metallized through hole penetrates through the first dielectric substrate, the metal floor and the second dielectric substrate; Probes are provided, and the probes are used to connect the radiating patch array and the feeding network.
进一步地,所述的馈电网络采用多级T型微带功分器级联构成1分n路的馈电结构。Further, the feeding network adopts the cascade connection of multi-stage T-type microstrip power dividers to form a feeding structure of 1 divided by n channels.
进一步地,所述的馈电网络为串联馈电网络或并联馈电网络。Further, the feeding network is a series feeding network or a parallel feeding network.
进一步地,所述的馈电网络的输入端口采用标准SMA接头结构。Further, the input port of the feeding network adopts a standard SMA joint structure.
本发明的平面微带阵列天线与传统的微带馈电网络相比,辐射贴片线阵以并行串馈的形式激励矩形贴片,在矩形真贴片宽边方向实现构造性的辐射叠加并减少1倍传输线的长度,同时减少天线尺寸,有效的降低天线成本。同时由于减少了馈电损耗,阵列噪声性能会得以改善,从而提高了辐射效率和阵列的增益带宽性能。实现宽带、高效率和低副瓣的微带阵列天线。Compared with the traditional microstrip feeding network, the planar microstrip array antenna of the present invention excites the rectangular patches in the form of parallel serial feed by the radiating patch linear array, and realizes structural radiation superposition in the direction of the wide side of the rectangular real patch. Reduce the length of the transmission line by 1 times, and reduce the size of the antenna at the same time, effectively reducing the cost of the antenna. At the same time, due to the reduced feed loss, the array noise performance will be improved, thereby increasing the radiation efficiency and the gain bandwidth performance of the array. A microstrip array antenna that realizes broadband, high efficiency and low side lobes.
附图说明Description of drawings
图1为本发明的辐射贴片阵列的结构示意图;1 is a schematic structural diagram of a radiation patch array of the present invention;
图2为本发明的平面微带阵列天线的结构示意图;2 is a schematic structural diagram of a planar microstrip array antenna of the present invention;
图3为本发明的串联馈电网络的结构示意图;FIG. 3 is a schematic structural diagram of a series feeding network of the present invention;
图4为本发明的并联馈电网络的结构示意图;4 is a schematic structural diagram of a parallel feeding network of the present invention;
图5为本发明的平面微带阵列天线的增益频率曲线图;5 is a gain-frequency curve diagram of the planar microstrip array antenna of the present invention;
图6为本发明的平面微带阵列天线的中心频率的辐射方向示意图。FIG. 6 is a schematic diagram of the radiation direction of the center frequency of the planar microstrip array antenna of the present invention.
具体实施方式Detailed ways
下面结合附图对本公开实施例进行详细描述。The embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
以下通过特定的具体实例说明本公开的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本公开的其他优点与功效。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。本公开还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本公开的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。The embodiments of the present disclosure are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present disclosure from the contents disclosed in this specification. Obviously, the described embodiments are only some, but not all, embodiments of the present disclosure. The present disclosure can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present disclosure. It should be noted that the following embodiments and features in the embodiments may be combined with each other under the condition of no conflict. Based on the embodiments in the present disclosure, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present disclosure.
本发明的辐射贴片阵列如图1所示。辐射贴片阵列2由n列辐射贴片线阵构成。辐射贴片线阵由m行辐射贴片单元构成。辐射贴片单元包括十字型功分网络4和2个矩形贴片3。十字形功分网络4为四端口结构,包括上端口、下端口、左端口和右端口。左右两个输出端口分别以并联的形式激发所述的矩形贴片3,上下两个端口分别以串联的形式连接同一列相邻的十字型功分网络4的上端口或下端口。The radiation patch array of the present invention is shown in FIG. 1 . The radiation patch array 2 is composed of n rows of radiation patch linear arrays. The radiation patch line array consists of m rows of radiation patch units. The radiation patch unit includes a cross-type
进一步地,辐射贴片单元3间距等于0.75个天线可用带宽的中心频点的自由空间波长,所述的辐射贴片单元3采用磁边界馈电形式,辐射贴片单元采用贴片窄边馈电形式,可以有效减少组阵后天线色散效应对波束指向偏移的影响,可以有效的减少频率偏移。Further, the spacing between the radiating patch units 3 is equal to 0.75 free space wavelengths of the center frequency point of the available bandwidth of the antenna, the radiating patch unit 3 adopts the form of magnetic boundary feeding, and the radiating patch unit adopts the patch narrow side feeding. It can effectively reduce the influence of the antenna dispersion effect on the beam pointing offset after the array is formed, and can effectively reduce the frequency offset.
本发明的平面微带阵列天线,如图2所示,从上到下依次包括第一介质基板7、金属地板9、第二介质基板7。第一介质基板1的背面与金属地板9的一个面相接触,金属地板9的另一个面与第二介质基板7的一个面相接触。第一介质基板1的正面附有辐射贴片阵列2。第二介质基板7的另一个面设置馈电网络8。辐射贴片阵列2的中心位置设置有金属化通孔5,贯穿第一介质基板1、金属地板9和第二介质基板7。金属化通孔5中设置有探针,探针贯穿于金属化通孔5并连接辐射贴片阵列2与馈电网络8。The planar microstrip array antenna of the present invention, as shown in FIG. 2 , includes a first
与传统微带馈电网络相比,该辐射贴片阵列以并行串馈的形式激励矩形贴片,在矩形贴片的宽边方向实现构造性的辐射叠加并减少1倍传输线的长度,降低了平面微带阵列天线的成本。基于这种馈电结构拓扑结构的高增益微带天线阵列的开发提高了辐射效率和阵列的增益带宽性能。Compared with the traditional microstrip feeding network, the radiating patch array excites the rectangular patch in the form of parallel serial feed, realizes the structural radiation superposition in the direction of the broad side of the rectangular patch, and reduces the length of the transmission line by one time, reducing the Cost of a planar microstrip array antenna. The development of a high-gain microstrip antenna array based on this feed structure topology improves the radiation efficiency and the gain-bandwidth performance of the array.
在本发明的实施例中,第一介质基板1和第二介质基板7使用31mil RO4350B基板构造,介电常数为3.5。In the embodiment of the present invention, the first
进一步地,馈电网络8采用多级T型微带功分器级联构成1分n路的馈电结构。馈电网络8为串联馈电网络6或并联馈电网络9。馈电网络8的输入端口12采用微带线转标准SMA接头结构,便于与标准器件连接。SMA的名称全称是Small A Type。标准的SMA接头是一端“外螺纹+孔”,另一端“内螺纹+针”。Further, the feeding network 8 adopts the cascade connection of multi-stage T-type microstrip power dividers to form a feeding structure of 1 divided by n channels. The feeding network 8 is a
进一步地,十字形功分网络4的变换段宽度根据副瓣抑制所需的Taylor幅度分布设计,所述横向功分网络的变换段宽度与所述纵向功分电路也可以使用Taylor幅度分布设计。Further, the width of the conversion section of the cross-shaped
由于频率变化引起的馈线中累积的相位偏差,主光束将扫描远离法线方向,探针的位置为辐射贴片阵列2的馈电网络的中心位置,确保具有更大束宽的组合主光束保持垂直于阵列平面。Due to the accumulated phase deviation in the feeder caused by the frequency change, the main beam will be scanned away from the normal direction, and the position of the probe is the center position of the feed network of the radiating patch array 2, ensuring that the combined main beam with a larger beam width remains vertical on the array plane.
进一步,n列微带线阵关于中心金属通孔5中心对称设计,用于保证天线辐射最大点位与天线正上方,同时每行微带线阵采取十字形功分网络4使得天线的增益不会发生频率偏移。Further, the n-column microstrip line array is designed centrally symmetrically about the central metal through
进一步,位于辐射贴片阵列2中心的金属化通孔5通过探针连接第二介质基板上的馈电网络。输入功率平均分给整个辐射贴片阵列2的两个相同的半阵列10。每个半阵列10包括四个通过并联串联馈电网络激发的子阵列11。图1中每个子阵列11都以平行的形式馈入带有反向贴片的改良子阵列,从而两个平行馈送子阵列的辐射在宽边方向上被构造性地叠加。对于两种类型的子阵列,由频率变化引起的馈线中累积的相位偏差,主光束将扫描远离宽边方向。每个相邻的子阵列都是反向的贴片实现辐射叠加,所说的两种类型的子阵列就是两个反向的阵列。然而,两个平行馈送的子阵列沿相反方向扫描,并且它们具有更大波束宽度的组合的同时主波束保持垂直于阵列平面。串联馈送的子阵列之间的间隔选择为约λ,其间距即能够为结构提供子阵列的适当布置,而又足够避免不必要的额外馈送损耗。因此,为了补偿沿着串联馈电的两个连续子阵列之间的相位差并在宽边提供本构辐射,应更改相邻子阵列的布置。Further, the metallized through
为了达到理想的辐射方向图,平行馈送子阵列之间的间隔以及两个相同的半阵列之间的距离都应进行优化。经过优化后,设计的馈电网络的总导体面积约为55440mm2,这是微带阵列的传统馈电网络所需导体面积的一半。本发明提出的并行串馈网络与传统的串联馈送子阵列相比,可以减少1倍传输线长度。并且可以显著的减小天线的尺寸。因此,由于减少了馈电损耗,阵列噪声性能会提高。在两个主平面(E平面和H平面)中在16GHz处的归一化辐射方向图如图5和图6所示。从图5和图6可以看出本发明的辐射贴片阵列的峰值增益为31.3dBi,带宽为800MHz,增益纹波为1dB。与建议的天线阵列相同尺寸的孔径的最大方向性约为32.9dBi。这意味着所设计的阵列的总效率为69.6%,总损耗为1.6dB。进一步证明了本发明的平面微带阵列天线效率高、损耗小。To achieve the ideal radiation pattern, both the spacing between parallel-fed sub-arrays and the distance between two identical half-arrays should be optimized. After optimization, the total conductor area of the designed feed network is about 55440mm 2 , which is half of the conductor area required by the traditional feed network of the microstrip array. Compared with the traditional serial-fed sub-array, the parallel serial-fed network proposed by the present invention can reduce the length of the transmission line by one time. And the size of the antenna can be significantly reduced. Therefore, array noise performance is improved due to reduced feed losses. The normalized radiation patterns at 16 GHz in the two principal planes (E-plane and H-plane) are shown in Figures 5 and 6. It can be seen from FIG. 5 and FIG. 6 that the peak gain of the radiation patch array of the present invention is 31.3dBi, the bandwidth is 800MHz, and the gain ripple is 1dB. The maximum directivity for an aperture of the same size as the proposed antenna array is about 32.9dBi. This means that the overall efficiency of the designed array is 69.6% and the overall loss is 1.6dB. It is further proved that the planar microstrip array antenna of the present invention has high efficiency and low loss.
在本发明的描述中,需要理解的是,术语“中间”、“长度”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“内”、“外”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the terms "middle", "length", "upper", "lower", "front", "rear", "vertical", "horizontal", "inner", The orientation or positional relationship indicated by "outer", "radial", "circumferential", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that The device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present invention.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In the present invention, unless otherwise expressly stated and defined, a first feature "on" a second feature may be in direct contact with the first and second features, or in indirect contact with the first and second features through an intermediary. "Plurality" means at least two, eg, two, three, etc., unless expressly specifically limited otherwise.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise expressly specified and limited, the terms "installed", "connected", "connected", "fixed" and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
以上仅为说明本发明的实施方式,并不用于限制本发明,对于本领域的技术人员来说,凡在本发明的精神和原则之内,不经过创造性劳动所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above is only to illustrate the embodiments of the present invention, and not to limit the present invention. For those skilled in the art, all within the spirit and principle of the present invention, without any modification, equivalent replacement or improvement made by creative work etc., should be included within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010794340.1A CN111987442A (en) | 2020-08-10 | 2020-08-10 | Radiation patch array and planar microstrip array antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010794340.1A CN111987442A (en) | 2020-08-10 | 2020-08-10 | Radiation patch array and planar microstrip array antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111987442A true CN111987442A (en) | 2020-11-24 |
Family
ID=73444603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010794340.1A Pending CN111987442A (en) | 2020-08-10 | 2020-08-10 | Radiation patch array and planar microstrip array antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111987442A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114498011A (en) * | 2021-12-29 | 2022-05-13 | 中电科创智联(武汉)有限责任公司 | High-performance microstrip array antenna |
CN115483525A (en) * | 2022-09-27 | 2022-12-16 | 江苏屹信航天科技有限公司 | Wide-beam UHF frequency band satellite communication antenna |
WO2023274110A1 (en) * | 2021-06-30 | 2023-01-05 | 南京信息工程大学 | X-band microstrip planar array antenna |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6317095B1 (en) * | 1998-09-30 | 2001-11-13 | Anritsu Corporation | Planar antenna and method for manufacturing the same |
CN101246997A (en) * | 2008-03-13 | 2008-08-20 | 上海交通大学 | Feed Network of Broadband Array Antenna |
CN105226379A (en) * | 2015-08-25 | 2016-01-06 | 中国航空无线电电子研究所 | A kind of miniaturization broadband micro-strip array antenna |
CN105870612A (en) * | 2016-03-31 | 2016-08-17 | 国鹰航空科技有限公司 | Broadband compact type microstrip array antenna |
CN105977651A (en) * | 2016-06-28 | 2016-09-28 | 深圳前海科蓝通信有限公司 | Dual-polarization high-gain directional antenna and design method therefor |
CN106229658A (en) * | 2016-08-31 | 2016-12-14 | 北京握奇智能科技有限公司 | A kind of circular polarization microstrip antenna |
CN106816716A (en) * | 2016-12-12 | 2017-06-09 | 上海交通大学 | Bimodulus vortex wave beam double-circle polarization four-element array antenna simple for structure |
CN106816695A (en) * | 2016-11-29 | 2017-06-09 | 广东通宇通讯股份有限公司 | Three frequency range high-gain omnidirectional dipole antennas |
CN107492712A (en) * | 2017-06-27 | 2017-12-19 | 中国电子科技集团公司第三十八研究所 | A kind of low section double-circle polarization microstrip antenna array for being used for the asymmetric large-angle scanning of two dimension |
CN108899658A (en) * | 2018-06-07 | 2018-11-27 | 南京理工大学 | A kind of 35GHz small circularly-polarizedanti-metal micro-strip phased array antenna |
CN109361072A (en) * | 2018-11-02 | 2019-02-19 | 北京航天万鸿高科技有限公司 | A kind of double-layer wideband circularly polarization microstrip array antenna |
CN209624763U (en) * | 2018-12-04 | 2019-11-12 | 深圳市大疆创新科技有限公司 | Millimeter wave antenna structure, microwave rotating radar and moveable platform |
CN110581368A (en) * | 2019-09-18 | 2019-12-17 | 湖南大学 | A flat microstrip array antenna for hydrological monitoring radar and its design method |
CN110718757A (en) * | 2019-10-18 | 2020-01-21 | 西安电子科技大学昆山创新研究院 | A novel wide angle high gain covers security protection radar antenna for security protection field |
CN110931968A (en) * | 2019-11-28 | 2020-03-27 | 广东盛路通信科技股份有限公司 | Low cross polarization millimeter wave microstrip flat plate array antenna |
CN210443669U (en) * | 2019-09-18 | 2020-05-01 | 湖南大学 | A flat-panel microstrip array antenna for hydrological monitoring radar |
-
2020
- 2020-08-10 CN CN202010794340.1A patent/CN111987442A/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6317095B1 (en) * | 1998-09-30 | 2001-11-13 | Anritsu Corporation | Planar antenna and method for manufacturing the same |
CN101246997A (en) * | 2008-03-13 | 2008-08-20 | 上海交通大学 | Feed Network of Broadband Array Antenna |
CN105226379A (en) * | 2015-08-25 | 2016-01-06 | 中国航空无线电电子研究所 | A kind of miniaturization broadband micro-strip array antenna |
CN105870612A (en) * | 2016-03-31 | 2016-08-17 | 国鹰航空科技有限公司 | Broadband compact type microstrip array antenna |
CN105977651A (en) * | 2016-06-28 | 2016-09-28 | 深圳前海科蓝通信有限公司 | Dual-polarization high-gain directional antenna and design method therefor |
CN106229658A (en) * | 2016-08-31 | 2016-12-14 | 北京握奇智能科技有限公司 | A kind of circular polarization microstrip antenna |
CN106816695A (en) * | 2016-11-29 | 2017-06-09 | 广东通宇通讯股份有限公司 | Three frequency range high-gain omnidirectional dipole antennas |
CN106816716A (en) * | 2016-12-12 | 2017-06-09 | 上海交通大学 | Bimodulus vortex wave beam double-circle polarization four-element array antenna simple for structure |
CN107492712A (en) * | 2017-06-27 | 2017-12-19 | 中国电子科技集团公司第三十八研究所 | A kind of low section double-circle polarization microstrip antenna array for being used for the asymmetric large-angle scanning of two dimension |
CN108899658A (en) * | 2018-06-07 | 2018-11-27 | 南京理工大学 | A kind of 35GHz small circularly-polarizedanti-metal micro-strip phased array antenna |
CN109361072A (en) * | 2018-11-02 | 2019-02-19 | 北京航天万鸿高科技有限公司 | A kind of double-layer wideband circularly polarization microstrip array antenna |
CN209624763U (en) * | 2018-12-04 | 2019-11-12 | 深圳市大疆创新科技有限公司 | Millimeter wave antenna structure, microwave rotating radar and moveable platform |
CN110581368A (en) * | 2019-09-18 | 2019-12-17 | 湖南大学 | A flat microstrip array antenna for hydrological monitoring radar and its design method |
CN210443669U (en) * | 2019-09-18 | 2020-05-01 | 湖南大学 | A flat-panel microstrip array antenna for hydrological monitoring radar |
CN110718757A (en) * | 2019-10-18 | 2020-01-21 | 西安电子科技大学昆山创新研究院 | A novel wide angle high gain covers security protection radar antenna for security protection field |
CN110931968A (en) * | 2019-11-28 | 2020-03-27 | 广东盛路通信科技股份有限公司 | Low cross polarization millimeter wave microstrip flat plate array antenna |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023274110A1 (en) * | 2021-06-30 | 2023-01-05 | 南京信息工程大学 | X-band microstrip planar array antenna |
CN114498011A (en) * | 2021-12-29 | 2022-05-13 | 中电科创智联(武汉)有限责任公司 | High-performance microstrip array antenna |
CN114498011B (en) * | 2021-12-29 | 2023-12-15 | 中电科创智联(武汉)有限责任公司 | High-performance microstrip array antenna |
CN115483525A (en) * | 2022-09-27 | 2022-12-16 | 江苏屹信航天科技有限公司 | Wide-beam UHF frequency band satellite communication antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108987911B (en) | A SIW-based millimeter-wave beamforming microstrip array antenna and design method | |
CN112332079B (en) | Double-linear polarization double-beam base station antenna based on super surface | |
US7180457B2 (en) | Wideband phased array radiator | |
CN108550987B (en) | Dual-frenquency gap array antenna based on SIW | |
CN107732445B (en) | A millimeter-wave circularly polarized array antenna and its radiator | |
US9755306B1 (en) | Wideband antenna design for wide-scan low-profile phased arrays | |
CN103594779B (en) | Antenna integrated and the array antenna of substrate for millimeter wave frequency band | |
CN103825101B (en) | Broadband Panel Array Antenna | |
US10522919B2 (en) | Surface integrated waveguide antenna and a transceiver including a surface integrated waveguide antenna array | |
CN108511924B (en) | A broadband end-fire antenna array for millimeter-wave communication systems | |
CN112310663B (en) | Broadband low-profile dual-frequency multi-beam patch antenna based on multi-mode resonance | |
US9865934B2 (en) | Ultra-wideband extremely low profile wide angle scanning phased array with compact balun and feed structure | |
CN109037966B (en) | Endfire Multibeam Dual Circularly Polarized Antenna Array Using Dielectric Loaded Step Slots | |
US20220407231A1 (en) | Wideband electromagnetically coupled microstrip patch antenna for 60 ghz millimeter wave phased array | |
CN108493626A (en) | A four-element dual-polarized microstrip antenna array based on SIC technology | |
US20060038732A1 (en) | Broadband dual polarized slotline feed circuit | |
CN108134203B (en) | Large-unit-space wide-angle scanning phased array antenna based on electromagnetic band gap structure | |
CN111987442A (en) | Radiation patch array and planar microstrip array antenna | |
CN101997171A (en) | Double dipole antenna and array thereof fed by substrate integrated waveguide | |
US20090309804A1 (en) | Array Antenna for Wireless Communication and Method | |
US12224499B2 (en) | Wideband microstrip antenna array based antenna system for GHz communications | |
CN110504527B (en) | L and X wave band common-caliber antenna with novel structure | |
CN109103595B (en) | Bidirectional dual-polarized antenna | |
CN114156652A (en) | Low-sidelobe broadband low-cross polarization plane dipole antenna array | |
CN218602730U (en) | Millimeter wave radar microstrip antenna and millimeter wave radar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201124 |