[go: up one dir, main page]

CN111894532A - Sand control screen flow control system, method, device, oil downhole drilling and production tool - Google Patents

Sand control screen flow control system, method, device, oil downhole drilling and production tool Download PDF

Info

Publication number
CN111894532A
CN111894532A CN202010716833.3A CN202010716833A CN111894532A CN 111894532 A CN111894532 A CN 111894532A CN 202010716833 A CN202010716833 A CN 202010716833A CN 111894532 A CN111894532 A CN 111894532A
Authority
CN
China
Prior art keywords
flow
screen
sand
control
sand control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010716833.3A
Other languages
Chinese (zh)
Other versions
CN111894532B (en
Inventor
付光明
庹宇航
孙宝江
高永海
王志远
李�昊
时晨
彭玉丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202010716833.3A priority Critical patent/CN111894532B/en
Publication of CN111894532A publication Critical patent/CN111894532A/en
Application granted granted Critical
Publication of CN111894532B publication Critical patent/CN111894532B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • E21B43/086Screens with preformed openings, e.g. slotted liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

本发明属于石油与天然气开采技术领域,公开了一种防砂筛管流量控制系统、方法、装置、石油井下钻采工具,流体通过保护模块上矩形透孔进入固定精度挡砂层,进行第一级防砂处理,流体进入过流面积控制模块,再经过筛网进入管道;在需要调节筛管流量时,通过输电电缆供电使发热腔体供热,加热记忆金属,利用记忆金属的双程记忆效应,拉伸、移动滑块,改变过流面积控制结构中滑块的位置,改变流体的过流面积,实现筛管流量控制。本发明在石油现场生产过程中实时调节流过筛管的流体流量;利用记忆金属的特性提供了在防砂筛管处控制油井产量的方法;在石油现场生产过程中实时调节防砂筛管流体流量。与现有的防砂筛管相比,控制防砂筛管流量。

Figure 202010716833

The invention belongs to the technical field of oil and natural gas exploitation, and discloses a sand control screen flow control system, method, device, and oil downhole drilling and production tool. In sand control treatment, the fluid enters the flow area control module, and then enters the pipeline through the screen; when the flow of the screen needs to be adjusted, the heating chamber is supplied with power through the transmission cable to heat the memory metal, using the double-pass memory effect of the memory metal, Stretch and move the slider, change the position of the slider in the flow area control structure, change the flow area of the fluid, and realize the flow control of the screen tube. The invention adjusts the fluid flow through the screen pipe in real time during the oil field production process; provides a method for controlling the oil well production at the sand control screen pipe by utilizing the characteristics of the memory metal; and adjusts the fluid flow rate of the sand control screen pipe in real time during the oil field production process. Control sand control screen flow compared to existing sand control screens.

Figure 202010716833

Description

防砂筛管流量控制系统、方法、装置、石油井下钻采工具Sand control screen flow control system, method, device, and oil downhole drilling and production tool

技术领域technical field

本发明属于石油与天然气开采技术领域,尤其涉及一种防砂筛管流量控制系统、方法、装置、石油井下钻采工具。The invention belongs to the technical field of oil and natural gas exploitation, and in particular relates to a flow control system, method and device of a sand control screen, and an oil downhole drilling and production tool.

背景技术Background technique

目前,油层出砂是油气井生产中常见的一种现象。出砂对油气藏开采产生巨大的影响。防砂是现阶段解决油井出砂问题的主要方法。现阶段的防砂工艺主要是机械防砂、化学防砂等手段,减少油层中砂岩颗粒聚集在井筒周围、进入井筒,但这些防砂工艺大多是牺牲部分产能为代价。虽然各种防砂工艺在现场运用能收到一定的效果,但过度防砂使地层砂粒在近井地带聚集、堵塞孔隙,影响蚯蚓洞的形成,造成油井产能下降等问题。防砂与出砂相互配合的适度出砂技术,在保证油井产量的前提下,又能保证油井生产寿命和安全,提高生产效率的同时又降低了开发成本。适度出砂需根据生产实际情况调整油井的产量,现阶段对于自喷井主要通过调节井口的流压来实现油井产量的控制。At present, sand production is a common phenomenon in oil and gas well production. Sand production has a huge impact on oil and gas reservoir exploitation. Sand control is the main method to solve the problem of sand production in oil wells at this stage. The current sand control technology is mainly mechanical sand control, chemical sand control and other means to reduce the accumulation of sandstone particles in the oil layer around the wellbore and into the wellbore, but most of these sand control processes are at the cost of sacrificing part of the productivity. Although various sand control techniques can achieve certain effects in the field, excessive sand control causes formation sand to accumulate in the near wellbore area, block pores, affect the formation of earthworm caves, and cause problems such as oil well productivity decline. The moderate sand production technology that cooperates with sand control and sand production can ensure the production life and safety of oil wells on the premise of ensuring oil well production, improve production efficiency and reduce development costs. For moderate sand production, the output of the oil well needs to be adjusted according to the actual production situation. At this stage, for the self-blowing well, the flow pressure of the wellhead is mainly controlled to realize the control of the oil well output.

解决以上问题及缺陷的难度为:防砂筛管处于井底,本发明防砂筛管流量控制系统结构精密,且需通过预敷设电缆提供电源,对于预敷设电缆等设计要求较高。The difficulty of solving the above problems and defects is: the sand control screen is at the bottom of the well, the structure of the sand control screen flow control system of the present invention is precise, and the power supply needs to be provided by pre-laid cables, and the design requirements for pre-laid cables are relatively high.

解决以上问题及缺陷的意义为:本发明提供了一种在油井防砂筛管处控制油井产量的方法,可以实时调整油井产量,实现油井高效、智能化的油气安全生产。The significance of solving the above problems and defects is as follows: the present invention provides a method for controlling oil well production at the oil well sand control screen, which can adjust oil well production in real time and realize efficient and intelligent oil and gas safe production of oil wells.

发明内容SUMMARY OF THE INVENTION

针对现有技术存在的问题,本发明提供了一种防砂筛管流量控制系统、方法、装置、石油井下钻采工具。In view of the problems existing in the prior art, the present invention provides a sand control screen flow control system, method, device, and oil downhole drilling and production tool.

本发明是这样实现的,一种防砂筛管流量控制系统,所述防砂筛管流量控制系统包括:The present invention is realized in this way, a sand control screen flow control system, the sand control screen flow control system includes:

筛管及过流支撑模块,用于支撑整个筛管及过流;Screen and flow support module, used to support the entire screen and flow;

铺设路径填充模块,用于为输电电缆提供铺设路径;The laying path filling module is used to provide laying paths for transmission cables;

支撑模块,用于起保护填充层、支撑固定精度挡砂层和外保护层的作用;The support module is used to protect the filling layer, support the fixed precision sand retaining layer and the outer protective layer;

保护模块,用于保护筛管内部结构及过流;The protection module is used to protect the internal structure and overflow of the screen;

防砂模块,用于固定精度挡砂,实现第一级防砂;Sand control module, used to fix the precision sand block and realize the first-level sand control;

过流面积控制模块,用于改变过流面积的作用,控制流体流量;The flow area control module is used to change the function of the flow area and control the fluid flow;

电源模块,用于为发热电腔体提供电源。The power module is used to provide power for the heating electric cavity.

进一步,所述防砂筛管流量控制系统还包括:Further, the sand control screen flow control system also includes:

记忆金属加热模块,用于实现在需要调节筛管流量时,通过输电电缆供电使发热腔体供热,加热记忆金属;The memory metal heating module is used to supply heat through the power transmission cable to heat the heating cavity and heat the memory metal when the flow rate of the screen tube needs to be adjusted;

筛管流量控制模块,利用记忆金属的双程记忆效应(加热时恢复高温相形状,冷却时又能恢复低温相形状),改变过流面积控制结构中滑块的位置,改变流体的过流面积,以实现筛管流量的控制。The screen tube flow control module uses the double-pass memory effect of memory metal (restores the shape of the high temperature phase when heating, and restores the shape of the low temperature phase when cooling) to change the position of the slider in the flow area control structure and change the flow area of the fluid , in order to realize the control of screen flow.

本发明的另一目的在于提供一种运行所述防砂筛管流量控制系统的防砂筛管流量控制方法,所述防砂筛管流量控制方法包括:Another object of the present invention is to provide a sand control screen flow control method for operating the sand control screen flow control system, the sand control screen flow control method comprising:

第一步,流体通过保护模块上矩形透孔进入固定精度挡砂层,进行第一级防砂处理,流体进入过流面积控制模块,再经过筛网进入管道;In the first step, the fluid enters the fixed-precision sand retaining layer through the rectangular through hole on the protection module, and performs the first-level sand control treatment. The fluid enters the flow area control module, and then enters the pipeline through the screen;

第二步,在需要调节筛管流量时,通过输电电缆供电使发热腔体供热,加热记忆金属,利用记忆金属的双程记忆效应,改变其过流面积控制结构中滑块的位置,改变流体的过流面积,以实现筛管流量的控制。In the second step, when the flow rate of the screen tube needs to be adjusted, the heating chamber is supplied with power through the power transmission cable to heat the memory metal, and the two-way memory effect of the memory metal is used to change the position of the slider in the flow area control structure. The flow area of the fluid is used to control the flow of the screen.

本发明的另一目的在于提供一种安装有所述防砂筛管流量控制系统的防砂筛管流量控制装置,所述防砂筛管流量控制装置包括:中心管、固定精度挡砂层、外保护层、过流面积控制结构、填充层、中间层。各层之间采用嵌套结构,过流面积控制结构镶嵌于中心管、填充层、中心层。其位置、连接关系如图2所示。Another object of the present invention is to provide a sand control screen flow control device equipped with the sand control screen flow control system, the sand control screen flow control device comprising: a central pipe, a fixed precision sand retaining layer, and an outer protective layer , Overflow area control structure, filling layer, intermediate layer. The nested structure is adopted between the layers, and the flow area control structure is embedded in the center tube, the filling layer and the center layer. Its location and connection relationship are shown in Figure 2.

中心管与中间层之间的填充层铺设输电电缆;The filling layer between the central pipe and the intermediate layer lays the transmission cable;

进一步,填充层用高分子耐压、耐热材料填充;Further, the filling layer is filled with polymer pressure-resistant and heat-resistant materials;

进一步,所述过流面积控制结构包括:固定精度挡砂垫圈、过流面积控制结构主体、支架、筛网、滑块、加热腔体、记忆金属;Further, the flow area control structure includes: a fixed precision sand retaining washer, a flow area control structure main body, a bracket, a screen, a slider, a heating cavity, and a memory metal;

进一步,所述固定精度挡砂垫圈由多层筛网重叠而成;Further, the fixed precision sand retaining washer is formed by overlapping multiple layers of screen meshes;

进一步,所述滑块、发热腔体、过流面积控制结构主体焊接在一起且密封;Further, the slider, the heating cavity, and the main body of the flow area control structure are welded together and sealed;

进一步,所述固定精度挡砂层由多层金属丝网组成;Further, the fixed precision sand retaining layer is composed of multiple layers of wire mesh;

进一步,所述外保护层上设置有矩形透孔。Further, the outer protective layer is provided with a rectangular through hole.

本发明的另一目的在于提供一种安装有所述防砂筛管流量控制装置的石油井下钻采工具。Another object of the present invention is to provide an oil downhole drilling and production tool equipped with the sand control screen flow control device.

结合上述的所有技术方案,本发明所具备的优点及积极效果为:本发明通过发热腔体给记忆金属加热,利用记忆金属双程记忆的特性,改变滑块的位置,改变流体的过流面积,最终改变筛管流体流量;滑块、发热腔体、过流面积控制结构框架焊接在一起且必须密封,保证记忆金属在一个密闭的空间里被发热电缆加热;采用双固定精度挡砂层(固定精度挡砂层、固定精度挡砂垫圈),防砂可靠性高;发热腔体具有良好的弹塑性。Combined with all the above technical solutions, the advantages and positive effects of the present invention are as follows: the present invention heats the memory metal through the heating cavity, utilizes the double-pass memory characteristics of the memory metal, changes the position of the slider, and changes the flow area of the fluid , and finally change the fluid flow of the screen; the slider, the heating cavity, and the flow area control structure frame are welded together and must be sealed to ensure that the memory metal is heated by the heating cable in a closed space; the double fixed precision sand retaining layer ( Fixed precision sand retaining layer, fixed precision sand retaining washer), high reliability of sand control; heating cavity has good elastic plasticity.

本发明在石油现场生产过程中可以实时调节流过筛管的流体流量,现有的防砂筛管无实时调节流体流量的作用。本发明利用记忆金属的特性提供了一种在防砂筛管处控制油井产量的方法。在石油现场生产过程中可以实时调节防砂筛管流体流量。与现有的防砂筛管相比,本发明可以控制防砂筛管流量。The present invention can adjust the fluid flow through the screen in real time during the production process of the oil field, and the existing sand control screen has no function of real-time adjustment of the fluid flow. The present invention utilizes the properties of memory metals to provide a method for controlling oil well production at the sand control screen. The fluid flow of the sand control screen can be adjusted in real time during oil field production. Compared with the existing sand control screen, the present invention can control the flow rate of the sand control screen.

附图说明Description of drawings

图1为本发明实施例提供的防砂筛管流量控制方法流程图;1 is a flowchart of a flow control method for a sand control screen provided by an embodiment of the present invention;

图2为本发明实施例提供的防砂筛管流量控制装置的结构示意图;2 is a schematic structural diagram of a sand control screen flow control device provided by an embodiment of the present invention;

图3为本发明的可控流体流量的外保护层、固定精度挡砂层、固定精度挡砂垫圈的结构示意图;3 is a schematic structural diagram of an outer protective layer with a controllable fluid flow rate, a fixed-precision sand-retaining layer, and a fixed-precision sand-retaining washer according to the present invention;

图4为本发明的可控流体流量的防砂筛管过流面积控制结构示意图,图中图4(a)流动状态一;图4(b)流动状态二;Figure 4 is a schematic diagram of the flow area control structure of the sand control screen with controllable fluid flow according to the present invention, Figure 4 (a) flow state 1; Figure 4 (b) flow state 2;

图中:1、外保护层;2、固定精度挡砂层;3、固定精度挡砂垫圈;4、过流面积控制结构主体;5、支架;6、筛网;7、中间层;8、滑块;9、填充层;10、中心管;11、加热腔体;12、记忆金属;13、输电电缆;14、带螺纹台阶槽的孔。In the figure: 1. Outer protective layer; 2. Fixed-precision sand-retaining layer; 3. Fixed-precision sand-retaining washer; 4. Main body of flow area control structure; 5. Support; 6. Screen; 7. Intermediate layer; 8. Slider; 9. Filling layer; 10. Center tube; 11. Heating cavity; 12. Memory metal; 13. Power cable; 14. Hole with threaded step groove.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.

针对现有技术存在的问题,本发明提供了一种防砂筛管流量控制系统、方法、装置、石油井下钻采工具,下面结合附图对本发明作详细的描述。In view of the problems existing in the prior art, the present invention provides a sand control screen flow control system, method, device, and oil downhole drilling and production tool. The present invention is described in detail below with reference to the accompanying drawings.

本发明实例提供的防砂筛管流量控制系统包括:The sand control screen flow control system provided by the example of the present invention includes:

筛管及过流支撑模块,用于支撑整个筛管及过流。Screen and flow support module, used to support the entire screen and flow.

铺设路径填充模块,用于为输电电缆提供铺设路径。Laying Path Filling Module to provide laying paths for transmission cables.

支撑模块,用于起保护填充层、支撑固定精度挡砂层和外保护层的作用。The support module is used to protect the filling layer, support the fixed precision sand retaining layer and the outer protective layer.

保护模块,用于保护筛管内部结构及过流。The protection module is used to protect the internal structure of the screen and the overflow.

防砂模块,用于固定精度挡砂,实现第一级防砂。The sand control module is used to fix the precision sand block and realize the first-level sand control.

过流面积控制模块,用于改变过流面积的作用,控制流体流量。The flow area control module is used to change the function of the flow area and control the fluid flow.

电源模块,用于为发热电腔体提供电源。The power module is used to provide power for the heating electric cavity.

在本发明的优选实施例中,筛管及过流支撑模块为中心管10;铺设路径填充模块为填充层9;支撑模块为中间层7;保护模块为外保护层,上有矩形透孔;防砂模块为固定精度挡砂;过流面积控制模块为过流面积控制结构(固定精度挡砂垫圈3、过流面积控制结构主体4、支架5、筛网6、滑块8、加热腔体11、记忆金属12);电源模块为输电电缆。In a preferred embodiment of the present invention, the screen pipe and the overflow support module are the central pipe 10; the laying path filling module is the filling layer 9; the support module is the middle layer 7; the protection module is the outer protection layer with rectangular through holes; The sand control module is a fixed precision sand block; the flow area control module is a flow area control structure (fixed precision sand blocking gasket 3, flow area control structure main body 4, bracket 5, screen 6, slider 8, heating cavity 11 , memory metal 12); the power module is a power transmission cable.

如图1所示,本发明实例提供的防砂筛管流量控制方法包括以下步骤:As shown in Figure 1, the sand control screen flow control method provided by the example of the present invention comprises the following steps:

S101:流体通过外保护层上矩形透孔进入固定精度挡砂层,进行第一级防砂处理,流体进入过流面积控制结构,再经过筛网进入管道;S101: The fluid enters the fixed-precision sand retaining layer through the rectangular through holes on the outer protective layer, and performs the first-level sand control treatment. The fluid enters the flow area control structure, and then enters the pipeline through the screen;

S102:在需要调节筛管流量时,通过输电电缆供电使发热腔体供热,加热记忆金属,利用记忆金属的双程记忆效应(加热时恢复高温相形状,冷却时又能恢复低温相形状),改变过流面积控制结构中滑块的位置,改变流体的过流面积,以实现筛管流量的控制。S102: When it is necessary to adjust the flow rate of the screen tube, the heating chamber is supplied with power through the power transmission cable to heat the memory metal, and the double-pass memory effect of the memory metal is used (the shape of the high temperature phase is restored when heating, and the shape of the low temperature phase can be restored when cooling) , change the position of the slider in the flow area control structure, and change the flow area of the fluid to control the flow of the screen.

下面结合附图对本发明的技术方案作进一步的描述。The technical solutions of the present invention will be further described below with reference to the accompanying drawings.

如图2和图3所示,本发明实施例提供的防砂筛管流量控制装置包括:中心管10、固定精度挡砂层2、外保护层1、过流面积控制结构(固定精度挡砂垫圈3、过流面积控制结构主体4、支架5、筛网6、滑块8、加热腔体11、记忆金属12)、填充层9、中间层7。As shown in FIG. 2 and FIG. 3 , the sand control screen flow control device provided by the embodiment of the present invention includes: a central pipe 10, a fixed-precision sand retaining layer 2, an outer protective layer 1, and a flow area control structure (a fixed-precision sand retaining washer). 3. Flow area control structure Main body 4 , bracket 5 , screen 6 , slider 8 , heating cavity 11 , memory metal 12 ), filling layer 9 , intermediate layer 7 .

中心管10,主要支撑整个筛管及过流作用;填充层9,主要起为输电电缆提供铺设路径的作用;中间层7,主要起支撑的作用;外保护层1,其上有矩形透孔,主要起保护筛管内部结构及过流作用;固定精度挡砂2,主要起第一级防砂作用;过流面积控制结构,主要起改变过流面积的作用,进而控制流体流量;输电电缆13,为发热电腔体提供电源。与现有的防砂筛管相比,本发明的特点是可以控制防砂筛管流量。The central pipe 10 mainly supports the entire screen pipe and the overcurrent function; the filling layer 9 mainly acts as a laying path for the transmission cable; the middle layer 7 mainly acts as a support; the outer protective layer 1 has rectangular through holes on it , mainly to protect the internal structure of the screen and the role of over-current; fixed-precision sand retaining 2, mainly to play the role of first-level sand control; the over-flow area control structure, mainly to change the over-flow area, and then control the fluid flow; power transmission cable 13 , to provide power for the heating electric cavity. Compared with the existing sand control screen, the present invention is characterized in that the flow rate of the sand control screen can be controlled.

在本发明的优选实施例中,过流面积控制结构由过流面积控制结构主体4、固定精度挡砂垫圈3、筛网6、滑块8、支架5、记忆金属12、加热腔体11组成,通过加热腔体11给记忆金属12加热,改变记忆金属12的状态,进而改变滑块8的位置,改变流体的过流面积,最终改变筛管流体流量;滑块8、加热腔体11、过流面积控制结构主体4焊接在一起且必须密封,保证记忆金属12在一个密闭的空间里被发热电缆加热;加热腔体11具有良好的弹塑性。In a preferred embodiment of the present invention, the flow area control structure is composed of a flow area control structure main body 4 , a fixed precision sand retaining washer 3 , a screen 6 , a slider 8 , a bracket 5 , a memory metal 12 , and a heating cavity 11 . , heat the memory metal 12 through the heating cavity 11, change the state of the memory metal 12, and then change the position of the slider 8, change the flow area of the fluid, and finally change the fluid flow of the screen tube; the slider 8, the heating cavity 11, The main body 4 of the flow area control structure is welded together and must be sealed to ensure that the memory metal 12 is heated by the heating cable in a closed space; the heating cavity 11 has good elasticity and plasticity.

在本发明的优选实施例中,固定精度挡砂层2由多层金属丝网重叠组成。在本发明的优选实施例中,通过输电电缆13给加热腔体11供电、加热记忆金属12,改变记忆金属12的状态,改变滑块8的位置、改变流体的过流面积,实现流体流量的改变。In a preferred embodiment of the present invention, the fixed-precision sand-retaining layer 2 is formed by overlapping multiple layers of wire mesh. In the preferred embodiment of the present invention, the power transmission cable 13 is used to supply power to the heating cavity 11, heat the memory metal 12, change the state of the memory metal 12, change the position of the slider 8, and change the flow area of the fluid, so as to realize the change of fluid flow. Change.

在本发明的优选实施例中,通过中心管10与中间层7之间的填充层铺设输电电缆13。In the preferred embodiment of the present invention, the power transmission cable 13 is laid through the filling layer between the central tube 10 and the intermediate layer 7 .

在本发明的优选实施例中,采用了双固定精度挡砂层(固定精度挡砂层2、固定精度挡砂垫圈3),防砂可靠性的高;固定精度挡砂垫圈3由多层筛网重叠而成。In the preferred embodiment of the present invention, double fixed-precision sand-retaining layers (fixed-precision sand-retaining layer 2, fixed-precision sand-retaining washer 3) are used, and the sand-controlling reliability is high; overlapping.

在实际的生产中,流体通过外保护层1上矩形透孔进入固定精度挡砂层2,进行第一级防砂处理,流体进入过流面积控制结构,再经过筛网6进入管道。In actual production, the fluid enters the fixed-precision sand retaining layer 2 through the rectangular through holes on the outer protective layer 1, and performs the first-level sand control treatment. The fluid enters the flow area control structure, and then enters the pipeline through the screen 6.

在需要调节筛管流量时,通过输电电缆13供电使加热腔体11供热,加热记忆金属12,改变记忆金属12的状态,从而改变过流面积控制结构中滑块8的位置,改变流体的过流面积,以实现筛管流量的控制。如图4所示,当滑块8位置发生改变时,流入筛管内的流量相应减少。When it is necessary to adjust the flow rate of the screen tube, power supply through the power transmission cable 13 makes the heating cavity 11 supply heat, heat the memory metal 12, and change the state of the memory metal 12, thereby changing the position of the slider 8 in the flow area control structure and changing the fluid flow. Flow area to realize the control of screen flow. As shown in Fig. 4, when the position of the slider 8 is changed, the flow into the screen pipe is correspondingly reduced.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person skilled in the art is within the technical scope disclosed by the present invention, and all within the spirit and principle of the present invention Any modifications, equivalent replacements and improvements made within the scope of the present invention should be included within the protection scope of the present invention.

Claims (10)

1.一种防砂筛管流量控制系统,其特征在于,所述防砂筛管流量控制系统包括:1. A sand control screen flow control system is characterized in that, the sand control screen flow control system comprises: 筛管及过流支撑模块,用于支撑整个筛管及过流;Screen and flow support module, used to support the entire screen and flow; 铺设路径填充模块,用于为输电电缆提供铺设路径;The laying path filling module is used to provide laying paths for transmission cables; 支撑模块,用于起保护填充层、支撑固定精度挡砂层和外保护层的作用;The support module is used to protect the filling layer, support the fixed precision sand retaining layer and the outer protective layer; 保护模块,用于保护筛管内部结构及过流;The protection module is used to protect the internal structure and overflow of the screen; 防砂模块,用于固定精度挡砂,实现第一级防砂;Sand control module, used to fix the precision sand block and realize the first-level sand control; 过流面积控制模块,用于改变过流面积的作用,控制流体流量;The flow area control module is used to change the function of the flow area and control the fluid flow; 电源模块,用于为发热电腔体提供电源。The power module is used to provide power for the heating electric cavity. 2.如权利要求1所述的防砂筛管流量控制系统,其特征在于,所述防砂筛管流量控制系统还包括:2. The sand control screen flow control system according to claim 1, wherein the sand control screen flow control system further comprises: 记忆金属加热模块,用于实现在需要调节筛管流量时,通过输电电缆供电使发热腔体供热,加热记忆金属;The memory metal heating module is used to supply heat through the power transmission cable to heat the heating cavity and heat the memory metal when the flow rate of the screen tube needs to be adjusted; 筛管流量控制模块,利用记忆金属的双程记忆效应,加热时恢复高温相形状,冷却时又能恢复低温相形状,改变过流面积控制结构中滑块的位置,改变流体的过流面积,以实现筛管流量的控制。The screen flow control module uses the two-way memory effect of memory metal to restore the shape of the high temperature phase when heating, and the shape of the low temperature phase when cooling, changing the position of the slider in the flow area control structure, and changing the flow area of the fluid. In order to realize the control of the screen flow. 3.一种运行权利要求1~2任意一项所述防砂筛管流量控制系统的防砂筛管流量控制方法,其特征在于,所述防砂筛管流量控制方法包括:3. A sand control screen flow control method for operating the sand control screen flow control system according to any one of claims 1 to 2, wherein the sand control screen flow control method comprises: 第一步,流体通过保护模块上矩形透孔进入固定精度挡砂层,进行第一级防砂处理,流体进入过流面积控制模块,再经过筛网进入管道;In the first step, the fluid enters the fixed-precision sand retaining layer through the rectangular through hole on the protection module, and performs the first-level sand control treatment. The fluid enters the flow area control module, and then enters the pipeline through the screen; 第二步,在需要调节筛管流量时,通过输电电缆供电使发热腔体供热,加热记忆金属,根据其双程记忆的特性,改变过流面积控制结构中滑块的位置,改变流体的过流面积,以实现筛管流量的控制。In the second step, when the flow rate of the screen tube needs to be adjusted, the heating chamber is supplied with power through the power transmission cable, and the memory metal is heated. Flow area to realize the control of screen flow. 4.一种安装有权利要求1~2任意一项所述防砂筛管流量控制系统的防砂筛管流量控制装置,其特征在于,所述防砂筛管流量控制装置包括:中心管、固定精度挡砂层、外保护层、过流面积控制结构、填充层、中间层;4. A sand control screen flow control device installed with the sand control screen flow control system according to any one of claims 1 to 2, wherein the sand control screen flow control device comprises: a central pipe, a fixed precision stopper Sand layer, outer protective layer, flow area control structure, filling layer, intermediate layer; 中心管与中间层之间的填充层铺设输电电缆。The filling layer between the central tube and the intermediate layer lays the transmission cable. 5.如权利要求4所述的防砂筛管流量控制装置,其特征在于,所述过流面积控制结构包括:固定精度挡砂垫圈、过流面积控制结构主体、支架、筛网、滑块、加热腔体、记忆金属。5. The sand control screen flow control device according to claim 4, wherein the flow area control structure comprises: a fixed precision sand retaining washer, a flow area control structure main body, a bracket, a screen, a slider, Heating cavity, memory metal. 6.如权利要求5所述的防砂筛管流量控制装置,其特征在于,所述固定精度挡砂垫圈由多层筛网重叠而成。6 . The flow control device for a sand control screen according to claim 5 , wherein the fixed-precision sand retaining washer is formed by overlapping multiple layers of screens. 7 . 7.如权利要求5所述的防砂筛管流量控制装置,其特征在于,所述滑块、发热腔体、过流面积控制结构主体焊接在一起且密封。7 . The flow control device for sand control screens according to claim 5 , wherein the sliding block, the heating cavity, and the main body of the flow area control structure are welded together and sealed. 8 . 8.如权利要求4所述的防砂筛管流量控制装置,其特征在于,所述固定精度挡砂层由多层金属丝网重叠组成。8 . The flow control device for sand control screens according to claim 4 , wherein the fixed-precision sand retaining layer is formed by overlapping multiple layers of metal wire meshes. 9 . 9.如权利要求4所述的防砂筛管流量控制装置,其特征在于,所述外保护层上设置有矩形透孔。9 . The flow control device for sand control screens according to claim 4 , wherein the outer protective layer is provided with rectangular through holes. 10 . 10.一种安装有权利要求4所述防砂筛管流量控制装置的石油井下钻采工具。10. An oil downhole drilling and production tool equipped with the sand control screen flow control device of claim 4.
CN202010716833.3A 2020-07-23 2020-07-23 Sand control screen pipe flow control system, method and device and petroleum underground drilling and production tool Active CN111894532B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010716833.3A CN111894532B (en) 2020-07-23 2020-07-23 Sand control screen pipe flow control system, method and device and petroleum underground drilling and production tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010716833.3A CN111894532B (en) 2020-07-23 2020-07-23 Sand control screen pipe flow control system, method and device and petroleum underground drilling and production tool

Publications (2)

Publication Number Publication Date
CN111894532A true CN111894532A (en) 2020-11-06
CN111894532B CN111894532B (en) 2023-02-21

Family

ID=73190791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010716833.3A Active CN111894532B (en) 2020-07-23 2020-07-23 Sand control screen pipe flow control system, method and device and petroleum underground drilling and production tool

Country Status (1)

Country Link
CN (1) CN111894532B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116066033A (en) * 2023-03-15 2023-05-05 山东巨辉石油科技有限公司 Anti-blocking sand filtering pipe for oil well

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730223A (en) * 1996-01-24 1998-03-24 Halliburton Energy Services, Inc. Sand control screen assembly having an adjustable flow rate and associated methods of completing a subterranean well
US20020108755A1 (en) * 2001-01-26 2002-08-15 Baker Hughes Incorporated Sand screen with active flow control
CN101280677A (en) * 2007-03-13 2008-10-08 普拉德研究及开发股份有限公司 Flow Control Assemblies with Fixed Flow Control and Adjustable Flow Control
CN201588608U (en) * 2010-01-05 2010-09-22 中国海洋石油总公司 Flow control screen pipe
CN106639990A (en) * 2016-11-14 2017-05-10 北京国泰通源技术有限公司 Intelligent sand-prevention and water-controlling sieve tube
CN107143315A (en) * 2017-07-06 2017-09-08 成都川通达科技有限公司 A kind of flow control sand control installation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730223A (en) * 1996-01-24 1998-03-24 Halliburton Energy Services, Inc. Sand control screen assembly having an adjustable flow rate and associated methods of completing a subterranean well
US20020108755A1 (en) * 2001-01-26 2002-08-15 Baker Hughes Incorporated Sand screen with active flow control
CN101280677A (en) * 2007-03-13 2008-10-08 普拉德研究及开发股份有限公司 Flow Control Assemblies with Fixed Flow Control and Adjustable Flow Control
CN201588608U (en) * 2010-01-05 2010-09-22 中国海洋石油总公司 Flow control screen pipe
CN106639990A (en) * 2016-11-14 2017-05-10 北京国泰通源技术有限公司 Intelligent sand-prevention and water-controlling sieve tube
CN107143315A (en) * 2017-07-06 2017-09-08 成都川通达科技有限公司 A kind of flow control sand control installation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116066033A (en) * 2023-03-15 2023-05-05 山东巨辉石油科技有限公司 Anti-blocking sand filtering pipe for oil well

Also Published As

Publication number Publication date
CN111894532B (en) 2023-02-21

Similar Documents

Publication Publication Date Title
CN104504230B (en) Estimation method for recovery ratio and limit drainage radius of low-permeability gas well
CN204266939U (en) A kind of water and oil control second completion pipe string combination
CN111894532A (en) Sand control screen flow control system, method, device, oil downhole drilling and production tool
CN104713259A (en) Method and system for extracting heat energy of hot dry rocks
CN103088195A (en) Well-type vacuum resistance furnace with hydraulic cover
CN204081534U (en) A kind of heater being convenient to concreting in cold-weather
CN112815557B (en) A heat exchange casing device and geothermal single well system for efficiently exploiting geothermal resources
CN204187869U (en) A kind of solar thermal collector
CN104612641B (en) An injection-production integrated pipe string and its design method
CN103822404B (en) A kind of device and method improving ground heat exchanger performance
CN204141896U (en) A kind of device improving ground heat exchanger performance
CN113512996B (en) Winterized river channel water blocking gate for hydraulic engineering and operation method thereof
CN115012877B (en) Horizontal well tubular column capable of increasing solubility of high Wen Xianshui-layer carbon dioxide
CN116362087A (en) Stress regulation and control method for mixed-flow turbine volute combined structure
CN203239240U (en) Variable permeability horizontal well segmented completion pipe string
CN106764162B (en) It is a kind of for give, the rubber-heating gasket of drainage pipeline antifreezing block
CN201992796U (en) Intelligent instant water heater
Min et al. Experimental Study on Segmented Water Control in Buried Hill Crack Gas Reservoir: A Case Study of Huizhou 26⁃ 6 Condensate Gas Field
CN206531267U (en) A low-voltage electric water heater
CN203395588U (en) Wellhead electromagnetic heating device
CN201547383U (en) Automatic temperature control valve for automatic pressure release
CN210407776U (en) Open-air stadium seat changes in temperature governing system
CN203775450U (en) Pipeline electromagnetic heater
CN206861262U (en) A kind of well head pipeline semiconductor heat booster
RU2450121C1 (en) Method to heat injection fluid in well bore to displace oil from bed

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant