CN111916251A - Low sheet resistance transparent conductive film - Google Patents
Low sheet resistance transparent conductive film Download PDFInfo
- Publication number
- CN111916251A CN111916251A CN202010880253.8A CN202010880253A CN111916251A CN 111916251 A CN111916251 A CN 111916251A CN 202010880253 A CN202010880253 A CN 202010880253A CN 111916251 A CN111916251 A CN 111916251A
- Authority
- CN
- China
- Prior art keywords
- layer
- conductive film
- transparent conductive
- sheet resistance
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
Landscapes
- Laminated Bodies (AREA)
Abstract
本发明公开了一种低方阻透明导电膜,包括由下往上层叠设置的透明基材、折射率匹配层、过渡层、金属合金层、介质阻隔层和透明导电层,在透明基材与金属合金层之间增加了一个由折射率匹配层与过渡层二者共同组合成的基材侧的水氧阻隔层,其中过渡层的目的是给上层的金属合金层提供一个致密连续的导电层衬底,减少薄层金属的岛状不连续现象,其与高折射率材料制成的折射率匹配层共同组合成基材侧的水氧阻隔层后,有效防止金属合金层在使用过程中劣化,使整体导电膜可靠性耐候性大幅提高。同时,本发明在金属合金层的空气侧,增加了一层分子结构致密的介质阻隔层,有效的隔绝了水氧侵蚀,使耐环测性大大提高。
The invention discloses a low square resistance transparent conductive film, which comprises a transparent substrate, a refractive index matching layer, a transition layer, a metal alloy layer, a dielectric barrier layer and a transparent conductive layer stacked from bottom to top. A water and oxygen barrier layer on the substrate side is added between the metal alloy layers, which is composed of a refractive index matching layer and a transition layer. The purpose of the transition layer is to provide a dense and continuous conductive layer for the upper metal alloy layer. The substrate can reduce the island-like discontinuity of the thin-layer metal. After it is combined with the refractive index matching layer made of high refractive index material to form a water-oxygen barrier layer on the substrate side, it can effectively prevent the metal alloy layer from deteriorating during use. , which greatly improves the reliability and weather resistance of the overall conductive film. At the same time, the invention adds a dielectric barrier layer with a dense molecular structure on the air side of the metal alloy layer, which effectively isolates water and oxygen corrosion, and greatly improves the ring resistance.
Description
技术领域technical field
本发明涉及导电膜领域,尤其涉及一种低方阻透明导电膜。The invention relates to the field of conductive films, in particular to a low square resistance transparent conductive film.
背景技术Background technique
近年来,随着半导体制造技术及光伏技术突飞猛进的发展,诸如平面显示器、触控屏、窗膜、聚合物分散液晶、太阳能电池等技术迅速发展和完善,这些新技术都需要用到透明导电膜作为电极、受光面或者电磁脉冲屏蔽膜。以触控屏为例,触控屏中常用的几种类型如电阻式触控屏、表面电容式触控屏、感应电容式触控屏都需要利用透明导电膜作为电极材料。In recent years, with the rapid development of semiconductor manufacturing technology and photovoltaic technology, technologies such as flat panel displays, touch screens, window films, polymer dispersed liquid crystals, and solar cells have developed and improved rapidly. These new technologies require the use of transparent conductive films. As electrodes, light-receiving surfaces or electromagnetic pulse shielding films. Taking a touch screen as an example, several types of touch screens commonly used, such as a resistive touch screen, a surface capacitive touch screen, and an inductive capacitive touch screen, all need to use a transparent conductive film as an electrode material.
透明导电膜公认的定义为在可见光范围为透明的,并且具有较低的电阻率。目前常用的透明导电膜有ITO(氧化锡与氧化铟的混合物)膜、AZO(掺铝氧化锌)膜以及氧化铝等。Transparent conductive films are generally defined as being transparent in the visible light range and having low resistivity. Currently commonly used transparent conductive films include ITO (a mixture of tin oxide and indium oxide) film, AZO (aluminum-doped zinc oxide) film, and aluminum oxide.
经文献检索发现,1998年M.Bender和W.Seelig等人在《Thin solidFilms》第326(1998)67-71上撰文“Dependence of film composition and thickness on optical andelectrical properties of ITO-metal-ITO multilayers(ITO-金属-ITO多层膜光电性能与其膜厚及组成的关系)”,该问题出ITO/AG/ITO(I/M/I)多层膜取代单一的ITO膜,企图获得更好的导电性能和更低的成本。但这种三明治结构的光电性能没能达到人们的期望值。之后上海交通大学的一个课题组提出了电介质层/金属层/电介质层的三明治结构,具有良好的导电性和较低的电阻。但这种结构的膜仍具有较厚的厚度,在柔性基材PET上易脱落,附着性差,且暴露在空气中,组织不稳定,抗氧化能力差且耐候性测试500h,数据较差。After literature search, it was found that in 1998, M. Bender and W. Seelig et al. wrote "Dependence of film composition and thickness on optical and electrical properties of ITO-metal-ITO multilayers" in "Thin solidFilms" 326 (1998) 67-71. The relationship between the photoelectric properties of ITO-metal-ITO multilayer film and its film thickness and composition)”, the problem is that ITO/AG/ITO (I/M/I) multilayer film replaces a single ITO film in an attempt to obtain better electrical conductivity performance and lower cost. However, the optoelectronic properties of this sandwich structure failed to meet people's expectations. After that, a research group from Shanghai Jiao Tong University proposed a sandwich structure of dielectric layer/metal layer/dielectric layer, which has good conductivity and low resistance. However, the film with this structure still has a thick thickness, is easy to fall off on the flexible substrate PET, has poor adhesion, and is exposed to the air, the structure is unstable, the anti-oxidation ability is poor, and the weather resistance test 500h, the data is poor.
例如以目前行业内成熟的ITO制作的方阻为15欧姆左右的上述导电膜为例,ITO厚度大约130nm以上,厚度导致弯折性变差,导致柔性基材基本不能使用的状况。银叠层导电膜成功的解决了这一问题,并在成本上会有下降。缺点是银叠层导电膜耐候性以及透过率会比ITO稍差。For example, taking the above-mentioned conductive film with a square resistance of about 15 ohms made of mature ITO in the industry as an example, the thickness of ITO is about 130 nm or more, and the thickness leads to poor bendability, which makes the flexible substrate basically unusable. The silver laminated conductive film successfully solves this problem, and the cost will be reduced. The disadvantage is that the weather resistance and transmittance of the silver laminated conductive film are slightly worse than ITO.
发明内容SUMMARY OF THE INVENTION
本发明目的是:提供一种耐候性以及透过率更好的低方阻透明导电膜,以弥补现有技术在这一块的不足。The purpose of the present invention is to provide a low square resistance transparent conductive film with better weather resistance and transmittance, so as to make up for the deficiencies of the prior art in this area.
本发明的技术方案是这样实现的:The technical scheme of the present invention is realized as follows:
本发明提供的一种低方阻透明导电膜,一种低方阻透明导电膜,包括由下往上层叠设置的透明基材、折射率匹配层、过渡层、金属合金层、介质阻隔层和透明导电层,The present invention provides a low square resistance transparent conductive film, a low square resistance transparent conductive film, comprising a transparent substrate, a refractive index matching layer, a transition layer, a metal alloy layer, a dielectric barrier layer and a layer stacked from bottom to top. transparent conductive layer,
所述折射率匹配层为硫化锌层、五氧化二铌层、二氧化钛层、氧化锌层或者氧化锌混合层,厚度为15~50nm,所述过渡层为氧化镁、氧化镓和氧化铝中的至少一种与氧化锌混合的氧化锌混合层,厚度为3~15nm,The refractive index matching layer is a zinc sulfide layer, a niobium pentoxide layer, a titanium dioxide layer, a zinc oxide layer or a zinc oxide mixed layer, with a thickness of 15-50 nm, and the transition layer is one of magnesium oxide, gallium oxide and aluminum oxide. at least one zinc oxide mixed layer mixed with zinc oxide, the thickness is 3-15nm,
所述介质阻隔层为氧化锌层,或者氮化镍铬层,或者氮氧化镍铬层,厚度为1-10nm。The dielectric barrier layer is a zinc oxide layer, or a nickel-chromium nitride layer, or a nickel-chromium oxynitride layer, with a thickness of 1-10 nm.
在某些实施方式中,所述折射率匹配层为五氧化二铌层,厚度为35nm。In certain embodiments, the index matching layer is a niobium pentoxide layer with a thickness of 35 nm.
在某些实施方式中,所述过渡层为氧化锌镁层、氧化锌镓层或氧化锌铝层。In certain embodiments, the transition layer is a zinc magnesium oxide layer, a zinc gallium oxide layer, or a zinc aluminum oxide layer.
在某些实施方式中,所述过渡层为氧化锌镁层,厚度为6nm。In certain embodiments, the transition layer is a zinc-magnesium oxide layer with a thickness of 6 nm.
在某些实施方式中,所述介质阻隔层为氮氧化镍铬层,厚度为3nm。In some embodiments, the dielectric barrier layer is a nickel-chromium oxynitride layer with a thickness of 3 nm.
在某些实施方式中,所述透明基材层的材料为PI、PET、PC、COP和玻璃中的一种,厚度为0.005~1μm,并且当材料为PET或PC时,上下表面做加硬处理。In some embodiments, the material of the transparent substrate layer is one of PI, PET, PC, COP and glass, and the thickness is 0.005-1 μm, and when the material is PET or PC, the upper and lower surfaces are hardened deal with.
在某些实施方式中,所述透明基材层的材料为PET,厚度为0.125μm。In certain embodiments, the material of the transparent substrate layer is PET, and the thickness is 0.125 μm.
在某些实施方式中,所述金属合金层为银合金层或者铜合金层,银合金中的其余合金成分为钯、金、铜、铂、铑中的至少一种,银的比例大于95%;铜合金中的其余合金成分为钯、金、银、铂、铑中的至少一种,铜的比例大于95%;所述金属合金层的厚度为4~20nm,方阻为5~30Ω。In certain embodiments, the metal alloy layer is a silver alloy layer or a copper alloy layer, the remaining alloy components in the silver alloy are at least one of palladium, gold, copper, platinum, and rhodium, and the proportion of silver is greater than 95% The remaining alloy components in the copper alloy are at least one of palladium, gold, silver, platinum and rhodium, and the proportion of copper is greater than 95%; the thickness of the metal alloy layer is 4-20nm, and the square resistance is 5-30Ω.
在某些实施方式中,所述银合金层中的其余合金为钯和铜,所述银合金层的厚度为6.5nm,方阻为16Ω。In certain embodiments, the remaining alloys in the silver alloy layer are palladium and copper, the thickness of the silver alloy layer is 6.5 nm, and the square resistance is 16Ω.
在某些实施方式中,所述透明导电层为氧化锡层,或者氧化铟锡层,铟锡比90:10,厚度为20~80nm。In some embodiments, the transparent conductive layer is a tin oxide layer, or an indium tin oxide layer, the indium tin ratio is 90:10, and the thickness is 20-80 nm.
在某些实施方式中,所述透明导电层为氧化铟锡层,铟锡比90:10,厚度为40nm。In some embodiments, the transparent conductive layer is an indium tin oxide layer with an indium tin ratio of 90:10 and a thickness of 40 nm.
在某些实施方式中,所述过渡层中氧化锌在混合材料中的比例大于80%。In certain embodiments, the proportion of zinc oxide in the hybrid material in the transition layer is greater than 80%.
本发明的优点是:The advantages of the present invention are:
(1)本发明提供的低方阻透明导电膜在透明基材与金属合金层之间增加了一个由折射率匹配层与过渡层二者共同组合成的基材侧的水氧阻隔层,其中过渡层的目的是给上层的金属合金层提供一个致密连续的导电层衬底,减少薄层金属的岛状不连续现象,其与高折射率材料制成的折射率匹配层共同组合成基材侧的水氧阻隔层后,有效防止金属合金层在使用过程中劣化,使整体导电膜可靠性耐候性大幅提高。(1) The low square resistance transparent conductive film provided by the present invention adds a water and oxygen barrier layer on the substrate side which is composed of the refractive index matching layer and the transition layer between the transparent substrate and the metal alloy layer, wherein The purpose of the transition layer is to provide a dense and continuous conductive layer substrate for the upper metal alloy layer to reduce the island-like discontinuity of the thin metal layer, which is combined with the refractive index matching layer made of high refractive index material to form a substrate After the water and oxygen barrier layer on the side, the metal alloy layer is effectively prevented from deteriorating during use, and the reliability and weather resistance of the overall conductive film are greatly improved.
(2)同时,本发明在金属合金层的空气侧,增加了一层分子结构致密的介质阻隔层,有效的隔绝了加工与运输过程中水氧通过空气侧的第一透明导电层对金属合金层的水氧侵蚀,使耐环测性大大提高。(2) At the same time, the present invention adds a dielectric barrier layer with a dense molecular structure on the air side of the metal alloy layer, which effectively isolates water and oxygen from the metal alloy through the first transparent conductive layer on the air side during processing and transportation. The water and oxygen erosion of the layer greatly improves the ring resistance.
附图说明Description of drawings
图1为本发明的结构示意图。FIG. 1 is a schematic structural diagram of the present invention.
实施例:本案提供的这种低方阻透明导电膜,其层叠结构如图1所示,具有由下往上层叠设置的透明基材10、折射率匹配层11、过渡层12、金属合金层13、介质阻隔层14和透明导电层15,通过对各层材料、或组成含量、或厚度搭配不同选择,可以形成多种不同的实施例。下面我们就例举六个实施例对我们的产品及其性能加以说明:Example: The low square resistance transparent conductive film provided in this case has a laminated structure as shown in Figure 1, which has a
实施例1Example 1
低方阻透明导电膜的构成为由下往上层叠设置的透明基材10、折射率匹配层11、过渡层12、金属合金层13、介质阻隔层14和透明导电层15,各层材料分别为PET、五氧化二铌、氧化锌镁、银合金(其中银合金中的其余合金为钯和铜,银的比例大于95%,方阻为16Ω)、氮氧化镍铬(镍铬采用重量比50:50到95:5均可,优选采用80:20)、氧化铟锡(铟锡比90:10),上述各层厚度分别为0.125μm、35nm、6nm、6.5nm、3nm、40nm。此时透明导电膜具有较佳的性能(包括耐候性、透明度、附着性等)。The low square resistance transparent conductive film is composed of a
制作工艺可采用常规的卷对卷式磁控溅射沉积法,采用卷对卷式磁控溅射沉积法具有溅射多种材料,真空度高,附着力强,膜材致密,可在柔性基材上镀膜。The production process can adopt the conventional roll-to-roll magnetron sputtering deposition method, and the roll-to-roll magnetron sputtering deposition method can sputter a variety of materials, with high vacuum degree, strong adhesion, dense film material, and can be used in flexible Coating on the substrate.
如在本实施例中,在柔性PET透明基材上依次通过购买而来的五氧化二铌靶材、氧化锌镁靶材、银钯铜合金靶材、镍铬靶材、氧化铟锡靶材,通过磁控溅射工艺沉积构成。其中,在溅射镍铬靶材的过程中通入氮气与氧气从而形成氮氧化镍铬层。For example, in this embodiment, the niobium pentoxide target, the zinc-magnesium oxide target, the silver-palladium-copper alloy target, the nickel-chromium target, and the indium-tin oxide target are sequentially purchased on the flexible PET transparent substrate. , deposited by magnetron sputtering process. Wherein, in the process of sputtering the nickel-chromium target, nitrogen and oxygen are introduced to form a nickel-chromium oxynitride layer.
当材料为PET或PC时,上下表面通过涂布工艺设置如HC加硬层等做加硬处理,为常规技术,在此不再赘述。When the material is PET or PC, the upper and lower surfaces are hardened by a coating process such as HC hardening layer, which is a conventional technique and will not be repeated here.
当然,透明导电膜还可以采用其他工艺方法进行,例如化学气相沉积或物理气相沉积等,其工艺过程及工艺参数可以参照现有技术,在此不再赘述。Of course, the transparent conductive film can also be performed by other process methods, such as chemical vapor deposition or physical vapor deposition, etc. The process and process parameters thereof can refer to the prior art, which will not be repeated here.
表1、2为实施例1产品的测试结果Tables 1 and 2 are the test results of the product of Example 1
表1Table 1
耐候性测试条件:高温高湿:85℃,85%RH,高温储存:80℃,低温储存:-40℃,冷热冲击:-40℃(60min)to 80℃(60min),20cycles,结果如表2Weather resistance test conditions: high temperature and high humidity: 85°C, 85% RH, high temperature storage: 80°C, low temperature storage: -40°C, thermal shock: -40°C (60min) to 80°C (60min), 20cycles, the results are as follows Table 2
表2Table 2
实施例2Example 2
低方阻透明导电膜的构成为由下往上层叠设置的透明基材10、折射率匹配层11、过渡层12、金属合金层13、介质阻隔层14和透明导电层15,其各层材料分别为PC、硫化锌、氧化锌镓、铜合金(其中铜合金中的其余合金为钯和金,铜的比例大于95%,方阻为18Ω)、氧化锌、氧化锡,上述各层厚度分别为0.100μm、40nm、7nm、5.5nm、5nm、42nm。The low square resistance transparent conductive film is composed of a
表3、4为实施例2产品的测试结果Tables 3 and 4 are the test results of the product of Example 2
表3table 3
耐候性测试条件:高温高湿:85℃,85%RH,高温储存:80℃,低温储存:-40℃,冷热冲击:-40℃(60min)to 80℃(60min),20cycles,结果如表4Weather resistance test conditions: high temperature and high humidity: 85°C, 85% RH, high temperature storage: 80°C, low temperature storage: -40°C, thermal shock: -40°C (60min) to 80°C (60min), 20cycles, the results are as follows Table 4
表4Table 4
实施例3Example 3
低方阻透明导电膜的构成为由下往上层叠设置的透明基材10、折射率匹配层11、过渡层12、金属合金层13、介质阻隔层14和透明导电层15,其各层材料分别为PI、二氧化钛、氧化锌镓、银合金(其中银合金中的其余合金为铂和铑,银的比例大于95%,方阻为14Ω)、氮化镍铬、氧化铟锡(铟锡比90:10),上述各层厚度分别为0.150μm、30nm、5nm、7nm、2nm、28nm。The low square resistance transparent conductive film is composed of a
表5、6为实施例3产品的测试结果Tables 5 and 6 are the test results of the product of Example 3
表5table 5
耐候性测试条件:高温高湿:85℃,85%RH,高温储存:80℃,低温储存:-40℃,冷热冲击:-40℃(60min)to 80℃(60min),20cycles,结果如表6Weather resistance test conditions: high temperature and high humidity: 85°C, 85% RH, high temperature storage: 80°C, low temperature storage: -40°C, thermal shock: -40°C (60min) to 80°C (60min), 20cycles, the results are as follows Table 6
表6Table 6
实施例4Example 4
低方阻透明导电膜的构成为由下往上层叠设置的透明基材10、折射率匹配层11、过渡层12、金属合金层13、介质阻隔层14和透明导电层15,其各层材料分别为COP、氧化锌、氧化锌镁、铜合金(其中铜合金中的其余合金为钯和铂,铜的比例大于95%,方阻为18Ω)、氧化锌、氧化锡,上述各层厚度分别为0.120μm、40nm、5nm、6nm、8nm、32nm。The low square resistance transparent conductive film is composed of a
表7、8为实施例4产品的测试结果Tables 7 and 8 are the test results of the product of Example 4
表7Table 7
耐候性测试条件:高温高湿:85℃,85%RH,高温储存:80℃,低温储存:-40℃,冷热冲击:-40℃(60min)to 80℃(60min),20cycles,结果如表8Weather resistance test conditions: high temperature and high humidity: 85°C, 85% RH, high temperature storage: 80°C, low temperature storage: -40°C, thermal shock: -40°C (60min) to 80°C (60min), 20cycles, the results are as follows Table 8
表8Table 8
实施例5Example 5
低方阻透明导电膜的构成为由下往上层叠设置的透明基材10、折射率匹配层11、过渡层12、金属合金层13、介质阻隔层14和透明导电层15,其各层材料分别为玻璃、氧化锌、氧化锌铝、银合金(其中铜合金中的其余合金为金和铂,铜的比例大于95%,方阻为12Ω)、氮化镍铬、氧化铟锡(铟锡比90:10),上述各层厚度分别为0.085μm、45nm、10nm、3nm、10nm、30m。The low square resistance transparent conductive film is composed of a
表9、10为实施例5产品的测试结果Tables 9 and 10 are the test results of the product of Example 5
表9Table 9
耐候性测试条件:高温高湿:85℃,85%RH,高温储存:80℃,低温储存:-40℃,冷热冲击:-40℃(60min)to 80℃(60min),20cycles,结果如表10Weather resistance test conditions: high temperature and high humidity: 85°C, 85% RH, high temperature storage: 80°C, low temperature storage: -40°C, thermal shock: -40°C (60min) to 80°C (60min), 20cycles, the results are as follows Table 10
表10Table 10
实施例6Example 6
低方阻透明导电膜的构成为由下往上层叠设置的透明基材10、折射率匹配层11、过渡层12、金属合金层13、介质阻隔层14和透明导电层15,其各层材料分别为PET、二氧化钛、氧化锌镓、铜合金(其中铜合金中的其余合金为金和铑,铜的比例大于95%,方阻为10Ω)、氮化镍铬、氧化铟锡(铟锡比90:10),上述各层厚度分别为0.135μm、30nm、9nm、11nm、3nm、35m。The low square resistance transparent conductive film is composed of a
表11、12为实施例6产品的测试结果Tables 11 and 12 are the test results of the products of Example 6
表11Table 11
耐候性测试条件:高温高湿:85℃,85%RH,高温储存:80℃,低温储存:-40℃,冷热冲击:-40℃(60min)to 80℃(60min),20cycles,结果如表12Weather resistance test conditions: high temperature and high humidity: 85°C, 85% RH, high temperature storage: 80°C, low temperature storage: -40°C, thermal shock: -40°C (60min) to 80°C (60min), 20cycles, the results are as follows Table 12
表12Table 12
当然上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明主要技术方案的精神实质所做的修饰,都应涵盖在本发明的保护范围之内。Of course, the above-mentioned embodiments are only intended to illustrate the technical concept and characteristics of the present invention, and the purpose thereof is to enable those who are familiar with the art to understand the content of the present invention and implement it accordingly, and cannot limit the protection scope of the present invention by this. All modifications made according to the spirit and essence of the main technical solutions of the present invention should be covered within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010880253.8A CN111916251A (en) | 2020-08-27 | 2020-08-27 | Low sheet resistance transparent conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010880253.8A CN111916251A (en) | 2020-08-27 | 2020-08-27 | Low sheet resistance transparent conductive film |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111916251A true CN111916251A (en) | 2020-11-10 |
Family
ID=73266092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010880253.8A Pending CN111916251A (en) | 2020-08-27 | 2020-08-27 | Low sheet resistance transparent conductive film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111916251A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201130181A (en) * | 2010-02-19 | 2011-09-01 | Agc Glass Europe | Transparent substrate for photonic devices |
CN103026526A (en) * | 2010-07-16 | 2013-04-03 | 旭硝子欧洲玻璃公司 | Transluscent conductive substrate for organic light emitting devices |
CN205069151U (en) * | 2015-07-17 | 2016-03-02 | 张家港康得新光电材料有限公司 | Transparent conductive thin film and touch -sensitive screen |
US20170316847A1 (en) * | 2014-11-07 | 2017-11-02 | Plansee Se | Metal oxide thin film, method for depositing metal oxide thin film and device comprising metal oxide thin film |
CN108010605A (en) * | 2017-11-21 | 2018-05-08 | 张家港康得新光电材料有限公司 | Nesa coating and its electronic device |
CN207529686U (en) * | 2017-09-20 | 2018-06-22 | 张家港康得新光电材料有限公司 | Transparent conductive film and electronic device |
CN111066100A (en) * | 2017-08-29 | 2020-04-24 | Tdk株式会社 | Transparent conductor and organic device |
CN212392012U (en) * | 2020-08-27 | 2021-01-22 | 江苏日久光电股份有限公司 | Low sheet resistance transparent conductive film |
-
2020
- 2020-08-27 CN CN202010880253.8A patent/CN111916251A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201130181A (en) * | 2010-02-19 | 2011-09-01 | Agc Glass Europe | Transparent substrate for photonic devices |
CN103026526A (en) * | 2010-07-16 | 2013-04-03 | 旭硝子欧洲玻璃公司 | Transluscent conductive substrate for organic light emitting devices |
US20170316847A1 (en) * | 2014-11-07 | 2017-11-02 | Plansee Se | Metal oxide thin film, method for depositing metal oxide thin film and device comprising metal oxide thin film |
CN205069151U (en) * | 2015-07-17 | 2016-03-02 | 张家港康得新光电材料有限公司 | Transparent conductive thin film and touch -sensitive screen |
CN111066100A (en) * | 2017-08-29 | 2020-04-24 | Tdk株式会社 | Transparent conductor and organic device |
CN207529686U (en) * | 2017-09-20 | 2018-06-22 | 张家港康得新光电材料有限公司 | Transparent conductive film and electronic device |
CN108010605A (en) * | 2017-11-21 | 2018-05-08 | 张家港康得新光电材料有限公司 | Nesa coating and its electronic device |
CN212392012U (en) * | 2020-08-27 | 2021-01-22 | 江苏日久光电股份有限公司 | Low sheet resistance transparent conductive film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103345962B (en) | Transparent conducting film | |
CN105556618B (en) | The manufacture method of transparent conductive base and transparent conductive base | |
CN113299426B (en) | Transparent conductive barrier film, preparation method and application thereof | |
CN107408421A (en) | Transparent conductive body and touch panel | |
JPH0864034A (en) | Transparent conductive layered product | |
CN110641108A (en) | Film(s) | |
CN111979520A (en) | A kind of glass with low resistance and low optical loss and preparation method thereof | |
CN109778129B (en) | Transparent conductive film based on ultrathin metal | |
CN111916252A (en) | Transparent conductive film with low sheet resistance | |
CN212392012U (en) | Low sheet resistance transparent conductive film | |
CN212392011U (en) | Low-sheet-resistance transparent conductive film | |
CN212392013U (en) | Transparent conductive film with low sheet resistance | |
CN105489270B (en) | Transparent conductive film with interlayer structure and preparation method thereof | |
CN111916251A (en) | Low sheet resistance transparent conductive film | |
JP4406237B2 (en) | A method for producing a transparent substrate with a multilayer film having conductivity. | |
CN111883287A (en) | A kind of low square resistance transparent conductive film | |
KR100989409B1 (en) | Multilayer flexible transparent electrode and its manufacturing method | |
TWI683017B (en) | ITO film and transparent conductive film | |
CN107993746A (en) | A kind of nesa coating and the electronic device based on it | |
CN111446028A (en) | Transparent conductive film and touch screen | |
CN111446024A (en) | Transparent conductive film and touch screen | |
CN212392010U (en) | High bending resistance ITO transparent conducting film | |
JPH06251632A (en) | Transparent conductive film having high flexibility and manufacture thereof | |
CN111916250A (en) | ITO transparent conductive film with high bending resistance | |
CN111933330A (en) | High bending resistance ITO transparent conducting film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |