CN111916539B - Front-mounted integrated unit diode chip - Google Patents
Front-mounted integrated unit diode chip Download PDFInfo
- Publication number
- CN111916539B CN111916539B CN201910379235.9A CN201910379235A CN111916539B CN 111916539 B CN111916539 B CN 111916539B CN 201910379235 A CN201910379235 A CN 201910379235A CN 111916539 B CN111916539 B CN 111916539B
- Authority
- CN
- China
- Prior art keywords
- type electrode
- diode
- contact surface
- conductive type
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009792 diffusion process Methods 0.000 claims abstract description 23
- 229910002601 GaN Inorganic materials 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 230000000903 blocking effect Effects 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 238000000605 extraction Methods 0.000 abstract description 11
- 238000009413 insulation Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 11
- 230000017525 heat dissipation Effects 0.000 description 10
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 230000007480 spreading Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 235000012149 noodles Nutrition 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 210000003429 pore cell Anatomy 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 206010035148 Plague Diseases 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/833—Transparent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/857—Interconnections, e.g. lead-frames, bond wires or solder balls
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/858—Means for heat extraction or cooling
- H10H20/8582—Means for heat extraction or cooling characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H29/00—Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
- H10H29/10—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
- H10H29/14—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00 comprising multiple light-emitting semiconductor components
- H10H29/142—Two-dimensional arrangements, e.g. asymmetric LED layout
Landscapes
- Led Devices (AREA)
Abstract
本发明提供一种正装集成单元二极管芯片,包括第一导电类型电极,第二导电类型电极,及位于所述第一导电类型电极和第二导电类型电极之间的二极管台面结构;二极管台面结构包括n个二极管单元,其中,n≥2。n个二极管单元包括位于第一导电类型层上的量子阱有源区,位于量子阱有源区上的第二导电类型层,位于第一导电类型层上并部分覆盖第二导电类型层的绝缘介质层,位于第二导电类型层上并部分覆盖绝缘介质层的透明电极,其中,第二导电类型电极位于绝缘介质层上并部分覆盖透明电极。本发明解决了现有技术存在的透明电极厚度限制电流横向扩散和LED出光效率的问题,提高了单位面积单元二极管芯片的流明输出,降低了流明成本。
The present invention provides a front-mounted integrated unit diode chip, comprising a first conductivity type electrode, a second conductivity type electrode, and a diode mesa structure located between the first conductivity type electrode and the second conductivity type electrode; the diode mesa structure includes n diode units, where n≥2. The n diode cells include a quantum well active region on the first conductivity type layer, a second conductivity type layer on the quantum well active region, insulation on the first conductivity type layer and partially covering the second conductivity type layer The dielectric layer is located on the second conductive type layer and partially covers the transparent electrode of the insulating dielectric layer, wherein the second conductive type electrode is located on the insulating dielectric layer and partially covers the transparent electrode. The invention solves the problems existing in the prior art that the thickness of the transparent electrode limits the lateral diffusion of the current and the light extraction efficiency of the LED, improves the lumen output of the unit diode chip per unit area, and reduces the lumen cost.
Description
技术领域technical field
本发明涉及半导体材料和器件工艺领域,特别是半导体光电器件。The present invention relates to the field of semiconductor materials and device technology, in particular to semiconductor optoelectronic devices.
背景技术Background technique
常规的正装集成单元二极管芯片,电流扩散不均匀,导致发光效率的损失,现有结构下的二极管单元二极管芯片散热通过蓝宝石衬底实现,散热性较差,从而影响单元二极管芯片的效率和稳定性,因此通常正装发光二极管单元二极管芯片主要的应用领域为0.5瓦以下的中小功率单元二极管芯片市场,无法提供单位面积流明输出高的产品。电流扩散的不均匀、热扩散的不均匀和光提取的不均匀,导致其在流明效率、流明密度输出、流明成本三个重要的参数上有极大的局限性,目前市场上的整装二极管技术无法提供有效的解决方案。The conventional front-mounted integrated unit diode chip has uneven current diffusion, which leads to the loss of luminous efficiency. The diode unit diode chip in the existing structure is dissipated through a sapphire substrate, which has poor heat dissipation, thus affecting the efficiency and stability of the unit diode chip. Therefore, the main application field of LED unit diode chips is usually the market of small and medium power unit diode chips below 0.5 watts, and products with high lumen output per unit area cannot be provided. Uneven current spreading, uneven heat spreading, and uneven light extraction lead to great limitations in three important parameters: lumen efficiency, lumen density output, and lumen cost. Unable to provide a valid solution.
现有技术一为专利公开号为US6614056B1的美国专利申请,如图1所示,21/23为N型电极,19/20ab为P型电极。电流的扩散的机理如下:ITO(氧化铟锡)与p-GaN形成欧姆接触后,在ITO上沉积19/20ab金属,通过电极线的方式,将空穴扩散到p-GaN,到达量子阱有源区,在量子阱有源区与21/22N型电极扩散过来的电子通过辐射复合发光,获得发光的LED器件。采用ITO透明导电欧姆接触,加金属引线的电流扩散方式,由于ITO电阻率大,且p型GaN材料电导率也不佳,因此总体电流扩散非常不均匀。并且考虑ITO对光的吸收问题,ITO层的厚度不能太大,也限制了总体的电流扩散。此外由于LED单元二极管芯片的电流扩散长度与电流密度的平方根成反比,因此在大电流的注入下,电流的扩散长度更短,导致单元二极管芯片的电流扩散更加的不均匀,效率更低,散热更加困难。The first prior art is the US patent application with the patent publication number US6614056B1. As shown in FIG. 1 , 21/23 are N-type electrodes, and 19/20ab are P-type electrodes. The mechanism of current diffusion is as follows: after ITO (indium tin oxide) forms ohmic contact with p-GaN, 19/20ab metal is deposited on ITO, and holes are diffused to p-GaN through electrode lines, reaching quantum wells. In the source region, the electrons diffused from the quantum well active region and the 21/22N-type electrode emit light through radiation recombination to obtain a light-emitting LED device. The ITO transparent conductive ohmic contact and the current spreading method with metal leads are used. Due to the high resistivity of ITO and the poor electrical conductivity of p-type GaN materials, the overall current spreading is very uneven. And considering the absorption of light by ITO, the thickness of the ITO layer should not be too large, which also limits the overall current diffusion. In addition, since the current diffusion length of the LED unit diode chip is inversely proportional to the square root of the current density, under the injection of a large current, the current diffusion length is shorter, resulting in more uneven current diffusion of the unit diode chip, lower efficiency, and heat dissipation. more difficult.
正装集成单元二极管芯片电流扩散的不均匀导致发光效率的损失。现有结构下的二极管单元二极管芯片散热通过蓝宝石衬底实现,散热性较差,从而影响单元二极管芯片的效率和稳定性,因此通常正装发光二极管单元二极管芯片主要的应用领域为0.5瓦以下的中小功率单元二极管芯片市场,无法提供单位面积流明输出高的产品。电流扩散的不均匀、热扩散的不均匀和光提取的不均匀,导致其在流明效率、流明密度输出、流明成本三个重要的参数上有极大的局限性,目前市场上的正装发光二极管技术无法提供有效的解决方案。The non-uniform current spreading of the front mounted integrated cell diode chip leads to the loss of luminous efficiency. The diode unit diode chip in the existing structure is dissipated by the sapphire substrate, and the heat dissipation is poor, which affects the efficiency and stability of the unit diode chip. Therefore, the main application field of the diode unit diode chip with positive light emitting diodes is usually small and medium-sized below 0.5 watts. The power cell diode chip market cannot provide products with high lumen output per unit area. Uneven current spreading, uneven heat spreading, and uneven light extraction lead to great limitations in three important parameters: lumen efficiency, lumen density output, and lumen cost. Unable to provide a valid solution.
现有技术二为Proc.of SPIE Vol.10021 100210X-1 2016的会议论文,如图2所示,正装LED芯片的近场分析图(上)和中线上归一化的电流分布图(下),芯片的尺寸为1.2mm×1.2mm。近场分析图中的光强分布与电流扩散的分布成正比。图中可见,在7A/cm2的小电流下,边缘某些区域的电流密度不到中间区域的80%,当电流增大70A/cm2到时,边缘某些区域的电流密度甚至不到中间区域的50%。因此,大电流下的LED光效、散热和稳定性都会受到严重的限制。The second prior art is the conference paper of Proc.of SPIE Vol.10021 100210X-1 2016. As shown in Figure 2, the near-field analysis diagram of the LED chip (top) and the normalized current distribution diagram on the neutral line (bottom) , the size of the chip is 1.2mm × 1.2mm. The light intensity distribution in the near-field analysis graph is proportional to the distribution of the current spread. It can be seen from the figure that at a small current of 7A/ cm2 , the current density in some areas of the edge is less than 80% of that in the middle area. When the current increases by 70A/ cm2 , the current density in some areas of the edge is even less than 50% of the middle area. Therefore, LED light efficiency, heat dissipation and stability under high current are severely limited.
目前LED设计中透明导电膜ITO(透明电极)的厚度普遍在60~120纳米左右,越厚的ITO对光的吸收越大,从而降低了LED出光的效率。而ITO厚度越薄,则方块电阻越大,导致横向的电流扩散效率越差。因此现有LED设计中ITO的厚度通常限制在60~120纳米的工艺窗口内。At present, the thickness of the transparent conductive film ITO (transparent electrode) in LED design is generally about 60-120 nanometers. The thicker the ITO, the greater the absorption of light, thereby reducing the efficiency of LED light extraction. The thinner the ITO thickness, the greater the sheet resistance, resulting in a worse lateral current spreading efficiency. Therefore, the thickness of ITO in existing LED designs is usually limited to a process window of 60-120 nm.
发明内容SUMMARY OF THE INVENTION
本发明为解决现有技术存在的透明电极厚度对LED芯片出光效率和电流扩散影响过大问题,提出了一种单元尺寸小、透明电极薄的正装集成单元二极管芯片。In order to solve the problem that the thickness of the transparent electrode in the prior art has too great influence on the light extraction efficiency and current diffusion of the LED chip, the present invention proposes a front-mounted integrated unit diode chip with small unit size and thin transparent electrode.
为实现上述目的,本发明提供一种正装集成单元二极管芯片,包括:第一导电类型电极,第二导电类型电极,及位于所述第一导电类型电极和第二导电类型电极之间的二极管台面结构;所述二极管台面结构包括n个二极管单元,n个二极管单元呈几何形状排列,其中,n≥2,台面结构面积根据电流扩散长度确定;In order to achieve the above object, the present invention provides a front-mounted integrated unit diode chip, comprising: a first conductivity type electrode, a second conductivity type electrode, and a diode mesa located between the first conductivity type electrode and the second conductivity type electrode structure; the diode mesa structure includes n diode units, and the n diode units are arranged in a geometric shape, wherein, n≥2, the area of the mesa structure is determined according to the current diffusion length;
所述n个二极管单元包括绝缘介质层,透明电极,第一导电类型层,第一导电类型电极,第二导电类型层,第二导电类型电极,第二导电类型电极和量子阱有源区位于所述第一导电类型层上,第二导电类型层位于量子阱有源区上,绝缘介质层位于所述第一导电类型层上并部分覆盖所述第二导电类型层,透明电极位于所述第二导电类型层上并部分覆盖所述绝缘介质层,第二导电类型电极位于所述绝缘介质层上并部分覆盖所述透明电极。The n diode units include an insulating medium layer, a transparent electrode, a first conductivity type layer, a first conductivity type electrode, a second conductivity type layer, a second conductivity type electrode, and the second conductivity type electrode and the quantum well active region are located in the on the first conductivity type layer, the second conductivity type layer is located on the quantum well active region, the insulating medium layer is located on the first conductivity type layer and partially covers the second conductivity type layer, and the transparent electrode is located on the The second conductive type layer is located on and partially covers the insulating medium layer, and the second conductive type electrode is located on the insulating medium layer and partially covers the transparent electrode.
优选的,所述第二导电类型电极、透明电极和第二导电类型层在垂直方向上不连通;所述部分覆盖第二导电类型层的绝缘介质层为电流阻挡层。Preferably, the second conductive type electrode, the transparent electrode and the second conductive type layer are not connected in a vertical direction; the insulating medium layer partially covering the second conductive type layer is a current blocking layer.
优选的,所述二极管台面结构包括沟槽结构,所述沟槽结构位于二极管单元之间。Preferably, the diode mesa structure includes a trench structure, and the trench structure is located between the diode cells.
优选的,所述透明电极厚度为60纳米~120纳米,或1纳米~60纳米。Preferably, the thickness of the transparent electrode is 60 nanometers to 120 nanometers, or 1 nanometer to 60 nanometers.
优选的,所述二极管台面结构包括第一导电类型焊盘、第二导电类型焊盘,第一导电类型电极与第一导电类型焊盘连接,第二导电类型电极与第二导电类型焊盘连接。Preferably, the diode mesa structure includes a first conductivity type pad and a second conductivity type pad, the first conductivity type electrode is connected to the first conductivity type pad, and the second conductivity type electrode is connected to the second conductivity type pad .
优选的,所述绝缘介质层部分覆盖第二导电类型层形成第一接触面;所述透明电极覆盖绝缘介质层形成第二接触面;所述第二导电类型电极部分覆盖透明电极形成第三接触面。Preferably, the insulating medium layer partially covers the second conductive type layer to form a first contact surface; the transparent electrode covers the insulating medium layer to form a second contact surface; the second conductive type electrode partially covers the transparent electrode to form a third contact noodle.
优选的,所述第一接触面面积大于第三接触面面积。Preferably, the area of the first contact surface is larger than the area of the third contact surface.
优选的,所述第一接触面面积为0.001微米×0.001微米~200微米×200微米;所述第二接触面面积为0.001微米×0.001微米~200微米×200微米;所述第三接触面面积为0.001微米×0.001微米~200微米×200微米。Preferably, the area of the first contact surface is 0.001 μm×0.001 μm˜200 μm×200 μm; the area of the second contact surface is 0.001 μm×0.001 μm˜200 μm×200 μm; the area of the third contact surface is It is 0.001 μm × 0.001 μm to 200 μm × 200 μm.
优选的,所述第一接触面纵向长度大于所述第三接触面纵向长度。Preferably, the longitudinal length of the first contact surface is greater than the longitudinal length of the third contact surface.
优选的,所述第一接触面纵向长度为0.001微米~200微米;所述第二接触面纵向长度为0.001微米~200微米;所述第三接触面纵向长度为0.001微米~200微米。Preferably, the longitudinal length of the first contact surface is 0.001 micrometers to 200 micrometers; the longitudinal length of the second contact surface is 0.001 micrometers to 200 micrometers; the longitudinal length of the third contact surface is 0.001 micrometers to 200 micrometers.
优选的,所述二极管台面结构包括线条型电极线;所述线条型电极线包括第一导电类型电极线和第二导电类型电极线。Preferably, the diode mesa structure includes linear electrode lines; the linear electrode lines include electrode lines of a first conductivity type and electrode lines of a second conductivity type.
优选的,所述第一导电类型电极与第一导电类型焊盘第一导电类型电极线连接,第二导电类型电极与第二导电类型焊盘由第二导电类型电极线连接。Preferably, the first conductivity type electrode is connected to the first conductivity type pad by a first conductivity type electrode wire, and the second conductivity type electrode and the second conductivity type pad are connected by a second conductivity type electrode wire.
优选的,所述线条型电极线为二极管单元间电极连接线。Preferably, the linear electrode lines are electrode connecting lines between diode cells.
优选的,所述绝缘介质层材料为二氧化硅、氧化铝、氮化硅。Preferably, the material of the insulating medium layer is silicon dioxide, aluminum oxide, and silicon nitride.
优选的,所述二极管单元的连接方式为:并联,串联或设定比例的串并联混合。Preferably, the connection mode of the diode units is: parallel, series or a combination of series and parallel in a set ratio.
优选的,所述二极管单元形状为:三角形、正方形、长方形、五边形、六边形、圆形、任意自定义形状。Preferably, the shape of the diode unit is: triangle, square, rectangle, pentagon, hexagon, circle, any custom shape.
优选的,所述二极管单元数量为2个~1000亿个。Preferably, the number of the diode units ranges from 2 to 100 billion.
优选的,所述二极管单元沿Y轴方向长度为0.001微米~200微米。Preferably, the length of the diode unit along the Y-axis direction is 0.001 micrometers to 200 micrometers.
优选的,所述线条型电极线宽度为0.001微米~20微米,所述线条型电极线厚度为0.001微米~10微米。Preferably, the linear electrode lines have a width of 0.001 micrometers to 20 micrometers, and the linear electrode lines have a thickness of 0.001 micrometers to 10 micrometers.
优选的,线条型电极线布局方式为:1个以上第一导电类型电极线包围台面的布局;或1个以上第二导电类型电极线包围台面布局;或第一导电类型电极线和第二导电类型电极线数量相等布局;或第一型电极线和第二型电极线平行,在垂直空间上绝缘重叠布局,不同导电类型电极线的重叠部分之间隔有绝缘介质材料;或第一导电类型电极线和第二导电类型电极线绝缘垂直交叉布局,不同导电类型电极线的交叉部分之间隔有绝缘介质材料;或第一导电类型电极线和第二导电类型电极线的部分或全部设计采用非直线布局;Preferably, the line-type electrode line layout is: a layout in which more than one electrode line of the first conductivity type surrounds the mesa; or a layout in which more than one electrode line of the second conductivity type surrounds the mesa; or an electrode line of the first conductivity type and a second conductivity type electrode line. The number of type electrode lines is equal; or the first type electrode lines and the second type electrode lines are parallel, and the layout is insulated and overlapped in the vertical space, and there is an insulating medium material between the overlapping parts of the electrode lines of different conductivity types; or the electrodes of the first conductivity type The lines and the second conductive type electrode lines are insulated vertically and crossed, and the intersecting parts of the different conductive type electrode lines are separated by insulating dielectric materials; or part or all of the first conductive type electrode lines and the second conductive type electrode lines are designed using non-linear layout;
优选的,所述非直线布局包括折线布局,曲线布局。Preferably, the non-linear layout includes a polyline layout and a curved layout.
优选的,所述线条型电极线采用线条形金属和/或氧化铟锡材料;所述线条形金属材料为铝、银、钛、镍、金、铂、铬,或以上任意两种以上的金属的合金。Preferably, the strip-shaped electrode wire adopts strip-shaped metal and/or indium tin oxide material; the strip-shaped metal material is aluminum, silver, titanium, nickel, gold, platinum, chromium, or any two or more of the above metals alloy.
优选的,所述二极管台面结构包括孔结构。Preferably, the diode mesa structure includes a hole structure.
优选的,所述二极管台面结构与衬底之间具有本征氮化镓层。Preferably, there is an intrinsic gallium nitride layer between the diode mesa structure and the substrate.
优选的,所述衬底位于反射镜上。Preferably, the substrate is located on the mirror.
优选的,所述反射镜材料为银、铝或分布式布拉格反射镜。优选的,所述二极管台面结构内的沟槽横截面形状为三角形、四边形、弧形以及其它任意定义形状。Preferably, the reflector material is silver, aluminum or distributed Bragg reflector. Preferably, the cross-sectional shapes of the trenches in the diode mesa structure are triangles, quadrilaterals, arcs, and other arbitrary defined shapes.
本发明所采用的正装集成单元二极管芯片,通过纳微米尺寸结构效应,在光、电、热三个层面突破现有正装LED技术的局限性。第一接触面面积大于第三接触面面积和第一接触面纵向长度大于第三接触面纵向长度使得电流阻挡层从空间上隔断第二导电类型电极与第二导电类型层在垂直方向上的电流扩散。集成单元二极管芯片尺寸的缩小带来更大的侧壁散热面积,具备更佳的散热性能,可以允许超大电流密度的注入而不影响其稳定性。透明电极厚度小于60纳米,吸光能力弱,从而提升了LED出光的效率,解决了现有技术存在的透明电极厚度瓶颈。单元二极管芯片的尺寸设计控制在电流扩散长度以内,其较高自由度的几何优化设计方式,可同时解决困扰LED单元二极管芯片设计的n-电极和p-电极电流扩散不均匀的问题,从而得到更高的光电转换效率/流明效率;每个二极管单元的纳微结构,以及台面内部的孔结构可增加侧壁的出光面积,从而提升光萃取效率。The front-mounted integrated unit diode chip adopted in the present invention breaks through the limitations of the existing front-mounted LED technology at the three levels of light, electricity and heat through the effect of nano-micron size structure. The area of the first contact surface is greater than the area of the third contact surface and the longitudinal length of the first contact surface is greater than the longitudinal length of the third contact surface, so that the current blocking layer spatially blocks the current of the second conductive type electrode and the second conductive type layer in the vertical direction diffusion. The reduction of the chip size of the integrated unit diode leads to a larger heat dissipation area on the side wall, which has better heat dissipation performance, and can allow the injection of ultra-high current density without affecting its stability. The thickness of the transparent electrode is less than 60 nanometers, and the light absorbing ability is weak, thereby improving the efficiency of light emitting of the LED, and solving the bottleneck of the thickness of the transparent electrode existing in the prior art. The size design of the unit diode chip is controlled within the current diffusion length, and its geometric optimization design method with high degree of freedom can simultaneously solve the problem of uneven current diffusion of the n-electrode and p-electrode that plagues the design of the LED unit diode chip. Higher photoelectric conversion efficiency/lumen efficiency; the nano-micro structure of each diode unit and the hole structure inside the mesa can increase the light-extraction area of the sidewall, thereby improving the light extraction efficiency.
附图说明Description of drawings
图1是现有技术的二极管单元结构图。FIG. 1 is a structural diagram of a diode unit in the prior art.
图2是现有技术的二极管单元结构图。FIG. 2 is a structural diagram of a diode unit in the prior art.
图3是本发明实施例一提供的正装集成单元二极管芯片俯视图。FIG. 3 is a top view of the front-mounted integrated unit diode chip provided in the first embodiment of the present invention.
图4是本发明的实施例二提供的正装集成单元二极管芯片俯视图。FIG. 4 is a top view of the front-mounted integrated unit diode chip provided in the second embodiment of the present invention.
图5是本发明实施例三提供的正装集成单元二极管芯片俯视图。FIG. 5 is a top view of a front-mounted integrated unit diode chip provided in
图6是本发明提供的一种正装集成单元二极管芯片台面结构内二极管单元示意图。6 is a schematic diagram of a diode unit in a mesa structure of a front-mounted integrated unit diode chip provided by the present invention.
图7是本发明提供的一种正装集成单元二极管芯片台面结构局部三维图。FIG. 7 is a partial three-dimensional view of a mesa structure of a front-mounted integrated unit diode chip provided by the present invention.
第一导电类型电极1,第二导电类型电极2,透明电极3,绝缘介质层4,第二导电类型层5,量子阱有源区(MQWs)6,第一导电类型层7,本征氮化镓层8,衬底9,反射镜10,第一导电类型焊盘11,第二导电类型焊盘12,第一导电类型电极线13、第二导电类型电极线14,台面结构15,二极管单元16,沟槽结构17。First
具体实施方式Detailed ways
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
鉴于现有的二极管结构流明效率、流明密度输出、流明成本三个重要的参数上极大的局限性,本发明实施例提供一种流明效率高、流明密度输出大的正装装集成单元二极管,以下结合附图对本发明进行详细说明。In view of the great limitations of the three important parameters of the existing diode structure, lumen efficiency, lumen density output, and lumen cost, the embodiment of the present invention provides a front-mounted integrated unit diode with high lumen efficiency and high lumen density output. The following The present invention will be described in detail with reference to the accompanying drawings.
一种正装集成单元二极管芯片,包括:第一导电类型电极,第二导电类型电极,及位于第一导电类型电极和第二导电类型电极之间的二极管台面结构;二极管台面结构包括n个二极管单元,所述n个二极管单元呈几何形状排列,其中,n≥2,台面结构面积根据电流扩散长度确定。A front-mounted integrated unit diode chip includes: a first conductivity type electrode, a second conductivity type electrode, and a diode mesa structure located between the first conductivity type electrode and the second conductivity type electrode; the diode mesa structure includes n diode units , the n diode units are arranged in a geometric shape, where n≥2, and the area of the mesa structure is determined according to the current spreading length.
n个二极管单元包括绝缘介质层,透明电极,第一导电类型层,第一导电类型电极,第二导电类型层,第二导电类型电极,第二导电类型电极和量子阱有源区位于第一导电类型层上,第二导电类型层位于量子阱有源区上,绝缘介质层位于第一导电类型层上并部分覆盖第二导电类型层,透明电极位于第二导电类型层上并部分覆盖绝缘介质层,第二导电类型电极位于绝缘介质层上并部分覆盖所述透明电极。所述第二导电类型电极、透明电极和第二导电类型层在垂直方向上不连通;所述部分覆盖第二导电类型层的绝缘介质层为电流阻挡层。The n diode units include an insulating medium layer, a transparent electrode, a first conductivity type layer, a first conductivity type electrode, a second conductivity type layer, a second conductivity type electrode, the second conductivity type electrode and the quantum well active region located in the first on the conductive type layer, the second conductive type layer is located on the quantum well active region, the insulating medium layer is located on the first conductive type layer and partially covers the second conductive type layer, and the transparent electrode is located on the second conductive type layer and partially covers the insulating layer A dielectric layer, the second conductive type electrode is located on the insulating dielectric layer and partially covers the transparent electrode. The second conductive type electrode, the transparent electrode and the second conductive type layer are not connected in the vertical direction; the insulating medium layer partially covering the second conductive type layer is a current blocking layer.
二极管台面结构包括沟槽结构,沟槽结构位于二极管单元之间,二极管台面结构还包括第一导电类型焊盘、第二导电类型焊盘,第一导电类型电极与第一导电类型焊盘连接,第二导电类型电极与第二导电类型焊盘连接。二极管台面结构还包括线条型电极线,线条型电极线宽度为0.001微米~20微米,所述线条型电极线厚度为0.001微米~10微米。线条型电极线包括第一导电类型电极线和第二导电类型电极线,第一导电类型电极与第一导电类型焊盘第一导电类型电极线连接,第二导电类型电极与第二导电类型焊盘由第二导电类型电极线连接。线条型电极线为二极管单元间电极连接线。其中第一导电类型电极为n型电极,第二导电类型电极为p型电极,第一导电类型焊盘为n型焊盘,第二导电类型为p型焊盘,第一导电类型电极线为n型电极线,第二导电类型电极线为p型电极线,第一导电类型层为n-GaN层,第二导电类型层为p-GaN层。The diode mesa structure includes a trench structure, the trench structure is located between the diode units, the diode mesa structure further includes a first conductivity type pad and a second conductivity type pad, and the first conductivity type electrode is connected to the first conductivity type pad, The second conductivity type electrode is connected to the second conductivity type pad. The diode mesa structure further includes linear electrode lines, the width of the linear electrode lines is 0.001 micrometers to 20 micrometers, and the thickness of the linear electrode lines is 0.001 micrometers to 10 micrometers. The line type electrode line includes a first conductivity type electrode line and a second conductivity type electrode line, the first conductivity type electrode is connected with the first conductivity type pad, the first conductivity type electrode line is connected, and the second conductivity type electrode is connected with the second conductivity type electrode. The discs are connected by electrode lines of the second conductivity type. The linear electrode lines are electrode connecting lines between diode cells. The first conductivity type electrode is an n-type electrode, the second conductivity type electrode is a p-type electrode, the first conductivity type pad is an n-type pad, the second conductivity type is a p-type pad, and the first conductivity type electrode line is The n-type electrode lines, the second conductive type electrode lines are p-type electrode lines, the first conductive type layer is an n-GaN layer, and the second conductive type layer is a p-GaN layer.
线条型电极线布局方式为:1个以上第一导电类型电极线包围台面的布局;或1个以上第二导电类型电极线包围台面布局;或第一导电类型电极线和第二导电类型电极线数量相等布局;或第一型电极线和第二型电极线平行,在垂直空间上绝缘重叠布局,不同导电类型电极线的重叠部分之间隔有绝缘介质材料;或第一导电类型电极线和第二导电类型电极线绝缘垂直交叉布局,不同导电类型电极线的交叉部分之间隔有绝缘介质材料;或第一导电类型电极线和第二导电类型电极线的部分或全部设计采用非直线布局;非直线布局包括折线布局,曲线布局。线条型电极线采用线条形金属和/或氧化铟锡材料;所述线条形金属材料为铝、银、钛、镍、金、铂、铬,或以上任意两种以上的金属的合金。The line-type electrode line layout is: a layout in which more than one first-conductivity-type electrode line surrounds the mesa; or one or more second-conductivity-type electrode lines surround the mesa; or a first-conductivity-type electrode line and a second-conductivity-type electrode line The layout is equal in number; or the electrode lines of the first type and the electrode lines of the second type are parallel, insulated and overlapped in the vertical space, and there are insulating dielectric materials between the overlapping parts of the electrode lines of different conductivity types; or the electrode lines of the first conductivity type and the Two conductive types of electrode lines are insulated and vertically crossed, and insulating dielectric materials are spaced between the intersecting parts of different conductive types of electrode lines; or part or all of the first conductive type electrode lines and the second conductive type electrode lines are designed in a non-linear layout; Linear layout includes polyline layout and curved layout. The wire-shaped electrode wire adopts wire-shaped metal and/or indium tin oxide material; the wire-shaped metal material is aluminum, silver, titanium, nickel, gold, platinum, chromium, or an alloy of any two or more of the above metals.
绝缘介质层部分覆盖第二导电类型层形成第一接触面。透明电极覆盖绝缘介质层形成第二接触面。第二导电类型电极部分覆盖透明电极形成第三接触面。第一接触面面积、第二接触面面积、第三接触面面积大小不等或部分相等,第一接触面面积大于第三接触面面积。第一接触面面积为0.001微米×0.001微米~200微米×200微米,第二接触面面积为0.001微米×0.001微米~200微米×200微米,所述第三接触面面积为0.001微米×0.001微米~200微米×200微米。第一接触面纵向长度、所述第二接触面纵向长度、所述第三接触面纵向长度不等或部分相等,第一接触面纵向长度大于第三接触面纵向长度。第一接触面纵向长度为0.001微米~200微米,所述第二接触面纵向长度为0.001微米~200微米,所述第三接触面纵向长度为0.001微米~200微米。The insulating medium layer partially covers the second conductive type layer to form the first contact surface. The transparent electrode covers the insulating medium layer to form a second contact surface. The second conductive type electrode partially covers the transparent electrode to form a third contact surface. The area of the first contact surface, the area of the second contact surface, and the area of the third contact surface are unequal or partially equal, and the area of the first contact surface is larger than the area of the third contact surface. The area of the first contact surface is 0.001 μm×0.001 μm~200 μm×200 μm, the area of the second contact surface is 0.001 μm×0.001 μm~200 μm×200 μm, and the area of the third contact surface is 0.001 μm×0.001 μm~ 200 microns x 200 microns. The longitudinal length of the first contact surface, the longitudinal length of the second contact surface, and the longitudinal length of the third contact surface are unequal or partially equal, and the longitudinal length of the first contact surface is greater than the longitudinal length of the third contact surface. The longitudinal length of the first contact surface is 0.001 to 200 microns, the longitudinal length of the second contact surface is 0.001 to 200 microns, and the longitudinal length of the third contact surface is 0.001 to 200 microns.
透明电极厚度为60纳米~120纳米,或1纳米~60纳米,绝缘介质层材料为二氧化硅、氧化铝、氮化硅。The thickness of the transparent electrode is 60 nanometers to 120 nanometers, or 1 nanometer to 60 nanometers, and the material of the insulating medium layer is silicon dioxide, aluminum oxide, and silicon nitride.
二极管单元的连接方式为:并联,串联或设定比例的串并联混合。二极管单元形状为:三角形、正方形、长方形、五边形、六边形、圆形、任意自定义形状。二极管单元数量为2个~1000亿个。二极管单元沿Y轴方向长度为0.001微米~200微米。The connection mode of the diode unit is: parallel, series or a combination of series and parallel in a set ratio. The shape of the diode unit is: triangle, square, rectangle, pentagon, hexagon, circle, any custom shape. The number of diode cells ranges from 2 to 100 billion. The length of the diode unit along the Y-axis direction is 0.001 micrometers to 200 micrometers.
二极管台面结构包括孔结构,二极管台面结构与衬底之间具有本征氮化镓层,衬底位于反射镜上,反射镜材料为银、铝或分布式布拉格反射镜。The diode mesa structure includes a hole structure, an intrinsic gallium nitride layer is arranged between the diode mesa structure and a substrate, the substrate is located on a reflector, and the reflector material is silver, aluminum or a distributed Bragg reflector.
实施例1Example 1
本实施例提供一种正装集成单元二极管芯片,如图3所示,包括:n型电极1,n型焊盘11,p型焊盘12,n型电极线13,p型电极线14,二极管台面结构15,二极管单元16和沟槽17。二极管台面结构包括6排共52个等大小均匀分布的正方形二极管单元16,二极管单元沿Y轴方向长度为40微米。二极管台面结构采用正方形排列,台面结构的尺寸小于电流注入的扩散长度。二极管单元形状为正长方形,按照均匀的对称排列分布。This embodiment provides a front-mounted integrated unit diode chip, as shown in FIG. 3 , including: an n-
在一些优选的实施例中,二极管单元沿Y轴方向长度为100纳米;在另一些优选实施例中,二极管单元沿Y轴方向长度为10纳米。In some preferred embodiments, the length of the diode unit along the Y-axis direction is 100 nanometers; in other preferred embodiments, the length of the diode unit along the Y-axis direction is 10 nanometers.
第一导电类型电极线13和第二导电类型电极线14为线条型电极线,线条型电极线宽度为0.001微米~20微米,厚度为0.001微米~10微米,电极线采用氧化铟锡材料,直线布局设计。第一导电类型焊盘11和第二导电类型焊盘12形状为一条为弧形的不规则多边形,焊盘个数均为1,位于台面结构边沿。沟槽17的形状为十字形,横截面形状为长方形,水平方向均匀分布。The first conductive
如图6所示,二极管台面结构内的n个二极管单元包括n型焊盘11,p型电极2,透明电极3,绝缘介质层4,n-GaN层7,p-GaN层5,量子阱有源区6。p型电极2和量子阱有源区6位于n-GaN层上7,p-GaN层5位于量子阱有源区6上,绝缘介质层4位于n-GaN层7上并部分覆盖p-GaN层5,透明电极3位于p-GaN层5上并部分覆盖绝缘介质层4,p型电极2位于绝缘介质层4上并部分覆盖所述透明电极3。As shown in FIG. 6 , the n diode units in the diode mesa structure include n-
如图7所示,绝缘介质层4部分覆盖p-GaN层5形成第一接触面,透明电极3覆盖绝缘介质层4形成第二接触面,p型电极2部分覆盖透明电极3形成第三接触面。其中部分覆盖p-GaN层的绝缘介质层为电流阻挡层,由于第一接触面面积大于第三接触面面积且第一接触面纵向长度大于第三接触面纵向长度,电流阻挡层在空间上完全阻挡了p型电极2、透明电极3和p-GaN层在垂直方向上的电流扩散。As shown in FIG. 7 , the insulating
在一些优选的实施例中,第一接触面面积为20微米×20微米,第一接触面纵向长度为20微米;第二接触面面积为15微米×15微米,第二接触面纵向长度为15微米;第三接触面面积为10微米×10微米,第三接触面纵向长度为10微米。In some preferred embodiments, the area of the first contact surface is 20 micrometers×20 micrometers, and the longitudinal length of the first contact surface is 20 micrometers; the area of the second contact surface is 15 micrometers×15 micrometers, and the longitudinal length of the second contact surface is 15 micrometers. micrometer; the area of the third contact surface is 10 micrometers×10 micrometers, and the longitudinal length of the third contact surface is 10 micrometers.
在另一些优选实施例中,第一接触面面积为10微米×10微米,第一接触面纵向长度为10微米;第二接触面面积为8微米×8微米,第二接触面纵向长度为8微米;第三接触面面积为5微米×5微米,第三接触面纵向长度为5微米。In some other preferred embodiments, the area of the first contact surface is 10 micrometers×10 micrometers, and the longitudinal length of the first contact surface is 10 micrometers; the area of the second contact surface is 8 micrometers×8 micrometers, and the longitudinal length of the second contact surface is 8 micrometers. micrometer; the area of the third contact surface is 5 micrometers×5 micrometers, and the longitudinal length of the third contact surface is 5 micrometers.
实施例2Example 2
本实施例提供一种正装集成单元二极管芯片,如图4所示,包括:第一导电类型电极1,第一导电类型焊盘11,第二导电类型焊盘12,第一导电类型电极线13,第二导电类型电极线14,二极管台面结构15,二极管单元16和沟槽17。二极管台面结构包括6排共102个等大小均匀分布的三角形二极管单元16,二极管单元沿Y轴方向长度为80微米。二极管台面结构采用三角形排列,台面结构的尺寸小于电流注入的扩散长度。二极管单元形状为三角形,按照均匀的对称排列分布。This embodiment provides a front-mounted integrated unit diode chip, as shown in FIG. 4 , including: a first
在一些优选的实施例中,二极管单元沿Y轴方向长度为100微米;在另一些优选实施例中,二极管单元沿Y轴方向长度为10微米;在另一些优选实施例中,二极管单元沿Y轴方向长度为1微米。In some preferred embodiments, the length of the diode unit along the Y-axis direction is 100 microns; in other preferred embodiments, the length of the diode unit along the Y-axis direction is 10 microns; in other preferred embodiments, the length of the diode unit along the Y-axis direction is 10 microns The axial length is 1 μm.
第一导电类型电极线13和第二导电类型电极线14为线条型电极线,线条型电极线宽度为0.001微米~20微米,厚度为0.001微米~10微米,电极线采用氧化铟锡材料,直线布局设计。第一导电类型焊盘11和第二导电类型焊盘12形状为一条为弧形的不规则多边形,焊盘个数均为1,位于台面结构边沿。沟槽17的形状为十字形,横截面形状为长方形,水平方向均匀分布。如图4所示,每个二极管单元增设孔结构,孔结构包括1个孔单元,孔单元为圆形孔单元直径为1nm~20微米。孔单元对称排列,非对称排列,周期性排列,非周期性排列或随机排列。孔单元形状还可以为三角形、正方形、长方形、五边形、六边形、圆形、以及其它任意定义形状,并不局限于图4中展示的形状。The first conductive
如图6所示,二极管台面结构内的n个二极管单元包括第一导电类型焊盘11,第二导电类型电极2,透明电极3,绝缘介质层4,第一导电类型层7,第二导电类型层5,量子阱有源区6。第二导电类型电极2和量子阱有源区6位于第一导电类型层上7,第二导电类型层5位于量子阱有源区6上,绝缘介质层4位于第一导电类型层7上并部分覆盖第二导电类型层5,透明电极3位于第二导电类型层5上并部分覆盖绝缘介质层4,第二导电类型电极2位于绝缘介质层4上并部分覆盖所述透明电极3。其中第一导电类型层为n-GaN层,第二导电类型层为p-GaN层,二极管单元的沟槽深度至n-GaN层。绝缘介质层4部分覆盖第二导电类型层5形成第一接触面,透明电极3覆盖绝缘介质层4形成第二接触面,第二导电类型电极2部分覆盖透明电极3形成第三接触面。第一接触面面积为0.006微米×0.006微米,第二接触面面积为0.004微米×0.004微米,第三接触面面积为0.002微米×0.002微米。第一接触面纵向长度为0.006微米,第二接触面纵向长度为0.004微米,第三接触面纵向长度为0.002微米。As shown in FIG. 6 , the n diode units in the diode mesa structure include a first
在一些优选的实施例中,第一接触面面积为0.1微米×0.1微米,第一接触面纵向长度为0.1微米;第二接触面面积为0.08微米×0.08微米,第二接触面纵向长度为0.08微米;第三接触面面积为0.05微米×0.05微米,第三接触面纵向长度为0.05微米。In some preferred embodiments, the area of the first contact surface is 0.1 μm×0.1 μm, and the longitudinal length of the first contact surface is 0.1 μm; the area of the second contact surface is 0.08 μm×0.08 μm, and the longitudinal length of the second contact surface is 0.08 μm μm; the area of the third contact surface is 0.05 μm×0.05 μm, and the longitudinal length of the third contact surface is 0.05 μm.
在另一些优选实施例中,第一接触面面积为1微米×1微米,第一接触面纵向长度为1微米;第二接触面面积为0.8微米×0.8微米,第二接触面纵向长度为0.8微米;第三接触面面积为0.5微米×0.5微米,第三接触面纵向长度为0.5微米。In other preferred embodiments, the area of the first contact surface is 1 μm×1 μm, and the longitudinal length of the first contact surface is 1 μm; the area of the second contact surface is 0.8 μm×0.8 μm, and the longitudinal length of the second contact surface is 0.8 μm micrometer; the area of the third contact surface is 0.5 micrometers×0.5 micrometers, and the longitudinal length of the third contact surface is 0.5 micrometers.
实施例3Example 3
本实施例提供一种正装集成单元二极管芯片,如图5所示,包括:第一导电类型电极1,第一导电类型焊盘11,第二导电类型焊盘12,第一导电类型电极线13,第二导电类型电极线14,二极管台面结构15,二极管单元16和沟槽17。二极管台面结构包括6排共52个等大小均匀分布的正方形二极管单元16,二极管单元沿Y轴方向长度为40微米。二极管台面结构采用正方形排列,台面结构的尺寸小于电流注入的扩散长度。二极管单元形状为正长方形,按照均匀的对称排列分布。每个二极管单元增设孔结构,孔结构包括二个孔单元,孔单元为圆形孔单元直径为1nm~20微米。孔单元对称排列,非对称排列,周期性排列,非周期性排列或随机排列。孔单元形状还可以为三角形、正方形、长方形、五边形、六边形、圆形、以及其它任意定义形状,并不局限于图5中展示的形状。This embodiment provides a front-mounted integrated unit diode chip, as shown in FIG. 5 , including: a first
第一导电类型电极线13和第二导电类型电极线14为线条型电极线,线条型电极线宽度为0.001微米~20微米,厚度为0.001微米~10微米,电极线采用氧化铟锡材料,直线布局设计。第一导电类型焊盘11和第二导电类型焊盘12形状为一条为弧形的不规则多边形,焊盘个数均为1,位于台面结构边沿。沟槽17的形状为十字形,横截面形状为长方形,水平方向均匀分布。The first conductive
如图6所示,二极管台面结构内的n个二极管单元包括第一导电类型焊盘11,第二导电类型电极2,透明电极3,绝缘介质层4,第一导电类型层7,第二导电类型层5,量子阱有源区6。第二导电类型电极2和量子阱有源区6位于第一导电类型层上7,第二导电类型层5位于量子阱有源区6上,绝缘介质层4位于第一导电类型层7上并部分覆盖第二导电类型层5,透明电极3位于第二导电类型层5上并部分覆盖绝缘介质层4,第二导电类型电极2位于绝缘介质层4上并部分覆盖所述透明电极3。其中第一导电类型层为n-GaN层,第二导电类型层为p-GaN层,二极管单元的沟槽深度至n-GaN层。As shown in FIG. 6 , the n diode units in the diode mesa structure include a first
绝缘介质层4部分覆盖第二导电类型层5形成第一接触面,透明电极3覆盖绝缘介质层4形成第二接触面,第二导电类型电极2部分覆盖透明电极3形成第三接触面。第一接触面面积为0.03微米×0.03微米,第二接触面面积为0.02微米×0.02微米,第三接触面面积为0.01微米×0.01微米。第一接触面纵向长度为0.03微米,第二接触面纵向长度为0.02微米,第三接触面纵向长度为0.01微米。The insulating
在一些优选的实施例中,第一接触面面积为0.06微米×0.06微米,第一接触面纵向长度为0.06微米,第二接触面面积为0.04微米×0.04微米;第二接触面纵向长度为0.04微米;第三接触面面积为0.02微米×0.02微米,第三接触面纵向长度为0.02微米。In some preferred embodiments, the area of the first contact surface is 0.06 μm×0.06 μm, the longitudinal length of the first contact surface is 0.06 μm, the area of the second contact surface is 0.04 μm×0.04 μm; the longitudinal length of the second contact surface is 0.04 μm microns; the area of the third contact surface is 0.02 micrometers×0.02 micrometers, and the longitudinal length of the third contact surface is 0.02 micrometers.
在另一些优选的实施例中,第一接触面面积为0.8微米×0.8微米,第一接触面纵向长度为0.8微米,第二接触面面积为0.5微米×0.5微米;第二接触面纵向长度为0.5微米;第三接触面面积为0.3微米×0.3微米,第三接触面纵向长度为0.3微米。In other preferred embodiments, the area of the first contact surface is 0.8 μm×0.8 μm, the longitudinal length of the first contact surface is 0.8 μm, the area of the second contact surface is 0.5 μm×0.5 μm; the longitudinal length of the second contact surface is 0.5 μm; the area of the third contact surface is 0.3 μm×0.3 μm, and the longitudinal length of the third contact surface is 0.3 μm.
0.5W常规的正装集成单元发光二极管产品,驱动电流通常为150mA,驱动电流密度在70A/cm2左右。本发明中,由于每个单元尺寸小于电流的扩散长度,且通过超均匀的电流分布设计,可以使得0.5W的正装集成单元发光二极管的驱动电流将在150A/cm2以上,每个发光二极管单元可以承受的电流密度是常规正装发光二极管产品的2倍以上。比如典型的0.5W正装LED芯片,当驱动电流超过150mA时,由于电流扩散的不均匀,正装LED芯片的电压VF急剧上升,热效应非常显著,因此芯片无法承受大电流的驱动;而对应的集成单元发光二极管芯片驱动电流可以增加到600mA以上,同时对比电压VF增加较小。因此集成单元发光二极管可以承受的电流密度是正装LED的好几倍以上,带来了巨大的流明密度和流明成本的优势。For 0.5W conventional front-mounted integrated unit light-emitting diode products, the driving current is usually 150mA, and the driving current density is about 70A/cm 2 . In the present invention, since the size of each unit is smaller than the current diffusion length, and through the ultra-uniform current distribution design, the driving current of the 0.5W front-mounted integrated unit light-emitting diode can be more than 150A/cm 2 . The current density that can be tolerated is more than 2 times that of conventional positive-mounted LED products. For example, for a typical 0.5W front-mounted LED chip, when the driving current exceeds 150mA, due to the uneven current diffusion, the voltage VF of the front-mounted LED chip rises sharply, and the thermal effect is very significant, so the chip cannot withstand high current driving; and the corresponding integrated unit The driving current of the light-emitting diode chip can be increased to more than 600mA, while the increase of the contrast voltage VF is small. Therefore, the current density that the integrated unit light-emitting diode can withstand is several times that of the front-mounted LED, which brings huge advantages of lumen density and lumen cost.
此处以0.5W LED芯片举例,说明了集成单元发光二极管芯片的巨大流明密度和流明成本的优势。另外需要强调的一点是正装LED芯片由于电流扩散和散热的困难,只能做0.5W输出的产品。但同等尺寸下的集成单元发光二极管产品,由于可以驱动到600mA以上的电流,实际上已经达到了2W的驱动功率,因此芯片的流明输出可以是正装产品的4倍以上,实现了正装中小功率LED产品所不具备的超高流明密度输出。Here, the 0.5W LED chip is used as an example to illustrate the advantages of the huge lumen density and lumen cost of the integrated unit light-emitting diode chip. Another point that needs to be emphasized is that due to the difficulty of current diffusion and heat dissipation, the LED chip can only be used as a product with an output of 0.5W. However, the integrated unit light-emitting diode product of the same size can actually drive a current of more than 600mA, and has actually reached a driving power of 2W, so the lumen output of the chip can be more than 4 times that of the full-scale product, realizing the full-scale medium and small power LED. Ultra high lumen density output that the product does not have.
本发明的实施例提供的正装集成单元二极管芯片,具有以下有益效果:The front-mounted integrated unit diode chip provided by the embodiment of the present invention has the following beneficial effects:
(1)本发明的二极管单元的长度设计控制在电流扩散长度以内,优化的具备一定自由度的几何设计可以更进一步的提升出光效率,可同时解决困扰LED单元二极管芯片设计的n型电极和p型电极电流扩散不均匀的问题,从而得到更高的光电转换效率/流明效率。(1) The length design of the diode unit of the present invention is controlled within the current diffusion length, and the optimized geometric design with a certain degree of freedom can further improve the light extraction efficiency, and can simultaneously solve the problems of n-type electrodes and p-type electrodes that trouble the design of LED unit diode chips The problem of non-uniform current diffusion of type electrodes can be solved, so that higher photoelectric conversion efficiency/lumen efficiency can be obtained.
(2)本发明的二极管单元的长度设计可以远远小于电流扩散长度,因此可以极大的减少透明电极的厚度,从而极大地减少透明电极对光的吸收,从而增加芯片的出光效率。(2) The length of the diode unit of the present invention can be designed to be much smaller than the current diffusion length, so the thickness of the transparent electrode can be greatly reduced, thereby greatly reducing the absorption of light by the transparent electrode, thereby increasing the light extraction efficiency of the chip.
(3)电流阻挡层结构的设计,可以减少电流的聚集和吸光效应,提升芯片的出光效率。(3) The design of the current blocking layer structure can reduce the current accumulation and light absorption effects, and improve the light extraction efficiency of the chip.
(4)本发明的每个二极管单元的微纳结构增加侧壁的出光面积,从而提升光萃取效率。(4) The micro-nano structure of each diode unit of the present invention increases the light emitting area of the sidewall, thereby improving the light extraction efficiency.
(5)本发明的集成单元二极管芯片尺寸的优化,带来更大的侧壁散热面积,具备更佳的散热性能,允许超大电流密度的注入而不影响其稳定性,极大的提高单位面积单元二极管芯片的流明输出,降低流明成本。(5) The optimization of the chip size of the integrated unit diode of the present invention brings a larger heat dissipation area of the side wall, has better heat dissipation performance, allows the injection of a large current density without affecting its stability, and greatly improves the unit area. The lumen output of the unit diode chip reduces the lumen cost.
(6)本发明的集成单元二极管芯片的设计,可以实现超均匀的电流注入,因此而获得更高的效率、更好的波长均匀性、发光谱更窄的半高宽、更好的散热均匀性和更好的器件稳定性,电流注入均匀性远超过正装50%左右的电流注入均匀性。(6) The design of the integrated unit diode chip of the present invention can realize ultra-uniform current injection, thereby obtaining higher efficiency, better wavelength uniformity, narrower half-width of the emission spectrum, and better heat dissipation uniformity. and better device stability, the current injection uniformity far exceeds the current injection uniformity of about 50% of the normal device.
(7)本发明的集成单元二极管芯片适于UVC、UVA、UVB、紫光、蓝光、绿光、黄光、红光、红外光等各色系的LED产品,可用于LED照明,背光,显示,植物照明,医疗和其他半导体发光器件应用领域。(7) The integrated unit diode chip of the present invention is suitable for LED products of various color systems such as UVC, UVA, UVB, purple light, blue light, green light, yellow light, red light, infrared light, etc., and can be used for LED lighting, backlight, display, plant Lighting, medical and other semiconductor light-emitting device applications.
以上所述的具体实施例,对本发明的目的,技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned specific embodiments are only specific embodiments of the present invention, and are not intended to limit the protection of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (13)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911252644.9A CN110931610B (en) | 2019-05-08 | 2019-05-08 | Front-mounted integrated unit diode chip |
CN201910379235.9A CN111916539B (en) | 2019-05-08 | 2019-05-08 | Front-mounted integrated unit diode chip |
PCT/CN2020/089212 WO2020224643A1 (en) | 2019-05-08 | 2020-05-08 | Formal integrated unit diode chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910379235.9A CN111916539B (en) | 2019-05-08 | 2019-05-08 | Front-mounted integrated unit diode chip |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911252644.9A Division CN110931610B (en) | 2019-05-08 | 2019-05-08 | Front-mounted integrated unit diode chip |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111916539A CN111916539A (en) | 2020-11-10 |
CN111916539B true CN111916539B (en) | 2022-04-19 |
Family
ID=69858535
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911252644.9A Active CN110931610B (en) | 2019-05-08 | 2019-05-08 | Front-mounted integrated unit diode chip |
CN201910379235.9A Active CN111916539B (en) | 2019-05-08 | 2019-05-08 | Front-mounted integrated unit diode chip |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911252644.9A Active CN110931610B (en) | 2019-05-08 | 2019-05-08 | Front-mounted integrated unit diode chip |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN110931610B (en) |
WO (1) | WO2020224643A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112885936B (en) * | 2020-12-01 | 2022-04-22 | 北京工业大学 | Micro-LED array with transparent electrode structure and preparation method |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101488547A (en) * | 2008-12-30 | 2009-07-22 | 上海蓝光科技有限公司 | LED chip construction and manufacturing method thereof |
CN102169941A (en) * | 2010-02-27 | 2011-08-31 | 三星Led株式会社 | Semiconductor light emitting device having multi-cell array, light emitting module, and illumination apparatus |
CN102544294A (en) * | 2012-02-28 | 2012-07-04 | 江苏新广联科技股份有限公司 | LED (Light Emitting Diode) chip capable of improving current transmission |
CN103985796A (en) * | 2013-02-05 | 2014-08-13 | 国际商业机器公司 | electronic device |
CN204167323U (en) * | 2013-08-16 | 2015-02-18 | 首尔伟傲世有限公司 | Light-emitting diode |
US9324917B2 (en) * | 2012-03-07 | 2016-04-26 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device |
CN205194731U (en) * | 2015-11-18 | 2016-04-27 | 上海博恩世通光电股份有限公司 | Upside -down mounting LED chip |
CN106206899A (en) * | 2014-10-08 | 2016-12-07 | 美科米尚技术有限公司 | Micro-led, its operational approach and manufacture method |
CN106711301A (en) * | 2015-11-12 | 2017-05-24 | 美科米尚技术有限公司 | Light-emitting diode and manufacture method thereof |
CN107689407A (en) * | 2017-08-21 | 2018-02-13 | 厦门乾照光电股份有限公司 | A kind of LED chip and preparation method thereof |
CN107924968A (en) * | 2015-08-18 | 2018-04-17 | Lg 伊诺特有限公司 | The light-emitting element package of light-emitting component including light-emitting component and the light-emitting device including light-emitting element package |
CN108475711A (en) * | 2016-01-13 | 2018-08-31 | 首尔伟傲世有限公司 | Ultraviolet ray emitting element |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3772651B2 (en) * | 1996-03-25 | 2006-05-10 | 日亜化学工業株式会社 | Nitride semiconductor laser device |
KR100631898B1 (en) * | 2005-01-19 | 2006-10-11 | 삼성전기주식회사 | Gallium nitride based light emitting device having ESD protection capability and method for manufacturing same |
JP5130730B2 (en) * | 2007-02-01 | 2013-01-30 | 日亜化学工業株式会社 | Semiconductor light emitting device |
CN101661988A (en) * | 2009-09-17 | 2010-03-03 | 上海蓝光科技有限公司 | Light emitting diode chip and manufacturing method thereof |
KR101114782B1 (en) * | 2009-12-10 | 2012-02-27 | 엘지이노텍 주식회사 | Light emitting device, light emitting device package and method for fabricating the same |
CN103413875B (en) * | 2013-09-09 | 2016-05-11 | 聚灿光电科技股份有限公司 | A kind of preparation method of PN step of PN step, LED chip and LED chip of LED chip |
CN103855149A (en) * | 2014-02-20 | 2014-06-11 | 中国科学院半导体研究所 | Inverted high-voltage light-emitting diode and manufacturing method thereof |
CN204516759U (en) * | 2015-01-30 | 2015-07-29 | 大连德豪光电科技有限公司 | Flip LED chips |
CN208400869U (en) * | 2015-05-13 | 2019-01-18 | 首尔伟傲世有限公司 | Light-emitting component |
CN205488192U (en) * | 2016-04-07 | 2016-08-17 | 深圳市天瑞和科技发展有限公司 | Nitride -based flip -chip LED chip |
CN107516701B (en) * | 2017-07-14 | 2019-06-11 | 华灿光电(苏州)有限公司 | A high-voltage light-emitting diode chip and its manufacturing method |
CN108305924A (en) * | 2017-12-28 | 2018-07-20 | 映瑞光电科技(上海)有限公司 | A kind of light emitting diode of vertical structure and preparation method thereof |
-
2019
- 2019-05-08 CN CN201911252644.9A patent/CN110931610B/en active Active
- 2019-05-08 CN CN201910379235.9A patent/CN111916539B/en active Active
-
2020
- 2020-05-08 WO PCT/CN2020/089212 patent/WO2020224643A1/en active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101488547A (en) * | 2008-12-30 | 2009-07-22 | 上海蓝光科技有限公司 | LED chip construction and manufacturing method thereof |
CN102169941A (en) * | 2010-02-27 | 2011-08-31 | 三星Led株式会社 | Semiconductor light emitting device having multi-cell array, light emitting module, and illumination apparatus |
CN102544294A (en) * | 2012-02-28 | 2012-07-04 | 江苏新广联科技股份有限公司 | LED (Light Emitting Diode) chip capable of improving current transmission |
US9324917B2 (en) * | 2012-03-07 | 2016-04-26 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device |
CN103985796A (en) * | 2013-02-05 | 2014-08-13 | 国际商业机器公司 | electronic device |
CN204167323U (en) * | 2013-08-16 | 2015-02-18 | 首尔伟傲世有限公司 | Light-emitting diode |
CN106206899A (en) * | 2014-10-08 | 2016-12-07 | 美科米尚技术有限公司 | Micro-led, its operational approach and manufacture method |
CN107924968A (en) * | 2015-08-18 | 2018-04-17 | Lg 伊诺特有限公司 | The light-emitting element package of light-emitting component including light-emitting component and the light-emitting device including light-emitting element package |
CN106711301A (en) * | 2015-11-12 | 2017-05-24 | 美科米尚技术有限公司 | Light-emitting diode and manufacture method thereof |
CN205194731U (en) * | 2015-11-18 | 2016-04-27 | 上海博恩世通光电股份有限公司 | Upside -down mounting LED chip |
CN108475711A (en) * | 2016-01-13 | 2018-08-31 | 首尔伟傲世有限公司 | Ultraviolet ray emitting element |
EP3404726A1 (en) * | 2016-01-13 | 2018-11-21 | Seoul Viosys Co. Ltd. | Ultraviolet light-emitting device |
CN107689407A (en) * | 2017-08-21 | 2018-02-13 | 厦门乾照光电股份有限公司 | A kind of LED chip and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2020224643A1 (en) | 2020-11-12 |
CN110931610B (en) | 2022-09-20 |
CN111916539A (en) | 2020-11-10 |
CN110931610A (en) | 2020-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110060996B (en) | Vertical integrated unit diode chip | |
US20100052000A1 (en) | Optoelectronic semiconductor device | |
US10566498B2 (en) | Semiconductor light-emitting device | |
TW200402898A (en) | Structure of P-electrode at the light-emerging side of light-emitting diode | |
CN111048639B (en) | A front mounted integrated unit light emitting diode | |
US9490394B2 (en) | Semiconductor light-emitting device | |
CN111933768B (en) | Vertical integrated unit diode chip | |
CN111916539B (en) | Front-mounted integrated unit diode chip | |
CN111900183B (en) | An integrated unit diode chip that emits uniform light | |
TWI517444B (en) | Optoelectronic semiconductor device | |
CN209658223U (en) | A kind of formal dress integrated unit light emitting diode | |
CN113036009B (en) | A thin film vertically integrated unit diode chip | |
CN113036012B (en) | A high light extraction rate integrated unit diode chip | |
CN111048494B (en) | Front-mounted integrated unit diode chip | |
CN111916432B (en) | A uniformly luminous front-mounted integrated unit diode chip | |
CN111900182A (en) | Novel vertical structure LED chip that electrode line was arranged | |
CN113036014B (en) | A vertically integrated unit light emitting diode | |
CN111900152B (en) | An integrated unit diode chip | |
CN111864021A (en) | A vertically integrated unit diode chip | |
CN111863802A (en) | A vertically integrated unit diode chip | |
CN111863853A (en) | A vertically integrated unit diode chip | |
CN117810331A (en) | Light emitting diode chip, light emitting diode and light emitting device | |
KR20120002820A (en) | Light Emitting Device with Excellent Light Transmittance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230407 Address after: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province Patentee after: Southern University of Science and Technology Address before: 518000 building 11, Jinxiu Dadi, 121 hudipai, Guanhu street, Longhua District, Shenzhen City, Guangdong Province Patentee before: SHENZHEN THIRD GENERATION SEMICONDUCTOR Research Institute |
|
TR01 | Transfer of patent right |
Effective date of registration: 20230713 Address after: Building 1, Building 409, No. 1310 Kukeng Sightseeing Road, Kukeng Community, Guanlan Street, Longhua District, Shenzhen City, Guangdong Province, 518109 Patentee after: Weilang Technology (Shenzhen) Co.,Ltd. Address before: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province Patentee before: Southern University of Science and Technology |
|
TR01 | Transfer of patent right | ||
CI03 | Correction of invention patent |
Correction item: Patentee|Address Correct: Southern University of Science and Technology|518000 No.1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province False: Weilang Technology (Shenzhen) Co.,Ltd.|Building 1, Building 409, No. 1310 Kukeng Sightseeing Road, Kukeng Community, Guanlan Street, Longhua District, Shenzhen City, Guangdong Province, 518109 Number: 30-01 Volume: 39 |
|
CI03 | Correction of invention patent | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230904 Address after: Building 1, Building 409, No. 1310 Kukeng Sightseeing Road, Kukeng Community, Guanlan Street, Longhua District, Shenzhen City, Guangdong Province, 518109 Patentee after: Naweilang Technology (Shenzhen) Co.,Ltd. Address before: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province Patentee before: Southern University of Science and Technology |
|
TR01 | Transfer of patent right |