CN111913161A - Method for improving NLFM waveform radar target angle measurement precision - Google Patents
Method for improving NLFM waveform radar target angle measurement precision Download PDFInfo
- Publication number
- CN111913161A CN111913161A CN202010575170.8A CN202010575170A CN111913161A CN 111913161 A CN111913161 A CN 111913161A CN 202010575170 A CN202010575170 A CN 202010575170A CN 111913161 A CN111913161 A CN 111913161A
- Authority
- CN
- China
- Prior art keywords
- pulse
- echo signal
- radar target
- angle measurement
- doppler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000007906 compression Methods 0.000 claims abstract description 63
- 230000006835 compression Effects 0.000 claims abstract description 58
- 230000035485 pulse pressure Effects 0.000 claims abstract description 57
- 238000012545 processing Methods 0.000 claims abstract description 26
- 230000004044 response Effects 0.000 claims abstract description 17
- 238000009825 accumulation Methods 0.000 claims description 20
- 238000005070 sampling Methods 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000003786 synthesis reaction Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 6
- 230000017105 transposition Effects 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 3
- 238000000691 measurement method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 2
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/414—Discriminating targets with respect to background clutter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种提升NLFM波形雷达目标测角精度的方法,该方法包括:对雷达目标回波信号进行第一次脉冲压缩处理得到第一脉压回波信号;对第一脉压回波信号进行波束合成处理得到波束合成结果;采用多普勒滤波器对波束合成结果进行多普勒频移处理得到多普勒频率估计值;根据多普勒估计值对雷达目标回波信号进行第二次脉冲压缩处理得到第二脉压回波信号;对第二脉压回波信号进行和差波束比相单脉冲测角得到雷达目标测角。本发明提供的提升NLFM波形雷达目标测角精度的方法,利用雷达目标回波信号的多普勒频率估计设计一完全匹配的脉冲响应滤波器,进行雷达目标回波信号的脉冲压缩处理,使用于角度估计数据的信噪比损失减少,因此测角精度提高且性能稳定。
The invention discloses a method for improving NLFM waveform radar target angle measurement accuracy. The method includes: performing a first pulse compression process on a radar target echo signal to obtain a first pulse pressure echo signal; The signal is subjected to beamforming processing to obtain the beamforming result; Doppler frequency shift processing is performed on the beamforming result by the Doppler filter to obtain the Doppler frequency estimate; The second pulse pressure echo signal is obtained by the secondary pulse compression processing; the single pulse angle measurement is performed on the second pulse pressure echo signal by the sum-difference beam phase comparison to obtain the radar target angle measurement. The method for improving the angle measurement accuracy of the NLFM waveform radar target provided by the present invention uses the Doppler frequency estimation of the radar target echo signal to design a completely matched impulse response filter to perform pulse compression processing of the radar target echo signal, which is used in The signal-to-noise ratio loss of the angle estimation data is reduced, so the angle measurement accuracy is improved and the performance is stable.
Description
技术领域technical field
本发明属于雷达信号处理技术领域,具体涉及一种提升NLFM波形雷达目标测角精度的方法。The invention belongs to the technical field of radar signal processing, and particularly relates to a method for improving the angle measurement accuracy of an NLFM waveform radar target.
背景技术Background technique
非线性调频(Non-Linear Frequency Modulation,简称NLFM))信号能够不经过加窗处理,直接进行匹配滤波,避免了加窗带来的主瓣展宽和信噪比的损失,近年来受到雷达界的普遍重视。Non-Linear Frequency Modulation (NLFM) signals can be directly matched and filtered without windowing, which avoids the main lobe broadening and the loss of signal-to-noise ratio caused by windowing. General attention.
雷达的目标测角精度除了受系统本身的参数、估计方法和天线孔径的影响之外,与目标信噪比也是密不可分的。所以若要提高测角精度,可以通过提高信噪比的方法来完成。赵永波等人在“一种多目标情况下的单脉冲测角方法[A].西安电子科技大学学报,2005,32(3):383-386.”文章中提出的常规测角方法,是将检测通道信号处理(包括脉冲压缩、波束形成、多普勒滤波等)后的目标数据进行比幅(或比相)法测角,最后估计出目标的角度。In addition to the influence of the parameters of the system itself, the estimation method and the antenna aperture, the target angle measurement accuracy of the radar is also inseparable from the target signal-to-noise ratio. Therefore, to improve the angle measurement accuracy, it can be done by improving the signal-to-noise ratio. The conventional angle measurement method proposed by Zhao Yongbo et al. The target data after signal processing (including pulse compression, beam forming, Doppler filtering, etc.) of the detection channel is measured by the amplitude (or phase) method, and finally the angle of the target is estimated.
但是,这种方法由于其检测通道信号处理存在信噪比损失,例如当雷达发射NLFM波形时,用于脉冲压缩的脉冲响应滤波器没有考虑到目标的多普勒信息,其输出存在一定的信噪比损失,从而使目标测角精度受到影响。However, this method has a loss of signal-to-noise ratio due to its detection channel signal processing. For example, when the radar transmits NLFM waveform, the impulse response filter used for pulse compression does not consider the Doppler information of the target, and its output has a certain signal. Noise ratio loss, so that the target angle measurement accuracy is affected.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的上述问题,本发明提供了一种提升NLFM波形雷达目标测角精度的方法,包括如下步骤:In order to solve the above-mentioned problems existing in the prior art, the present invention provides a method for improving the accuracy of NLFM waveform radar target angle measurement, including the following steps:
步骤1、对雷达目标回波信号进行第一次脉冲压缩处理得到第一脉压回波信号;Step 1. Perform the first pulse compression processing on the radar target echo signal to obtain the first pulse pressure echo signal;
步骤2、对所述第一脉压回波信号进行波束合成处理得到波束合成结果;
步骤3、采用多普勒滤波器对所述波束合成结果进行多普勒处理得到多普勒频率估计值;Step 3, using a Doppler filter to perform Doppler processing on the beamforming result to obtain an estimated Doppler frequency;
步骤4、根据所述多普勒估计值对所述雷达目标回波信号进行第二次脉冲压缩处理得到第二脉压回波信号;
步骤5、对所述第二脉压回波信号进行和差波束比相单脉冲测角得到雷达目标测角。Step 5: Performing the sum-difference beam phase comparison monopulse angle measurement on the second pulse pressure echo signal to obtain the radar target angle measurement.
在本发明的一个实施例中,所述步骤1具体包括:In an embodiment of the present invention, the step 1 specifically includes:
步骤1.1、获取N个阵元接收到的雷达目标回波信号,所述雷达目标回波信号表示为:Step 1.1. Obtain the radar target echo signals received by the N array elements. The radar target echo signals are expressed as:
S=[S1,S2,...,SN]T;S=[S 1 , S 2 ,...,S N ] T ;
其中,S表示雷达目标回波信号,Si表示第i个阵元接收到的雷达目标回波信号,i=1,2,3,...,N,每个阵元的雷达目标回波信号Si=[Sqr]M×R,其中,Sqr表示雷达目标回波信号Si中第q个脉冲的第r个采样点,M为每个阵元的接收脉冲数,R为雷达发射信号脉宽内的采样点数,[]T表示向量转置;Among them, S represents the radar target echo signal, S i represents the radar target echo signal received by the i-th array element, i=1, 2, 3,..., N, the radar target echo of each array element Signal Si = [S qr ] M×R , where S qr represents the r-th sampling point of the q- th pulse in the radar target echo signal Si , M is the number of received pulses for each array element, and R is the radar The number of sampling points in the pulse width of the transmitted signal, [] T represents the vector transposition;
步骤1.2、根据雷达发射NLFM波形得到脉冲压缩权系数,所述脉冲压缩权系数表示为:Step 1.2. Obtain the pulse compression weight coefficient according to the NLFM waveform transmitted by the radar, and the pulse compression weight coefficient is expressed as:
Y=[F1,F2,...,FR]H;Y=[F 1 , F 2 , . . . , F R ] H ;
其中,Y表示脉冲压缩权系数,Fr表示脉冲压缩权系数的第r个值,r=1,2,3...,R,[]H表示向量共轭转置;Wherein, Y represents the pulse compression weight coefficient, F r represents the rth value of the pulse compression weight coefficient, r=1, 2, 3..., R, [] H represents the vector conjugate transpose;
步骤1.3、根据雷达目标回波信号和脉冲压缩权系数得到第一脉压回波信号,所述第一脉压回波信号表示为:Step 1.3. Obtain the first pulse pressure echo signal according to the radar target echo signal and the pulse compression weight coefficient, and the first pulse pressure echo signal is expressed as:
X=[X1,X2,..,XN]T;X=[X 1 , X 2 , .., X N ] T ;
其中,X表示第一脉压回波信号,Xi=SiY表示第i个阵元上的第一脉压回波信号。Wherein, X represents the first pulse pressure echo signal, and X i =S i Y represents the first pulse pressure echo signal on the i-th array element.
在本发明的一个实施例中,所述步骤2中波束合成结果表示为:In an embodiment of the present invention, the beamforming result in
P=aH(θ0)X;P=a H (θ 0 )X;
其中,P表示波束合成结果,a(θ0)=[1,exp(j2πdsinθ0/λ),...,exp(j2πd(N-1)sinθ0/λ)]T表示权矢量,exp表示以e为底的指数幂,j表示虚数单位,d表示阵元间距,θ0表示检测波束方向。Among them, P represents the beamforming result, a(θ 0 )=[1, exp(j2πdsinθ 0 /λ),...,exp(j2πd(N-1)sinθ 0 /λ)] T represents the weight vector, and exp represents Exponential power with the base e, j represents the imaginary unit, d represents the spacing of the array elements, and θ 0 represents the detection beam direction.
在本发明的一个实施例中,所述步骤3具体包括:In an embodiment of the present invention, the step 3 specifically includes:
步骤3.1、采用多普勒滤波器对所述波束合成结果进行多普勒处理得到若干幅度响应结果;Step 3.1, using a Doppler filter to perform Doppler processing on the beamforming result to obtain several amplitude response results;
步骤3.2、从所述若干幅度响应结果中找到对应振幅最大的频率点,根据所述频率点对应得到所述多普勒估计值。Step 3.2: Find the frequency point with the largest corresponding amplitude from the several amplitude response results, and obtain the Doppler estimated value according to the corresponding frequency point.
在本发明的一个实施例中,所述步骤4具体包括:In an embodiment of the present invention, the
步骤4.1、根据多普勒估计值对雷达目标回波信号进行脉冲积累得到脉冲累积结果,所述脉冲累积结果表示为:Step 4.1. Perform pulse accumulation on the radar target echo signal according to the Doppler estimated value to obtain a pulse accumulation result, which is expressed as:
G=[G1,G2,...,GN]T;G=[G 1 , G 2 ,...,G N ] T ;
其中,G表示脉冲累积结果,Gi=b(f′d)Si表示第i个阵元的脉冲累积结果,b(f′d)=[1,exp(j2πf′dtr),...,exp(j2πf′d((M-1)tr)]表示目标的导频矢量,fd'表示多普勒频率估计值,tr表示脉冲重复周期;Among them, G represents the pulse accumulation result, G i =b(f' d )S i represents the pulse accumulation result of the i-th array element, b(f' d )=[1,exp(j2πf' d t r ),. ..,exp(j2πf′ d ((M-1)t r )] represents the pilot vector of the target, f d ' represents the estimated Doppler frequency, and t r represents the pulse repetition period;
步骤4.2、根据多普勒估计值对脉冲压缩权系数进行更新得到新的脉冲压缩系数,所述新的脉冲压缩系数表示为:Step 4.2: Update the pulse compression weight coefficient according to the Doppler estimated value to obtain a new pulse compression coefficient, and the new pulse compression coefficient is expressed as:
Q=Y⊙c(f′d);Q=Y⊙c(f′ d );
其中,Q表示新的脉冲压缩系数,c(f′d)=[1,exp(-j2πf′dts),...,exp(-j2πf′d((R-1)ts)]T表示多普勒偏移函数,ts表示相邻采样点的时间间隔,⊙表示Hadamard积;Among them, Q represents the new pulse compression coefficient, c(f' d )=[1,exp(-j2πf' d t s ),...,exp(-j2πf' d ((R-1)t s )] T represents the Doppler shift function, ts represents the time interval between adjacent sampling points, and ⊙ represents the Hadamard product;
步骤4.3、根据所述脉冲累积结果和所述新的脉冲压缩系数得到第二脉压回波信号,所述第二脉压回波信号表示为:Step 4.3. Obtain a second pulse pressure echo signal according to the pulse accumulation result and the new pulse compression coefficient, and the second pulse pressure echo signal is expressed as:
Z=[Z1,Z2,...,ZN]T;Z=[Z 1 , Z 2 ,..., Z N ] T ;
其中,Z表示第二脉压回波信号,Zi=GiQ表示第i个阵元上的第二脉压回波信号。Wherein, Z represents the second pulse pressure echo signal, and Z i =G i Q represents the second pulse pressure echo signal on the i-th array element.
在本发明的一个实施例中,所述步骤5具体包括:In an embodiment of the present invention, the step 5 specifically includes:
步骤5.1、对第二脉压回波信号进行和差波束比相单脉冲测角得到测量数据,所述测量数据表示为:Step 5.1. Perform the sum-difference beam phase comparison and single-pulse angle measurement on the second pulse pressure echo signal to obtain measurement data, and the measurement data is expressed as:
其中,K表示测量数据,w2=[1,exp(j2πdsinθ0/λ),...,exp(j2πd(N-1)sinθ0/λ)]T表示和波束的权向量,w1=[w2(1:N/2),-w2(N/2+1:N)]表示差波束的权向量;Wherein, K represents the measurement data, w 2 =[1,exp(j2πdsinθ 0 /λ),...,exp(j2πd(N-1)sinθ 0 /λ)] T represents the weight vector of the sum beam, w 1 = [w 2 (1:N/2),-w 2 (N/2+1:N)] represents the weight vector of the difference beam;
步骤5.2、根据所述测量数据估计得到所述雷达目标测角,所述雷达目标测角表示为:Step 5.2, estimate the radar target angle according to the measurement data, and the radar target angle is expressed as:
其中,表示雷达目标测角,||表示求模,a(θ)=[1,exp(j2πdsinθ/λ),...,exp(j2πd(N-1)sinθ/λ)]T表示天线阵元的导向矢量,θ表示测角范围。in, Represents the radar target angle, || represents the modulus, a(θ)=[1, exp(j2πdsinθ/λ),...,exp(j2πd(N-1)sinθ/λ)] T represents the antenna element Steering vector, θ represents the angle measurement range.
与现有技术相比,本发明的有益效果:Compared with the prior art, the beneficial effects of the present invention:
本发明提供的提升NLFM波形雷达目标测角精度的方法,利用雷达目标回波信号的多普勒频率估计来设计一个完全匹配的脉冲响应滤波器,进行雷达目标回波信号的脉冲压缩处理,使用于角度估计数据的信噪比损失减少,因此测角精度提高且性能稳定。The method for improving the angle measurement accuracy of the NLFM waveform radar target provided by the present invention uses the Doppler frequency estimation of the radar target echo signal to design a completely matched impulse response filter to perform pulse compression processing of the radar target echo signal, using The loss of signal-to-noise ratio for the angle estimation data is reduced, so the angle measurement accuracy is improved and the performance is stable.
附图说明Description of drawings
图1为本发明实施例提供的一种提升NLFM波形雷达目标测角精度的方法的流程示意图;1 is a schematic flowchart of a method for improving the angular measurement accuracy of an NLFM waveform radar target provided by an embodiment of the present invention;
图2为常规测角方法与本发明实施例提供的方法在目标角度变化时测角的角度均方根误差对比结果示意图;2 is a schematic diagram of the comparison result of the angle root mean square error of the angle measurement when the target angle changes with the conventional angle measurement method and the method provided by the embodiment of the present invention;
图3为常规脉压结果与本发明实施例提供的方法的脉压结果对比结果示意图;3 is a schematic diagram of a comparison result between conventional pulse pressure results and the pulse pressure results of the method provided in the embodiment of the present invention;
图4为常规脉压结果与本发明实施例提供的方法的脉压结果对比结果局部放大示意图。FIG. 4 is a partially enlarged schematic diagram of a comparison result of a conventional pulse pressure result and a pulse pressure result of the method provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to specific embodiments, but the embodiments of the present invention are not limited thereto.
实施例一Example 1
由于NLFM雷达波形对多普勒频率敏感,脉冲压缩的输出会存在信噪比损失,影响雷达的目标检测和测角性能。因此,请参见图1,图1是本发明实施例提供的一种提升NLFM波形雷达目标测角精度的方法的流程示意图,本发明实施例提供了一种提升NLFM波形雷达目标测角精度的方法,该提升NLFM波形雷达目标测角精度的方法包括以下步骤:Since the NLFM radar waveform is sensitive to the Doppler frequency, the output of the pulse compression will have a loss of signal-to-noise ratio, which will affect the target detection and angle measurement performance of the radar. Therefore, please refer to FIG. 1. FIG. 1 is a schematic flowchart of a method for improving the accuracy of NLFM waveform radar target angle measurement provided by an embodiment of the present invention. An embodiment of the present invention provides a method for improving NLFM waveform radar target angle measurement accuracy. , the method for improving the target angle measurement accuracy of the NLFM waveform radar includes the following steps:
步骤1、对雷达目标回波信号进行第一次脉冲压缩处理得到第一脉压回波信号。Step 1. Perform a first pulse compression process on the radar target echo signal to obtain a first pulse pressure echo signal.
具体而言,本实施例采用包含N个阵元的均匀线阵接收雷达目标回波信号,对该雷达目标回波信号进行脉冲压缩处理,步骤1具体包括步骤1.1、步骤1.2、步骤1.3:Specifically, in this embodiment, a uniform linear array including N array elements is used to receive the radar target echo signal, and pulse compression processing is performed on the radar target echo signal. Step 1 specifically includes Step 1.1, Step 1.2, and Step 1.3:
步骤1.1、获取N个阵元接收到的雷达目标回波信号S。Step 1.1. Obtain the radar target echo signal S received by the N array elements.
具体而言,本实施例对N个阵元接收雷达目标回波信号,具体地该雷达目标回波信号表示为:Specifically, this embodiment receives radar target echo signals for N array elements. Specifically, the radar target echo signals are expressed as:
S=[S1,S2,...,SN]T;S=[S 1 , S 2 ,...,S N ] T ;
其中,S表示雷达目标回波信号,Si表示第i个阵元接收到的雷达目标回波信号,i=1,2,3,...,N,每个阵元的雷达目标回波信号Si=[Sqr]M×R,其中,Sqr表示雷达目标回波信号Si中第q个脉冲的第r个采样点,M为每个阵元的接收脉冲数,R为雷达发射信号脉宽内的采样点数,[]T表示向量转置。Among them, S represents the radar target echo signal, S i represents the radar target echo signal received by the i-th array element, i=1, 2, 3,..., N, the radar target echo of each array element Signal Si = [S qr ] M×R , where S qr represents the r-th sampling point of the q- th pulse in the radar target echo signal Si , M is the number of received pulses for each array element, and R is the radar The number of sampling points within the pulse width of the transmitted signal, [] T represents the vector transpose.
步骤1.2、根据雷达发射NLFM波形得到脉冲压缩权系数。Step 1.2, obtain the pulse compression weight coefficient according to the NLFM waveform transmitted by the radar.
具体而言,本实施例考虑到NLFM雷达波形对多普勒频率敏感,因此根据雷达发射NLFM波形构建脉冲压缩权系数,具体地该脉冲压缩权系数表示为:Specifically, in this embodiment, considering that the NLFM radar waveform is sensitive to the Doppler frequency, the pulse compression weight coefficient is constructed according to the NLFM waveform transmitted by the radar. Specifically, the pulse compression weight coefficient is expressed as:
Y=[F1,F2,...,FR]H;Y=[F 1 , F 2 , . . . , F R ] H ;
其中,Y表示脉冲压缩权系数,Fr表示脉冲压缩权系数的第r个值,r=1,2,3...,R,[]H表示向量共轭转置。Wherein, Y represents the pulse compression weight coefficient, F r represents the rth value of the pulse compression weight coefficient, r=1, 2, 3..., R, [] H represents the vector conjugate transpose.
需要说明的是,不同的雷达发射波形对应设置的脉冲压缩权系数不同,具体根据实际雷达发射波形设置,本实施例雷达发射波形为NLFM波形。It should be noted that the pulse compression weight coefficients set corresponding to different radar transmit waveforms are different. Specifically, according to the actual radar transmit waveform settings, the radar transmit waveform in this embodiment is an NLFM waveform.
步骤1.3、根据雷达目标回波信号和脉冲压缩权系数得到第一脉压回波信号。Step 1.3, obtaining the first pulse pressure echo signal according to the radar target echo signal and the pulse compression weight coefficient.
具体而言,本实施例根据步骤1.1得到的雷达目标回波信号和步骤1.2得到的脉冲压缩权系数计算第一脉压回波信号,具体地该第一脉压回波信号表示为:Specifically, this embodiment calculates the first pulse pressure echo signal according to the radar target echo signal obtained in step 1.1 and the pulse compression weight coefficient obtained in step 1.2. Specifically, the first pulse pressure echo signal is expressed as:
X=[X1,X2,..,XN]T;X=[X 1 , X 2 , .., X N ] T ;
其中,X表示第一脉压回波信号,Xi=SiY表示第i个阵元上的第一脉压回波信号,i=1,2,3,...,N。Wherein, X represents the first pulse pressure echo signal, X i =S i Y represents the first pulse pressure echo signal on the i-th array element, i=1, 2, 3,...,N.
本实施例在步骤1.3中计算第一脉压回波信号时,并未考虑多普勒频移的影响,与常规测角方法处理相同。In this embodiment, when calculating the first pulse pressure echo signal in step 1.3, the influence of the Doppler frequency shift is not considered, which is the same as the conventional angle measurement method.
步骤2、对第一脉压回波信号进行波束合成处理得到波束合成结果。Step 2: Perform beam synthesis processing on the first pulse pressure echo signal to obtain a beam synthesis result.
具体而言,本实施例通过预设的权矢量将对第一脉压回波信号进行波束合成处理,并得到波束合成结果,具体地波束合成结果表示为:Specifically, in this embodiment, the first pulse pressure echo signal is subjected to beamforming processing through a preset weight vector, and a beamforming result is obtained. Specifically, the beamforming result is expressed as:
P=aH(θ0)X;P=a H (θ 0 )X;
其中,P表示波束合成结果,a(θ0)=[1,exp(j2πdsinθ0/λ),...,exp(j2πd(N-1)sinθ0/λ)]T表示预设的权矢量,exp表示以e为底的指数幂,j表示虚数单位,d表示阵元间距,θ0表示检测波束方向。Among them, P represents the beamforming result, a(θ 0 )=[1, exp(j2πdsinθ 0 /λ),...,exp(j2πd(N-1)sinθ 0 /λ)] T represents the preset weight vector , exp represents the exponential power with the base e, j represents the imaginary unit, d represents the array element spacing, and θ 0 represents the detection beam direction.
步骤3、采用多普勒滤波器对波束合成结果进行多普勒处理得到多普勒频率估计值。Step 3: Doppler processing is performed on the beamforming result by using a Doppler filter to obtain an estimated Doppler frequency.
具体而言,常规测角方法由于脉冲压缩的脉冲响应滤波器没有考虑到目标的多普勒信息,其输出存在一定的信噪比损失,从而使目标测角精度受到影响。因此本实施例提出在考虑多普勒信息的基础上,进一步地进行雷达目标测角,步骤3具体包括步骤3.1、步骤3.2:Specifically, the conventional angle measurement method has a certain loss of signal-to-noise ratio in its output because the pulse response filter of pulse compression does not consider the Doppler information of the target, which affects the accuracy of target angle measurement. Therefore, this embodiment proposes to further conduct radar target angle measurement on the basis of considering Doppler information. Step 3 specifically includes Step 3.1 and Step 3.2:
步骤3.1、采用多普勒滤波器对波束合成结果进行多普勒处理得到若干幅度响应结果。Step 3.1, using a Doppler filter to perform Doppler processing on the beamforming result to obtain several amplitude response results.
具体而言,本实施例波束合成结果在多普勒处理时,由于多普勒频率未知,因此需要若干个多普勒滤波器,不同多普勒滤波器所对应的多普勒滤波器的频率不同,采用若干多普勒滤波器对波束合成结果进行多普勒处理得到若干幅度响应结果。Specifically, during the Doppler processing of the beam synthesis result in this embodiment, since the Doppler frequency is unknown, several Doppler filters are required, and the frequencies of the Doppler filters corresponding to different Doppler filters are Differently, several Doppler filters are used to perform Doppler processing on the beamforming result to obtain several amplitude response results.
步骤3.2、从若干幅度响应结果中找到对应振幅最大的频率点,根据频率点对应得到多普勒估计值。Step 3.2: Find the frequency point with the largest corresponding amplitude from several amplitude response results, and obtain the Doppler estimated value according to the corresponding frequency point.
具体而言,在步骤3.1得到若干幅度响应结果后,振幅越大,该多普勒滤波器与多普勒频率越匹配,因此,本实施例从若干幅度响应结果中找到对应振幅最大的频率点,根据该频率点确定多普勒预估值,该预估计值即为本实施例将用于确定完全匹配脉冲响应滤波器的多普勒估计值。Specifically, after several amplitude response results are obtained in step 3.1, the larger the amplitude, the more the Doppler filter matches the Doppler frequency. Therefore, in this embodiment, the frequency point corresponding to the largest amplitude is found from several amplitude response results. , and determine the Doppler estimated value according to the frequency point, and the pre-estimated value is the Doppler estimated value that will be used to determine the fully matched impulse response filter in this embodiment.
步骤4、根据多普勒估计值对雷达目标回波信号进行第二次脉冲压缩处理得到第二脉压回波信号。Step 4: Perform a second pulse compression process on the radar target echo signal according to the Doppler estimated value to obtain a second pulse pressure echo signal.
具体而言,根据步骤3确定多普勒估计值后,利用该多普勒估计值产生一个完全匹配的脉冲响应滤波器,步骤4具体包括步骤4.1、步骤4.2、步骤4.3:Specifically, after determining the Doppler estimated value according to step 3, use the Doppler estimated value to generate a completely matched impulse response filter, and
步骤4.1、根据多普勒估计值对雷达目标回波信号进行脉冲积累得到脉冲累积结果。Step 4.1. Perform pulse accumulation on the radar target echo signal according to the Doppler estimated value to obtain the pulse accumulation result.
具体而言,本实施例首先通过多普勒估计值对雷达目标回波信号进行脉冲积累得到脉冲累积结果,具体地脉冲累积结果表示为:Specifically, in this embodiment, pulse accumulation is performed on the radar target echo signal through the Doppler estimation value first to obtain a pulse accumulation result. Specifically, the pulse accumulation result is expressed as:
G=[G1,G2,...,GN]T;G=[G 1 , G 2 ,...,G N ] T ;
其中,G表示脉冲累积结果,Gi=b(f′d)Si表示第i个阵元的脉冲累积结果,b(f′d)=[1,exp(j2πf′dtr),...,exp(j2πf′d((M-1)tr)]表示目标的导频矢量,fd'表示多普勒频率估计值,tr表示脉冲重复周期。Among them, G represents the pulse accumulation result, G i =b(f' d )S i represents the pulse accumulation result of the i-th array element, b(f' d )=[1,exp(j2πf' d t r ),. .., exp(j2πf' d ((M-1)t r )] represents the pilot vector of the target, f d ' represents the estimated Doppler frequency, and tr represents the pulse repetition period.
步骤4.2、根据多普勒估计值对脉冲压缩权系数进行更新得到新的脉冲压缩系数。Step 4.2: Update the pulse compression weight coefficient according to the Doppler estimated value to obtain a new pulse compression coefficient.
具体而言,本实施例根据多普勒估计值,对步骤1.2中的脉冲压缩权系数进行更新得到新的脉冲压缩系数,具体地新的脉冲压缩系数表示为:Specifically, this embodiment updates the pulse compression weight coefficient in step 1.2 to obtain a new pulse compression coefficient according to the Doppler estimated value. Specifically, the new pulse compression coefficient is expressed as:
Q=Y⊙c(f′d);Q=Y⊙c(f′ d );
其中,Q表示新的脉冲压缩系数,c(f′d)=[1,exp(-j2πf′dts),...,exp(-j2πf′d((R-1)ts)]T表示多普勒偏移函数,ts表示相邻采样点的时间间隔,⊙表示Hadamard积。Among them, Q represents the new pulse compression coefficient, c(f' d )=[1,exp(-j2πf' d t s ),...,exp(-j2πf' d ((R-1)t s )] T represents the Doppler shift function, ts represents the time interval between adjacent sampling points, and ⊙ represents the Hadamard product.
步骤4.3、根据脉冲累积结果和新的脉冲压缩系数得到第二脉压回波信号。Step 4.3, obtaining a second pulse pressure echo signal according to the pulse accumulation result and the new pulse compression coefficient.
具体而言,本实施例雷达目标回波信号、脉冲压缩系数分别经过多普勒频率考虑,得到经多普勒频率考虑后的脉冲累积结果和新的脉冲压缩系数,再根据该脉冲累积结果和新的脉冲压缩系数得到第二脉压回波信号,具体地第二脉压回波信号表示为:Specifically, in this embodiment, the radar target echo signal and the pulse compression coefficient are respectively considered by the Doppler frequency to obtain the pulse accumulation result after the Doppler frequency consideration and the new pulse compression coefficient, and then according to the pulse accumulation result and the new pulse compression coefficient The new pulse compression coefficient obtains the second pulse pressure echo signal, specifically the second pulse pressure echo signal is expressed as:
Z=[Z1,Z2,...,ZN]T;Z=[Z 1 , Z 2 ,..., Z N ] T ;
其中,Z表示第二脉压回波信号,Zi=GiQ表示第i个阵元上的第二脉压回波信号,i=1,2,3,...,N。Wherein, Z represents the second pulse pressure echo signal, Z i =G i Q represents the second pulse pressure echo signal on the i-th array element, i=1, 2, 3,...,N.
步骤5、对第二脉压回波信号进行和差波束比相单脉冲测角得到雷达目标测角。Step 5: Perform the sum-difference beam phase comparison monopulse angle measurement on the second pulse pressure echo signal to obtain the radar target angle measurement.
具体而言,本实施例步骤4经过第二次脉冲压缩得到第二脉压回波信号Z,对第二脉压回波信号进行和差波束比相单脉冲测角,步骤5具体包括步骤5.1、步骤5.2:Specifically, in
步骤5.1、对第二脉压回波信号进行和差波束比相单脉冲测角得到测量数据。Step 5.1. Perform the sum-difference beam phase comparison and single-pulse angle measurement on the second pulse pressure echo signal to obtain measurement data.
具体而言,本实施例采用和差波束比相单脉冲测角方法,得到测角对应的测量数据,具体地该测量数据表示为:Specifically, the present embodiment adopts the single-pulse angle measurement method for phase comparison of sum-difference beams to obtain measurement data corresponding to the angle measurement. Specifically, the measurement data is expressed as:
其中,K表示测量数据,w2=[1,exp(j2πdsinθ0/λ),...,exp(j2πd(N-1)sinθ0/λ)]T表示和波束的权向量,w1=[w2(1:N/2),-w2(N/2+1:N)]表示差波束的权向量。Wherein, K represents the measurement data, w 2 =[1,exp(j2πdsinθ 0 /λ),...,exp(j2πd(N-1)sinθ 0 /λ)] T represents the weight vector of the sum beam, w 1 = [w 2 (1:N/2),-w 2 (N/2+1:N)] represents the weight vector of the difference beam.
步骤5.2、根据测量数据估计得到雷达目标测角。Step 5.2, estimating the radar target angle according to the measurement data.
具体而言,根据上述测量数据K来估计雷达目标测角,具体地该雷达目标测角表示为:Specifically, the radar target angle is estimated according to the above measurement data K. Specifically, the radar target angle is expressed as:
其中,表示雷达目标测角,||表示求模,a(θ)=[1,exp(j2πdsinθ/λ),...,exp(j2πd(N-1)sinθ/λ)]T表示天线阵元的导向矢量,θ表示测角范围。in, Represents the radar target angle, || represents the modulus, a(θ)=[1, exp(j2πdsinθ/λ),...,exp(j2πd(N-1)sinθ/λ)] T represents the antenna element Steering vector, θ represents the angle measurement range.
本实施例提出的提升NLFM波形雷达目标测角精度的方法,利用依次经脉冲压缩处理(未考虑多普勒信息)和波束合成处理的输出结果,对雷达目标回波信号的多普勒频率作出估计得到多普勒频率估计值,然后利用该多普勒频率估计值产生一个与之完全匹配的脉冲响应滤波器,采用该完全匹配的脉冲响应滤波器对原始雷达目标回波信号进行脉冲压缩处理,最后通过对脉冲压缩处理后的数据进行和差波束比相单脉冲测角,测得雷达目标角度。The method for improving the angle measurement accuracy of a radar target with an NLFM waveform proposed in this embodiment uses the output results of pulse compression processing (without considering Doppler information) and beamforming processing in sequence to determine the Doppler frequency of the radar target echo signal. The estimated value of Doppler frequency is obtained by estimating, and then the estimated value of Doppler frequency is used to generate a completely matched impulse response filter, which is used to perform pulse compression on the original radar target echo signal. , and finally the radar target angle is measured by comparing the phase and monopulse angle of the pulse compression data with the difference beam.
为了说明本发明提出的提升NLFM波形雷达目标测角精度的方法的有效性,通过以下计算机仿真进行验证:In order to illustrate the effectiveness of the method for improving the NLFM waveform radar target angle measurement accuracy proposed by the present invention, the following computer simulations are used to verify:
1、仿真条件1. Simulation conditions
仿真中,雷达发射信号带宽B=2MHz,发射脉冲时宽Tp=300μs,目标多普勒频率fd=10kHz,雷达天线阵元数N=10,波长λ=0.05m,阵元间距d=0.025m,采用和差波束比相单脉冲测角方法,和波束指向0°,单阵元信噪比SNR=10dB,采样频率fs=10MHz,目标的多普勒频率估计值f‘d=10.01kHz,蒙特卡罗实验1000次。In the simulation, radar transmit signal bandwidth B=2MHz, transmit pulse time width Tp =300μs, target Doppler frequency fd =10kHz, radar antenna array element number N=10, wavelength λ=0.05m, array element spacing d= 0.025m, using sum-difference beam phase-comparison monopulse angle measurement method, sum beam pointing at 0°, single-array element SNR=10dB, sampling frequency f s = 10MHz, target Doppler frequency estimate f' d = 10.01kHz,
2、仿真内容2. Simulation content
仿真1,请参见图2,图2为常规测角方法与本发明实施例提供的方法在目标角度变化时测角的角度均方根误差对比结果示意图,利用上述条件,经过仿真,得到常规测角方法与本发明方法在目标角度变化时测角精度的变化曲线图,如图2所示,其中,横坐标为目标角度,纵坐标为角度均方根误差。由图2可见,常规测角方法和本发明测角方法的均方根误差会随着目标角度的变化而变化。但是本发明的目标角度均方根误差更小。图2可以充分说明本发明的方法测角精度更高,性能更稳定,确实能提高NLFM波形测角精度。Simulation 1, please refer to FIG. 2. FIG. 2 is a schematic diagram of the comparison result of the angle root mean square error of the angle measurement when the target angle changes between the conventional angle measurement method and the method provided by the embodiment of the present invention. Using the above conditions, through simulation, the conventional measurement method is obtained. The change curve of the angle measurement accuracy when the target angle changes between the angle method and the method of the present invention is shown in Figure 2, wherein the abscissa is the target angle, and the ordinate is the root mean square error of the angle. It can be seen from FIG. 2 that the root mean square error of the conventional angle measurement method and the angle measurement method of the present invention will vary with the change of the target angle. However, the target angle root mean square error of the present invention is smaller. FIG. 2 can fully illustrate that the method of the present invention has higher angle measurement accuracy and more stable performance, and can indeed improve the NLFM waveform angle measurement accuracy.
仿真2,请参见图3、图4,图3为常规脉压结果与本发明实施例提供的方法的脉压结果对比结果示意图,图4为常规脉压结果与本发明实施例提供的方法的脉压结果对比结果局部放大示意图,利用上述条件,选用目标角度为0°,和波束的NLFM脉冲压缩输出结果,如图3所示,其中,横坐标为距离单元(单位为个),纵坐标为输出信号幅度值(按本发明方法脉压输出最大值进行归一化)。由图3可见,距离单元共有5999个点;图4是图3的局部放大图,由4可见,常规测角方法的脉冲压缩输出出现了频谱偏移,且峰值功率下降,而本发明方法的脉冲压缩输出并未出现此结果;由图4进一步可见,常规测角方法的脉冲压缩结果由于信噪比的降低,会对角度估计结果有直接的影响;但是本发明方法对此进行了补偿,考虑多普勒频率而设计的匹配滤波器对信噪比有所改善,测角精度也会进一步提升。因此本发明方法有明显的优越性。
综上所述,本实施例提供的提升NLFM波形雷达目标测角精度的方法,利用雷达目标回波信号的多普勒频率估计来设计一个完全匹配的脉冲响应滤波器,进行雷达目标回波信号的脉冲压缩处理,使用于角度估计数据的信噪比损失减少,因此测角精度提高且性能稳定。To sum up, the method for improving the angle measurement accuracy of the NLFM waveform radar target provided in this embodiment uses the Doppler frequency estimation of the radar target echo signal to design a completely matched impulse response filter to measure the radar target echo signal. The pulse compression processing of the method reduces the loss of the signal-to-noise ratio of the angle estimation data, so the angle measurement accuracy is improved and the performance is stable.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deductions or substitutions can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010575170.8A CN111913161B (en) | 2020-06-22 | 2020-06-22 | Method for improving NLFM waveform radar target angle measurement precision |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010575170.8A CN111913161B (en) | 2020-06-22 | 2020-06-22 | Method for improving NLFM waveform radar target angle measurement precision |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111913161A true CN111913161A (en) | 2020-11-10 |
CN111913161B CN111913161B (en) | 2023-05-26 |
Family
ID=73226961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010575170.8A Active CN111913161B (en) | 2020-06-22 | 2020-06-22 | Method for improving NLFM waveform radar target angle measurement precision |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111913161B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114265051A (en) * | 2021-12-25 | 2022-04-01 | 中国电子科技集团公司第十四研究所 | A Pulse Doppler Radar Relative Amplitude Angle Measurement Method |
CN115015952A (en) * | 2022-06-13 | 2022-09-06 | 中国电子科技集团公司第十四研究所 | Pulse compression amplitude ratio ranging method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103412301A (en) * | 2013-08-23 | 2013-11-27 | 西安电子科技大学 | Metrewave radar angle measurement method |
CN103616679A (en) * | 2013-11-19 | 2014-03-05 | 北京航空航天大学 | PD radar ranging and angle measuring method based on difference beam modulation and waveform analysis |
CN105974390A (en) * | 2016-06-30 | 2016-09-28 | 西安电子科技大学 | Mechanic scan meter-wave radar mass center angle measuring method based on Doppler information |
CN106646451A (en) * | 2017-01-24 | 2017-05-10 | 成都泰格微电子研究所有限责任公司 | Angle tracking subsystem based on radar signal processing system |
JP2019168255A (en) * | 2018-03-22 | 2019-10-03 | 株式会社東芝 | Pulse compression radar device and radar signal processing method therefor |
-
2020
- 2020-06-22 CN CN202010575170.8A patent/CN111913161B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103412301A (en) * | 2013-08-23 | 2013-11-27 | 西安电子科技大学 | Metrewave radar angle measurement method |
CN103616679A (en) * | 2013-11-19 | 2014-03-05 | 北京航空航天大学 | PD radar ranging and angle measuring method based on difference beam modulation and waveform analysis |
CN105974390A (en) * | 2016-06-30 | 2016-09-28 | 西安电子科技大学 | Mechanic scan meter-wave radar mass center angle measuring method based on Doppler information |
CN106646451A (en) * | 2017-01-24 | 2017-05-10 | 成都泰格微电子研究所有限责任公司 | Angle tracking subsystem based on radar signal processing system |
JP2019168255A (en) * | 2018-03-22 | 2019-10-03 | 株式会社東芝 | Pulse compression radar device and radar signal processing method therefor |
Non-Patent Citations (2)
Title |
---|
RAMAZAN CETINER等: "Range and Angle Measurement in a Linear Pulsed Frequency Diverse Array Radar", 《IEEE》 * |
赵永波等: "一种多目标情况下的单脉冲测角方法", 《西安电子科技大学学报(自然科学版)》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114265051A (en) * | 2021-12-25 | 2022-04-01 | 中国电子科技集团公司第十四研究所 | A Pulse Doppler Radar Relative Amplitude Angle Measurement Method |
CN114265051B (en) * | 2021-12-25 | 2024-11-12 | 中国电子科技集团公司第十四研究所 | A pulse Doppler radar angle measurement method based on amplitude comparison |
CN115015952A (en) * | 2022-06-13 | 2022-09-06 | 中国电子科技集团公司第十四研究所 | Pulse compression amplitude ratio ranging method |
Also Published As
Publication number | Publication date |
---|---|
CN111913161B (en) | 2023-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5864857B2 (en) | Time delay estimation | |
Svilainis | Review on time delay estimate subsample interpolation in frequency domain | |
CN109471095B (en) | A FMCW Radar Distance Estimation Method Based on Fast Iterative Interpolation | |
CN103616687B (en) | The fitting of a polynomial ISAR envelope alignment method that piecewise linearity is estimated | |
US20030058159A1 (en) | Process for calibrating radar signals at subapertures of an antenna of two-channel SAR/MTI radar system | |
CN105022036B (en) | Wind profile radar wind speed assay method | |
CN101464514B (en) | Calibration method and calibration processor for step frequency radar system | |
CN111913161A (en) | Method for improving NLFM waveform radar target angle measurement precision | |
CN106646350A (en) | Correction method for inconsistency of amplitude gains of channels of single vector hydrophone | |
CN112130138B (en) | An ionospheric phase pollution correction method for over-the-horizon radar | |
CN106093927B (en) | Target based on the big pulse width signal of radar tests the speed distance measuring method | |
CN106054154B (en) | A kind of step frequency signal high-resolution imaging method of the maneuvering target based on ICPF | |
CN114428225A (en) | Multi-radiation-source arrival angle measuring method and device based on quasi-matched filtering | |
CN110045338A (en) | Amplitude phase error estimation and bearing calibration based on Hilbert transform | |
CN111175727B (en) | Method for estimating orientation of broadband signal based on conditional wave number spectral density | |
CN104931955B (en) | A kind of method of compensating wide band Sonar system transmission signal amplitude | |
JP2792338B2 (en) | Signal processing device | |
JPH0643235A (en) | Propagation path length measuring device | |
Li et al. | Software-defined calibration for FMCW phased-array radar | |
JP4723880B2 (en) | Radio wave induction device | |
CN114035149A (en) | Method for improving sensitivity of interferometer direction finding system | |
CN115932824A (en) | FMCW radar ranging method and system based on multiple antennas | |
CN115236648A (en) | Joint estimation method of time delay and Doppler for target acoustic echo signal under polar ice | |
CN114448762A (en) | Parameter Estimation Method of Chirp Signal Based on Nonlinear Transform in Impulsive Noise Environment | |
CN110133661B (en) | Phase process modeling compensation coherent accumulation signal-to-noise ratio loss method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |