[go: up one dir, main page]

CN111874881B - Method for purifying xenon by using DD3R molecular sieve membrane - Google Patents

Method for purifying xenon by using DD3R molecular sieve membrane Download PDF

Info

Publication number
CN111874881B
CN111874881B CN202010448140.0A CN202010448140A CN111874881B CN 111874881 B CN111874881 B CN 111874881B CN 202010448140 A CN202010448140 A CN 202010448140A CN 111874881 B CN111874881 B CN 111874881B
Authority
CN
China
Prior art keywords
molecular sieve
xenon
membrane
gas
dd3r
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010448140.0A
Other languages
Chinese (zh)
Other versions
CN111874881A (en
Inventor
王学瑞
顾学红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Publication of CN111874881A publication Critical patent/CN111874881A/en
Application granted granted Critical
Publication of CN111874881B publication Critical patent/CN111874881B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0042Physical processing only by making use of membranes
    • C01B23/0047Physical processing only by making use of membranes characterised by the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/001Physical processing by making use of membranes
    • C01B2210/0012Physical processing by making use of membranes characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0029Obtaining noble gases
    • C01B2210/0037Xenon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0051Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The invention provides a method for purifying xenon by using a DD3R molecular sieve membrane. We develop an online recycling technology of xenon in a closed-circuit medical xenon anesthesia process by using a DD3R molecular sieve membrane. Single component carbon dioxide permeability of 1.5X 10 ‑7 mol·m ‑2 ·s ‑1 ·Pa ‑1 The selectivity for separation of carbon dioxide to xenon is 570. The permeation flux is an order of magnitude higher than that of conventional membrane materials. CO due to the all-silicon nature of the DD3R molecular sieve membrane 2 The permeability of the membrane is slightly influenced by water vapor, which is different from that the aluminum-containing molecular sieve membrane pore channel is easily blocked by water adsorption. High CO content 2 Flux and high CO 2 the/Xe selectivity and the long-time stability ensure the good prospect of the hollow fiber DD3R molecular sieve membrane in the on-line recycling of xenon for medical anesthesia.

Description

一种采用DD3R分子筛膜提纯氙气的方法A kind of method that adopts DD3R molecular sieve membrane to purify xenon gas

技术领域technical field

本发明涉及一种采用DD3R分子筛膜提纯氙气的方法,属于气体分离技术领域。The invention relates to a method for purifying xenon gas by adopting a DD3R molecular sieve membrane, and belongs to the technical field of gas separation.

背景技术Background technique

稀有气体的制备和纯化是一种极具挑战性的过程。氙气作为一种极为珍贵的稀有气体,在半导体制造、光电源、航空和医疗成像与麻醉等领域具有广泛的应用。目前,氙气只能通过对空分尾气进一步低温精馏而获得。由于,氙气在空气中的丰度极低(0.087ppmv),分离能耗极高,氙气的售价在$30,000~$60,000/m3 gas,STP。除此之外,日益增加的工业需求被氙气市场的有限供应所限制。据估算,即使将全球所有空分装置加装氙气提取装置,其供应量也不足84,000m3 gas,STP。因此,开发氙气在线回用技术是保障氙气有效供应的唯一途径。The preparation and purification of noble gases is an extremely challenging process. As an extremely precious rare gas, xenon has a wide range of applications in semiconductor manufacturing, optoelectronics, aviation and medical imaging and anesthesia. At present, xenon gas can only be obtained by further cryogenic rectification of air separation tail gas. Due to the extremely low abundance of xenon in the air (0.087ppmv), the energy consumption for separation is extremely high, and the price of xenon is $30,000 to $60,000/m 3 gas, STP . In addition to this, the increasing industrial demand is limited by the limited supply in the xenon market. It is estimated that even if all air separation units in the world are equipped with xenon extraction units, their supply will be less than 84,000m 3 gas, STP . Therefore, the development of online xenon recycling technology is the only way to ensure the effective supply of xenon.

本申请所应用的医疗氙气回收,主要涉及的分离体系为N2、O2、CO2和Xe的混合气。德国Dragerwek Aktiengesellschaft公开了一种利用高压液化方法回收麻醉尾气中氙气的方法(US 005520169),需将气体加压至>60bar,使氙气液化从而实现与其他不凝结气体分离,再次气化可获得含量为80%氙气、12%氧气和8%氮气的混合物;需耦合活性炭和分子筛吸附等技术才能将二氧化碳移除。意大利SIAD SOCIETA’ITALIANA ACETILENE&DERIVATI S.P.A.公开报道了一种深冷回收麻醉尾气中氙气的方法(WO 98/18718),首先利用5~30%丙酮氢氧化钾溶液将二氧化碳吸收,然后再进行深冷分离,氙气回收率为90~92%。Smetannikov等人也公开了一种深冷回收氙气的方法(RU 2238113)。德国MesserGriesheim GmbH和英国UWSVentures LTD对深冷过程进行优化,分别公开深冷固化回收氙气(US 006134914)和两级深冷的方法(WO 2004/060459)。尽管利用氙气与气体组分相变温度的不同可以实现回收,但存在分离工艺繁琐、能耗极高、成本高的问题。The medical xenon recovery used in this application mainly involves a separation system of a mixture of N 2 , O 2 , CO 2 and Xe. Dragerwek Aktiengesellschaft, Germany discloses a method for recovering xenon gas in anesthesia tail gas by high-pressure liquefaction method (US 005520169), the gas needs to be pressurized to >60 bar, and the xenon gas is liquefied so as to be separated from other non-condensable gases, and the content can be obtained by re-gasification It is a mixture of 80% xenon gas, 12% oxygen gas and 8% nitrogen gas; it needs to be coupled with activated carbon and molecular sieve adsorption technology to remove carbon dioxide. Italian SIAD SOCIETA'ITALIANA ACETILENE&DERIVATI SPA publicly reported a method for cryogenic recovery of xenon gas in anesthesia exhaust gas (WO 98/18718), firstly using 5-30% acetone potassium hydroxide solution to absorb carbon dioxide, and then cryogenic separation, The recovery rate of xenon is 90-92%. A method for cryogenic recovery of xenon gas has also been disclosed by Smetannikov et al. (RU 2238113). MesserGriesheim GmbH of Germany and UWS Ventures LTD of the United Kingdom optimized the cryogenic process, and disclosed methods for cryogenic solidification and recovery of xenon gas (US 006134914) and two-stage cryogenic methods (WO 2004/060459). Although recovery can be achieved by utilizing the difference in phase transition temperature between xenon and gas components, there are problems such as cumbersome separation process, extremely high energy consumption and high cost.

Hargasser公开了一种麻醉呼吸系统(US 2010/0258117),提出利用活性炭、氧化硅、氧化铝或分子筛等固体吸附材料回收麻醉尾气中的氙气。美国Advanced TechnologyMaterials公开了一种活性炭吸附回收氙气的方法(US 2013/0112076)。美国Air Productsand Chemicals公开了一种真空变压吸附回收氙气的方法(US 8535414),可用于氮气中0.1~2.5%氙气的回收。英国Sagetech Medical Equipment Limited公开了一种多孔材料吸附与超临界二氧化碳萃取相耦合的分离方法(GB 2574208)。浙江氙科医疗器械有限公司公开了一种固体氢氧化钠与氧化钙混合物脱除麻醉氙气中二氧化碳的方法(CN 108837253)。固体吸附或吸收方法可以实现常温下氙气的回收,然而其再生过程需要高温处理,能耗较高,而且氙气回收率较低。Hargasser discloses an anesthesia breathing system (US 2010/0258117), which proposes to use solid adsorption materials such as activated carbon, silica, alumina or molecular sieves to recover xenon gas in anesthesia exhaust gas. Advanced Technology Materials in the United States discloses a method for recovering xenon by activated carbon adsorption (US 2013/0112076). Air Products and Chemicals of the United States discloses a method for recovering xenon gas by vacuum pressure swing adsorption (US 8535414), which can be used for the recovery of 0.1-2.5% xenon gas in nitrogen. British Sagetech Medical Equipment Limited discloses a separation method combining adsorption of porous materials and extraction of supercritical carbon dioxide (GB 2574208). Zhejiang Xenon Medical Apparatus Co., Ltd. discloses a method for removing carbon dioxide from anesthetizing xenon from a mixture of solid sodium hydroxide and calcium oxide (CN 108837253). The solid adsorption or absorption method can realize the recovery of xenon gas at room temperature, but its regeneration process requires high temperature treatment, high energy consumption, and low recovery rate of xenon gas.

膜分离技术不涉及相转化,可显著降低氙气回用的能耗;同时,膜分离技术可实现混合气体的连续分离,操作也更为简单,是一种更经济可靠的技术路线。德国KlausSchmidt公开了一种利用碳膜回收麻醉氙气的方法(US 2010/0031961),但膜通量仅为~5×10-9(J.Membr.Sci.2007,301,29-38),不能满足麻醉呼吸机小型化、便携的技术要求。法国Air Liquide公开了一种有机膜循环使用麻醉氙气的方法(US 2009/0126733)。Membrane separation technology does not involve phase inversion, which can significantly reduce the energy consumption of xenon gas reuse; at the same time, membrane separation technology can realize continuous separation of mixed gas, and the operation is simpler, which is a more economical and reliable technical route. KlausSchmidt, Germany discloses a method for recovering anesthetic xenon by using carbon membrane (US 2010/0031961), but the membrane flux is only ~5×10 -9 (J.Membr.Sci.2007,301,29-38), which cannot be Meet the technical requirements of miniaturization and portability of anesthesia ventilator. Air Liquide of France discloses a method for circulating anesthesia xenon in organic membranes (US 2009/0126733).

发明内容SUMMARY OF THE INVENTION

目前,氙气的制备与回收技术以高能耗的冷冻精馏为主。日益增加的市场需求和产能上限迫使开发高效节能的氙气回用技术,比如膜分离技术。本发明开发出一种DD3R分子筛膜用于闭路医疗氙气麻醉过程中氙气的在线回用技术。单组分二氧化碳渗透性为1.5×10-7mol·m-2·s-1·Pa-1,二氧化碳对氙气的分离选择性为570。渗透通量比传统膜材料高出一个数量级。膜分离性能主要是由CO2和Xe分子在DD3R分子筛中扩散系数的差异所决定的。然而,CO2的传质速率却因Xe的存在却显著的降低,这与以前八元环分子筛膜在CO2/N2和CO2/CH4双元组分的分离结构差异很大。分子动力学模拟结果表明,Xe分子吸附在分子筛膜表面形成了CO2吸附和扩散的表面阻力。在医疗氙气麻醉相关条件下,即二氧化碳含量低于5%和水蒸气存在条件下,CO2渗透性和CO2/Xe分离选择性分别为2.0×10-8mol·m-2·s-1·Pa-1和67。由于DD3R分子筛膜的全硅特性,CO2的渗透性受水蒸气的影响较微弱,这与含铝分子筛膜孔道极易因吸附水而堵塞不同。高CO2通量和高CO2/Xe选择性,以及长时间稳定性,确保了中空纤维DD3R分子筛膜在医疗麻醉氙气在线回用的良好前景。At present, the preparation and recovery technology of xenon gas is mainly based on refrigeration distillation with high energy consumption. Increasing market demand and capacity ceilings force the development of energy-efficient xenon gas recycling technologies, such as membrane separation technologies. The invention develops a DD3R molecular sieve membrane for on-line recycling technology of xenon gas in the process of closed-circuit medical xenon gas anesthesia. The single-component carbon dioxide permeability is 1.5×10 -7 mol·m -2 ·s -1 ·Pa -1 , and the separation selectivity of carbon dioxide to xenon is 570. The permeate flux is an order of magnitude higher than conventional membrane materials. The membrane separation performance is mainly determined by the difference in the diffusion coefficients of CO2 and Xe molecules in DD3R molecular sieves. However, the mass transfer rate of CO 2 is significantly reduced by the presence of Xe, which is very different from the previous eight-membered ring zeolite membrane in the separation structure of CO 2 /N 2 and CO2/CH 4 binary components. The molecular dynamics simulation results show that the adsorption of Xe molecules on the surface of the molecular sieve membrane forms the surface resistance for CO adsorption and diffusion. The CO 2 permeability and CO 2 /Xe separation selectivity were 2.0 × 10 -8 mol·m -2 ·s -1 under conditions relevant to medical xenon anesthesia, i.e. carbon dioxide content below 5% and the presence of water vapour, respectively · Pa -1 and 67. Due to the all-silicon properties of the DD3R molecular sieve membrane, the permeability of CO2 is weakly affected by water vapor, which is different from the fact that the pores of the aluminum-containing molecular sieve membrane are easily blocked by adsorbed water. High CO2 flux and high CO2 /Xe selectivity, as well as long-term stability, ensure a good prospect of the hollow fiber DD3R molecular sieve membrane in the on-line reuse of medical anesthesia xenon gas.

一种采用DD3R分子筛膜提纯氙气的方法,包括如下步骤:A method for purifying xenon by using DD3R molecular sieve membrane, comprising the following steps:

采用DD3R对含有氙气的气体进行分离,氙气留存于截留侧。The gas containing xenon gas is separated by DD3R, and the xenon gas is retained on the interception side.

在一个实施方式中,所述的含有氙气的气体是指含有N2、Xe、CO2的气体。In one embodiment, the gas containing xenon refers to a gas containing N 2 , Xe and CO 2 .

在一个实施方式中,所述的含有氙气的气体的成分是5%CO2,30%N2和65%Xe混合气。In one embodiment, the composition of the xenon-containing gas is a mixture of 5% CO 2 , 30% N 2 and 65% Xe.

在一个实施方式中,所述的含有氙气的气体中还含有H2O。In one embodiment, the xenon-containing gas further contains H 2 O.

在一个实施方式中,所述的H2O的分压是2.3kPa。In one embodiment, the partial pressure of H2O is 2.3 kPa.

在一个实施方式中,在进行分离时,原料气的压力是1-3bar,温度是10-30℃。In one embodiment, when the separation is performed, the pressure of the feed gas is 1-3 bar and the temperature is 10-30°C.

本发明还提供了:The present invention also provides:

DD3R分子筛膜在对含有N2、Xe、CO2的气体中Xe分离中的应用。Application of DD3R molecular sieve membrane in the separation of Xe in gases containing N 2 , Xe and CO 2 .

在一个实施方式中,所述的应用中,对CO2/Xe选择性为60以上。In one embodiment, in the application, the selectivity to CO 2 /Xe is 60 or more.

有益效果beneficial effect

本专利提出的分子筛膜法麻醉氙气循环使用方法,可显著提升膜渗透通量;同时,分子筛膜为纯无机材料,生物相容性和抗菌性更好,用于医疗过程具有更高的安全性。The molecular sieve membrane method for anesthesia xenon circulation proposed in this patent can significantly increase the membrane permeation flux; at the same time, the molecular sieve membrane is a pure inorganic material with better biocompatibility and antibacterial properties, and has higher safety in medical procedures .

DD3R是一种具有椭圆形8元环孔道的分子筛,其有效孔道尺寸为0.36nm×0.44nm。而且,DD3R分子筛的全硅特性使其具有一定的疏水性,可以有效削弱水蒸气对分子筛孔道的堵塞。DD3R is a molecular sieve with oval 8-membered ring channels, and its effective channel size is 0.36nm×0.44nm. Moreover, the all-silicon property of DD3R molecular sieve makes it have a certain degree of hydrophobicity, which can effectively weaken the blockage of the molecular sieve pores by water vapor.

附图说明Description of drawings

图1是发明采用的DD3R分子筛膜的表面(左列)和断面(右列)的SEM照片。其中各个区域的含义是:不同SDA/H2O配比条件下合成的DD3R分子筛膜,SDA/H2O=16/4000(a-b),8/4000(c-d),3/4000(e-f).Figure 1 is a SEM photograph of the surface (left column) and cross-section (right column) of the DD3R molecular sieve membrane used in the invention. The meaning of each area is: DD3R molecular sieve membrane synthesized under different SDA/H 2 O ratio conditions, SDA/H 2 O=16/4000(ab), 8/4000(cd), 3/4000(ef).

图2是中空纤维DD3R分子筛膜的渗透性和分离性能。其中,(a)单组分渗透性和DD3R分子筛的[435126183]笼(操作条件是温度25℃,压力1bar);(b)单组分(空心图例)和二元组份(实心图例)中CO2渗透性随压力的变化(操作条件是温度25℃,压力1bar增至3bar);(c)Xe摩尔组成对CO2/Xe混合气分离性能的影响(进料压力:3bar)。Figure 2 shows the permeability and separation performance of hollow fiber DD3R molecular sieve membranes. Among them, (a) single-component permeability and [4 3 5 12 6 1 8 3 ] cage of DD3R molecular sieve (operating conditions are temperature 25°C, pressure 1 bar); (b) single-component (open legend) and binary CO 2 permeability as a function of pressure in the components (solid legend) (operating conditions are temperature 25°C, pressure increased from 1 bar to 3 bar); (c) Influence of Xe molar composition on separation performance of CO 2 /Xe mixture (feeding Pressure: 3bar).

图3是DD3R分子筛膜分离性能。(a)DD3R分子筛膜分离CO2/Xe性能与其他膜材料性能对比;(b)不同温度下,DD3R分子筛膜对CO2单组分,CO2/H2O二元组分和CO2/H2O/Xe三元组分分离性能;(c)DD3R分子筛膜在模拟医疗麻醉氙气条件下的膜分离性能稳定性。Figure 3 is the separation performance of DD3R molecular sieve membrane. (a) Comparison of the performance of DD3R molecular sieve membrane for CO 2 /Xe separation with other membrane materials; (b) At different temperatures, the DD3R molecular sieve membrane has different effects on CO 2 single component, CO 2 /H 2 O binary component and CO 2 / Separation performance of H 2 O/Xe ternary components; (c) The stability of membrane separation performance of DD3R molecular sieve membrane under simulated medical anesthesia xenon gas conditions.

图4是不同的SDA含量条件下制备得到的DD3R分子筛膜的XRD图谱。Figure 4 is the XRD patterns of the DD3R molecular sieve membranes prepared under different SDA content conditions.

图5是不同的合成时间条件下制备得到的DD3R分子筛膜的SEM照片。(a-b)12h;(c-d)24h;(e-f)36h.Figure 5 is the SEM pictures of the DD3R molecular sieve membranes prepared under different synthesis time conditions. (a-b) 12h; (c-d) 24h; (e-f) 36h.

图6是不同的合成时间条件下制备得到的DD3R分子筛膜的XRD图谱。Figure 6 is the XRD patterns of the DD3R molecular sieve membranes prepared under different synthesis time conditions.

图7努森扩散选择性(右)和理想状态选择性(左)。Figure 7 Knudsen diffusion selectivity (right) and ideal state selectivity (left).

图8是二次生长法制备得到的DD3R分子筛性能表征,其中,(a)SEM照片;(b)XRD图谱,使用Co靶Kα射线(波长为0.178897nm);(c)77K下N2吸附-脱附曲线.Figure 8 is the performance characterization of the DD3R molecular sieve prepared by the secondary growth method, wherein, (a) SEM photo; (b) XRD pattern, using Co target Kα rays (wavelength is 0.178897nm); (c) N adsorption at 77K- Desorption curve.

图9是CO2(a)和Xe(b)在273K和298K下的吸附脱附曲线(数据点为原始实验数据,曲线为单点Langmuir模型拟合数据)Figure 9 is the adsorption and desorption curves of CO 2 (a) and Xe (b) at 273K and 298K (data points are original experimental data, curves are single-point Langmuir model fitting data)

图10是DD3R分子筛膜对CO2(a)和Xe(b)的吸附脱附曲线的Virial数值拟合Figure 10 is the Virial numerical fitting of the adsorption and desorption curves of DD3R molecular sieve membrane for CO 2 (a) and Xe (b)

图11是DD3R分子筛膜对CO2和Xe的等温吸附热曲线Figure 11 is the isotherm adsorption heat curve of CO2 and Xe by DD3R molecular sieve membrane

图12是DD3R分子筛膜对CO2和Xe的分离性能。(a)不同温度下,DD3R分子筛膜对等摩尔CO2/Xe分离性能,进料压力为1.2bara;(b)Xe和水蒸气对CO2渗透性降低的贡献分析(操作条件是温度25-150℃))Figure 12 is the separation performance of DD3R molecular sieve membrane for CO and Xe. (a) Separation performance of DD3R molecular sieve membrane for equimolar CO 2 /Xe at different temperatures, with a feed pressure of 1.2 bara; (b) analysis of the contribution of Xe and water vapor to the reduction of CO 2 permeability (operating conditions were at a temperature of 25- 150℃))

图13是不同压力条件下,DD3R分子筛膜对N2/Xe的分离性能。Figure 13 shows the separation performance of DD3R molecular sieve membrane for N 2 /Xe under different pressure conditions.

图14是DD3R分子筛膜用于麻醉氙气分离过程的示意图。Figure 14 is a schematic diagram of the DD3R molecular sieve membrane used for anesthesia xenon separation process.

具体实施方式Detailed ways

以下的实施例中所采用的DD3R分子筛膜,其制备过程可以参考现有技术,例如CN110745839A《一种无缺陷DD3R分子筛膜的活化工艺》。For the preparation process of the DD3R molecular sieve membrane used in the following examples, reference may be made to the prior art, such as CN110745839A "An Activation Process of a Defect-Free DD3R Molecular Sieve Membrane".

单组分气体渗透性评估DD3R膜分离性能Single-component gas permeability evaluation of DD3R membrane separation performance

对于He,H2,CO2,N2,CH4,Xe和SF6等单组分气体,CO2表现出最高的渗透特性,为1.5×10-7mol·m-2·s-1·Pa-1(图2的a区域)。由于中空纤维载体壁厚较薄,其所支撑的DD3R分子筛膜比在管式(~0.84×10-7mol·m-2·s-1·Pa-1)和片式(1.12×10-7mol·m-2·s-1·Pa-1)载体的通量要高(Microporous and Mesoporous Materials,68(2004)71-75和Journalof Membrane Science,505(2016)194-204)。另外,中空纤维的装填密度更高。对于CO2/He,CO2/H2,CO2/N2,CO2/CH4,CO2/Xe,CO2/SF6的理想选择性分别为9.1,5.1,68,201,570和1914,这都远远超过努森扩散选择性。中空纤维DD3R分子筛膜的CO2单组分渗透性略高于8元环SAPO-34分子筛膜(CO2渗透性为~1.0×10-7mol·m-2·s-1·Pa-1,CO2/Xe理想选择性为500,AIChE Journal,63(2017)761-769),可能是由DD3R分子筛椭圆形孔径所造成的(0.36nm×0.44nm,图2的a区域).For single-component gases such as He, H 2 , CO 2 , N 2 , CH 4 , Xe and SF 6 , CO 2 exhibits the highest permeation characteristic, which is 1.5×10 -7 mol·m -2 ·s -1 · Pa -1 (area a of Figure 2). Due to the thin wall thickness of the hollow fiber carrier, the DD3R molecular sieve membrane supported by the hollow fiber carrier is smaller than the tubular (~0.84×10 -7 mol·m -2 ·s -1 ·Pa -1 ) and sheet (1.12×10 -7 mol·m -2 ·s -1 ·Pa -1 ) membranes. mol·m −2 ·s −1 ·Pa −1 ) supports have higher throughput (Microporous and Mesoporous Materials, 68 (2004) 71-75 and Journal of Membrane Science, 505 (2016) 194-204). In addition, the packing density of hollow fibers is higher. The ideal selectivities for CO 2 /He, CO 2 /H 2 , CO 2 /N 2 , CO 2 /CH 4 , CO 2 /Xe, CO 2 /SF 6 are 9.1, 5.1, 68, 201, 570 and In 1914, this was far more selective than Knudsen diffusion. The CO 2 single-component permeability of the hollow fiber DD3R molecular sieve membrane is slightly higher than that of the 8-membered ring SAPO-34 molecular sieve membrane (CO 2 permeability is ~1.0×10 -7 mol·m -2 ·s -1 ·Pa -1 , The ideal CO 2 /Xe selectivity is 500, AIChE Journal, 63(2017) 761-769), which may be caused by the elliptical pore size of the DD3R molecular sieve (0.36nm×0.44nm, area a in Figure 2).

当进料压力从1bara增加至3bara时,CO2单组分渗透性略微下降(<15%,图2的b区域)。这主要是由CO2扩散系数随负载量增加而降低所引起的。然而,CO2的渗透性下降了50%,降为0.76×10-7mol·m-2·s-1·Pa-1,可能是由Xe的竞争吸附所造成的。为了进一步定量化表征这一效应,测试了不同进料压力下的气体分离性能。当CO2/Xe进料压力增加至2bara时,CO2渗透性继续降至0.54×10-7mol·m-2·s-1·Pa-1。同时,CO2渗透性的下降随着Xe组成的增加而更加显著(图2的c区域)。最终,当CO2含量降至5%时,CO2渗透性为0.24×10-7mol·m-2·s-1·Pa-1;然而,CO2/Xe的分离选择性始终为43左右,表现出CO2低浓度下很好的分离选择性。When the feed pressure was increased from 1 bara to 3 bara, the CO2 monocomponent permeability decreased slightly (<15%, area b of Fig. 2). This is mainly caused by the decrease in CO diffusion coefficient with increasing loading. However, the permeability of CO 2 decreased by 50% to 0.76×10 -7 mol·m -2 ·s -1 ·Pa -1 , probably caused by the competitive adsorption of Xe. To further characterize this effect quantitatively, the gas separation performance at different feed pressures was tested. When the CO 2 /Xe feed pressure was increased to 2 bara, the CO 2 permeability continued to drop to 0.54×10 -7 mol·m -2 ·s -1 ·Pa -1 . At the same time, the decrease in CO permeability is more pronounced with increasing Xe composition (region c of Fig. 2). Finally, when the CO content was reduced to 5%, the CO permeability was 0.24×10 -7 mol·m -2 ·s -1 ·Pa -1 ; however, the separation selectivity of CO 2 /Xe was always around 43 , showing good separation selectivity at low CO2 concentrations.

模拟医疗麻醉氙气条件下的膜分离性能。利用膜分离CO2/Xe报道较少。目前,仅有碳分子筛膜和MFI分子筛膜用于CO2/Xe混合气的分离(Journal of Membrane Science,301(2007)29-38和ACS Applied Materials&Interfaces,10(2018)33574-33580)。Membrane separation performance under simulated medical anesthesia xenon conditions. The use of membranes to separate CO 2 /Xe is less reported. Currently, only carbon molecular sieve membranes and MFI molecular sieve membranes are used for the separation of CO 2 /Xe mixtures (Journal of Membrane Science, 301 (2007) 29-38 and ACS Applied Materials & Interfaces, 10 (2018) 33574-33580).

本申请报道的中空纤维DD3R分子筛膜的CO2单组分渗透性为1.5×10-7mol·m-2·s-1·Pa-1,比目前文献报道结果高一个数量级(图3的a区域)。因此,DD3R将会是CO2/Xe分离的理想膜分离材料。中空纤维DD3R分子筛膜的高渗透性将会显著降低膜分离设备的投资和占地面积,对于医疗麻醉氙气在线回用具有良好的应用前景。The CO 2 single-component permeability of the hollow fiber DD3R molecular sieve membrane reported in this application is 1.5×10 -7 mol·m -2 ·s -1 ·Pa -1 , which is one order of magnitude higher than the results reported in the current literature (Fig. 3a area). Therefore, DD3R will be an ideal membrane separation material for CO 2 /Xe separation. The high permeability of the hollow fiber DD3R molecular sieve membrane will significantly reduce the investment and floor space of membrane separation equipment, and has a good application prospect for the on-line reuse of medical anesthesia xenon gas.

图3显示的是中空纤维DD3R分子筛膜的工业分离性能。其中,(a)区域是中空纤维DD3R分子筛膜与其它已报道的膜,包括碳分子筛膜(CMS)、b取向MFI膜、SAPO-34膜经PDMS处理的DD3R膜PIMs膜(PIM-1和PIM-7膜)和PDMS膜的CO2/Xe分离性能比较,等摩尔CO2/Xe混合物分离。(b)区域是不同温度下单CO2渗透和饱和水蒸气分离CO2/Xe二元混合物。(c)区域是DD3R分子筛膜在3bara下对组成为0.76%H2O、4.96%CO2、29.77%N2和64.51%Xe的混合物中回收Xe的长期稳定性。Figure 3 shows the industrial separation performance of hollow fiber DD3R molecular sieve membranes. Among them, (a) area is the hollow fiber DD3R molecular sieve membrane and other reported membranes, including carbon molecular sieve membrane (CMS), b-oriented MFI membrane, SAPO-34 membrane, PDMS-treated DD3R membrane PIMs membrane (PIM-1 and PIM membranes) -7 membrane) and PDMS membrane for CO2 /Xe separation performance comparison, equimolar CO2/Xe mixture separation. (b) Region is a CO2 /Xe binary mixture with single CO2 permeation and saturated water vapor separation at different temperatures. Region (c) is the long-term stability of DD3R molecular sieve membranes at 3 bara for recovery of Xe in a mixture consisting of 0.76% H2O , 4.96% CO2 , 29.77% N2 and 64.51% Xe.

水蒸气往往存在于麻醉呼出气中。由于水蒸气的存在,CO2单组分渗透性下降了37~45%(图3的b区域);然而,相同条件下,含铝型8元环分子筛膜的气体渗透性下降更为显著,例如:SSZ-13下降了75%(Journal of Materials Chemistry A,2(2014)13083-13092),SAPO-34下降了99.2%(Journal of Membrane Science,186(2001)25-40)。含铝型分子筛骨架对水蒸气具有较强的吸附能力,水分子吸附于DDR分子筛孔道内堵塞了气体分子的扩散。而我们DD3R分子筛膜具有更好的疏水特性,可有效削弱因水蒸气吸附而带来的CO2渗透性降低。比如,在水蒸气环境下,全硅CHA分子筛膜下降了88%(Separation andPurification Technology,197(2018)116-121),文献报道DD3R分子筛膜下降了68%(Journal of Membrane Science,505(2016)194-204)。因为全硅CHA分子筛膜和文献报道DD3R分子筛膜的合成使用了阳离子型模板剂N,N,N-三甲基-1-金刚烷基氢氧化铵和碘化甲基托品;这将导致合成过程中分子筛骨架中Si-O-Si键的断裂形成Si-OH键以与带正电的模板剂离子电荷平衡。在此申请中,我们利用非质子型的模板剂和无离子合成溶液用于制备更为疏水的DD3R分子筛膜,用于湿气环境下CO2/Xe的分离。文献报道,利用该类模板剂合成的DD3R分子筛的水蒸气吸附特性甚至比Silicalite-1分子筛还要低(Zeolites,19(1997)353-358).Water vapor is often present in anesthetized exhaled breath. Due to the presence of water vapor, the CO2 single-component permeability decreased by 37-45% (region b of Fig. 3); however, under the same conditions, the gas permeability of the aluminum-containing 8-membered ring molecular sieve membrane decreased more significantly, For example: SSZ-13 decreased by 75% (Journal of Materials Chemistry A, 2 (2014) 13083-13092), SAPO-34 decreased by 99.2% (Journal of Membrane Science, 186 (2001) 25-40). The aluminum-containing molecular sieve framework has a strong adsorption capacity for water vapor, and the adsorption of water molecules in the pores of the DDR molecular sieve blocks the diffusion of gas molecules. And our DD3R molecular sieve membrane has better hydrophobic properties, which can effectively weaken the CO2 permeability reduction caused by water vapor adsorption. For example, in the water vapor environment, the all-silicon CHA molecular sieve membrane decreased by 88% (Separation and Purification Technology, 197 (2018) 116-121), and the literature reported that the DD3R molecular sieve membrane decreased by 68% (Journal of Membrane Science, 505 (2016) 194-204). Because the synthesis of all-silicon CHA zeolite membranes and literature-reported DD3R zeolite membranes used cationic templates N,N,N-trimethyl-1-adamantylammonium hydroxide and methyltropine iodide; this would lead to the synthesis of The cleavage of Si-O-Si bonds in the molecular sieve framework during the process forms Si-OH bonds to charge balance with the positively charged template ions. In this application, we utilize aprotic templating agents and an ionic-free synthesis solution to prepare a more hydrophobic DD3R molecular sieve membrane for CO 2 /Xe separation in a humid environment. It has been reported in the literature that the water vapor adsorption properties of DD3R molecular sieves synthesized by this kind of template are even lower than that of Silicalite-1 molecular sieves (Zeolites, 19(1997) 353-358).

进一步研究了水蒸气对CO2渗透性和选择性的影响,如图3的b区域和图12的a区域所示。在水蒸气环境下,膜的分离选择性要高于干燥气体。分子筛膜层晶界处的Si-OH可以较强吸附水分子,从而堵塞气体分子在该类孔道处的扩散。因此,在湿气环境下,Xe的渗透性要低于干燥气体中。水蒸气的吸附随着温度的升高而逐渐减弱,例如,在100℃下降低了55%;在125℃下降低了52%;在150℃下降低了42%。然而,无论是在湿气和干燥气体中,CO2分子的渗透性主要是由DD3R分子筛所贡献。因此,湿气环境中的选择性要高于干燥气体中。从上文可以看出,Xe分子和水分子均对DD3R分子筛的具有一定的堵塞效应。以干燥CO2气体渗透性为基准,我们分别对比了Xe和水分子对DD3R分子筛的堵塞效应(图12的b区域):按照Xe+water≈Xe>water的顺序依次减弱。这说明在CO2/Xe分离过程中,传输通道的堵塞主要来自于Xe分子的吸附,而水蒸气的影响基本可以忽略。The effect of water vapor on CO permeability and selectivity was further investigated, as shown in area b of Fig. 3 and area a of Fig. 12. In the water vapor environment, the separation selectivity of the membrane is higher than that of the dry gas. The Si-OH at the grain boundaries of the molecular sieve film layer can strongly adsorb water molecules, thereby blocking the diffusion of gas molecules in such pores. Therefore, in a humid environment, the permeability of Xe is lower than in a dry gas. The adsorption of water vapor gradually weakened with the increase of temperature, for example, it decreased by 55% at 100℃; decreased by 52% at 125℃; decreased by 42% at 150℃. However, in both wet and dry gases, the permeability of CO2 molecules is mainly contributed by DD3R molecular sieves. Therefore, the selectivity in a humid environment is higher than that in a dry gas. It can be seen from the above that both Xe molecules and water molecules have a certain blocking effect on the DD3R molecular sieve. Taking the dry CO 2 gas permeability as the benchmark, we compared the clogging effect of Xe and water molecules on DD3R molecular sieves (the b area of Fig. 12 ): they weakened in the order of Xe+water≈Xe>water. This shows that in the CO 2 /Xe separation process, the blockage of the transport channel is mainly due to the adsorption of Xe molecules, while the influence of water vapor is basically negligible.

混合气的分离与渗透性能Separation and Permeability of Mixed Gas

麻醉过程中,呼出麻醉气体的杂质除了CO2以外,人体组织器官在麻醉初始阶段会释放氮气。一般来讲,在麻醉的初始阶段,释放CO2和N2的速率分别为0.25L/min和0.02L/min。为了实现Xe的在线回用,CO2和N2均需要移除。我们的中空纤维DD3R分子筛膜的氮气渗透性为3.25×10-9mol·m-2·s-1·Pa-1,分离选择性为95.3(图13)。尽管,Carreon等人报道ZIF-8膜也可以实现N2/Xe的分离,但是在水蒸气和CO2同时存在的情况下,ZIF-8将会分解产生碳酸盐,从而失去分离性能(Angewandte Chemie International Edition,53(2014)7471-7474)。During the anesthesia process, except for CO 2 , the impurities in the exhaled anesthetic gas, the human tissues and organs will release nitrogen gas in the initial stage of anesthesia. In general, during the initial phase of anesthesia, the rates of CO2 and N2 release were 0.25 L/min and 0.02 L/min, respectively. In order to achieve online reuse of Xe, both CO and N need to be removed. The nitrogen permeability of our hollow fiber DD3R molecular sieve membrane was 3.25×10 −9 mol·m −2 ·s −1 ·Pa −1 , and the separation selectivity was 95.3 (Fig. 13). Although, Carreon et al. reported that ZIF-8 membrane can also achieve N 2 /Xe separation, but in the presence of water vapor and CO 2 at the same time, ZIF-8 will decompose to produce carbonate, thus losing the separation performance (Angewandte et al. Chemie International Edition, 53 (2014) 7471-7474).

针对呼吸麻醉闭路循环系统中氙气回收,我们提出了一种基于DD3R分子筛膜的在线回用系统(图14),并将其用于5%CO2,30%N2和65%Xe混合气中回收氙气。当引入2.3kP水蒸气后,CO2和N2的渗透性都略微下降(图3c).最终,二氧化碳的渗透性稳定在2.0×10- 8mol·m-2·s-1·Pa-1,CO2/Xe选择性为67±12;N2渗透性为2.4×10-9mol·m-2·s-1·Pa-1,N2/Xe选择性为8±2。换句话讲,在选择性移除二氧化碳和氮气等杂质后,99%以上的Xe可以被有效的回用。根据经济性衡算,该过程的操作成本为$1.5/m3 gas,STP,比目前氙气的市场售价便宜了四个数量级。然而,针对医疗麻醉氙气,其他传统回收工艺的回收率很低,例如低温液化的回收率为8.95%(Anesthesia&Analgesia,110(2010)101-109),深冷结晶的回收率为70%(Anesthesia&Analgesia,105(2007)1312-1318),变压吸附的回收率为87.5%(US 8535414 B2).DD3R分子筛膜的高分离性能和长时间稳定性将会使得医疗麻醉氙气的回用成本显著降低,使得氙气麻醉过程在经济上更具竞争性。For the recovery of xenon gas in the closed-circuit circulation system of respiratory anesthesia, we propose an online recycling system based on DD3R molecular sieve membrane (Fig. 14), and use it in a mixture of 5% CO 2 , 30% N 2 and 65% Xe Recovery of xenon gas. When 2.3kP water vapor was introduced, the permeability of both CO and N decreased slightly (Fig. 3c). Finally, the permeability of CO stabilized at 2.0×10-8 mol·m - 2 ·s - 1 ·Pa -1 , the CO 2 /Xe selectivity is 67±12; the N 2 permeability is 2.4×10 -9 mol·m -2 ·s -1 ·Pa -1 , and the N 2 /Xe selectivity is 8±2. In other words, after the selective removal of impurities such as carbon dioxide and nitrogen, more than 99% of the Xe can be effectively reused. Economically, the operating cost of the process is $1.5/m 3 gas,STP , which is four orders of magnitude cheaper than the current market price of xenon. However, for medical anesthesia xenon, the recovery rate of other traditional recovery processes is very low, such as the recovery rate of cryogenic liquefaction is 8.95% (Anesthesia & Analgesia, 110 (2010) 101-109), the recovery rate of cryogenic crystallization is 70% (Anesthesia & Analgesia, 105 (2007) 1312-1318), the recovery rate of pressure swing adsorption is 87.5% (US 8535414 B2). The high separation performance and long-term stability of the DD3R molecular sieve membrane will significantly reduce the recycling cost of medical anesthesia xenon, making The xenon anesthesia procedure is more economically competitive.

我们验证了DD3R分子筛膜可以从具有一定湿度的CO2/N2/Xe混合气中回收氙气的特性。膜的分离性能主要由CO2和Xe分子在DD3R分子筛中的扩散系数的差异所决定的。We verified that DD3R molecular sieve membrane can recover xenon gas from CO 2 /N 2 /Xe mixture with certain humidity. The separation performance of the membrane is mainly determined by the difference in the diffusion coefficients of CO2 and Xe molecules in the DD3R molecular sieve.

通过以上实验可以看出,基于CO2(0.33nm)和Xe(0.41nm)分子动力学尺寸的差异,Deca-Dodecasil 3 Rhombohedral(DD3R)分子筛将会是一种理想的膜分离材料。DD3R是一种具有椭圆形8元环孔道的分子筛,其有效孔道尺寸为0.36nm×0.44nm。而且,DD3R分子筛的全硅特性使其具有一定的疏水性,可以有效削弱水蒸气对分子筛孔道的堵塞。It can be seen from the above experiments that Deca-Dodecasil 3 Rhombohedral (DD3R) molecular sieve will be an ideal membrane separation material based on the difference in molecular dynamics size of CO 2 (0.33nm) and Xe (0.41nm). DD3R is a molecular sieve with oval 8-membered ring channels, and its effective channel size is 0.36nm×0.44nm. Moreover, the all-silicon property of DD3R molecular sieve makes it have certain hydrophobicity, which can effectively weaken the blockage of the molecular sieve pores by water vapor.

Claims (1)

1.DD3R分子筛膜在对含有N2、Xe、CO2的气体中Xe分离中的应用,其特征在于,包括如下步骤:采用DD3R分子筛膜对含有氙气的气体进行分离,氙气留存于截留侧,而N2和CO2渗透过DD3R分子筛膜;1.DD3R molecular sieve membrane is to containing N 2 , Xe, CO The application in the separation of Xe in the gas is characterized in that, comprises the steps: adopt DD3R molecular sieve membrane to separate the gas containing xenon gas, and xenon gas is retained in the interception side, And N 2 and CO 2 permeate through the DD3R molecular sieve membrane; 所述的含有氙气的气体是含有5% CO2, 30% N2和65% Xe 的混合气,再引入2.3kPa水蒸气;The xenon-containing gas is a mixed gas containing 5% CO 2 , 30% N 2 and 65% Xe, and then 2.3kPa water vapor is introduced; 在进行分离时,原料气的压力是1-3bar,温度是10-30℃。During the separation, the pressure of the feed gas is 1-3 bar and the temperature is 10-30°C.
CN202010448140.0A 2019-06-27 2020-05-25 Method for purifying xenon by using DD3R molecular sieve membrane Active CN111874881B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910565055 2019-06-27
CN201910565055X 2019-06-27

Publications (2)

Publication Number Publication Date
CN111874881A CN111874881A (en) 2020-11-03
CN111874881B true CN111874881B (en) 2022-10-25

Family

ID=72913942

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010448140.0A Active CN111874881B (en) 2019-06-27 2020-05-25 Method for purifying xenon by using DD3R molecular sieve membrane
CN202010476743.1A Active CN111821818B (en) 2019-06-27 2020-05-29 A method and device for inorganic membrane multi-stage gas separation

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202010476743.1A Active CN111821818B (en) 2019-06-27 2020-05-29 A method and device for inorganic membrane multi-stage gas separation

Country Status (1)

Country Link
CN (2) CN111874881B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112551545B (en) * 2020-11-09 2022-07-12 南京工业大学 A kind of method for separating krypton and xenon by high silicon-aluminum ratio molecular sieve membrane
CN116490457A (en) * 2020-11-27 2023-07-25 巴斯夫欧洲公司 Separation of H from a gas mixture 2 Is a method of (2)
CN113462424A (en) * 2021-05-20 2021-10-01 南京工业大学 Method and device for separating naphtha by membrane
CN113599977B (en) * 2021-07-23 2022-06-17 南京工业大学 A kind of method that adopts hollow fiber DD3R molecular sieve membrane to purify helium
CN114849494B (en) * 2021-11-17 2023-07-07 南京工业大学 Application of molecular sieve membrane in the manufacture of ECMO equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109665506A (en) * 2018-12-21 2019-04-23 北京放射性核素实验室 Atmosphere xenon enrichment and purification method, device and the method for preparing carbon molecular sieve

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240471A (en) * 1991-07-02 1993-08-31 L'air Liquide Multistage cascade-sweep process for membrane gas separation
CN1085188C (en) * 1997-04-17 2002-05-22 张鸿逵 Method for extracting high-purity krypton, xenon from mixed gas containing oxygen, krypton, xenon.
US6168649B1 (en) * 1998-12-09 2001-01-02 Mg Generon, Inc. Membrane for separation of xenon from oxygen and nitrogen and method of using same
DE102006034601B3 (en) * 2006-07-26 2008-02-07 Schmidt, Klaus, Prof. Dr. Retention of noble gases in the respiratory gas in ventilated patients by means of membrane separation
CN101168116A (en) * 2006-10-26 2008-04-30 北京萃亨科技有限公司 Method for recovering tail gas generated by tetrafluoroethylene
JP5202836B2 (en) * 2006-12-01 2013-06-05 日本エア・リキード株式会社 Xenon recovery system and recovery device
WO2008106647A1 (en) * 2007-03-01 2008-09-04 The Regents Of The University Of Colorado, A Body Corporate Valving and storage using molecular sieve membranes
WO2008148052A1 (en) * 2007-05-23 2008-12-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude System and method for recovery and reuse of xenon from ventilator
JP4856595B2 (en) * 2007-07-06 2012-01-18 財団法人地球環境産業技術研究機構 Method for producing zeolite membrane composite for gas separation
CA2711477A1 (en) * 2008-01-08 2009-07-16 Shell Internationale Research Maatschappij B.V. Multi - stage membrane separation process
WO2013098024A1 (en) * 2011-12-27 2013-07-04 Evonik Fibres Gmbh Method for separating gases
CN106745026B (en) * 2016-12-16 2019-01-11 南京工业大学 Preparation method of defect-free DDR molecular sieve membrane
CN110745839B (en) * 2019-10-11 2022-08-26 南京工业大学 Activation process of defect-free DD3R molecular sieve membrane
CN212594872U (en) * 2020-05-29 2021-02-26 南京工业大学 A device for inorganic membrane multistage gas separation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109665506A (en) * 2018-12-21 2019-04-23 北京放射性核素实验室 Atmosphere xenon enrichment and purification method, device and the method for preparing carbon molecular sieve

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
One-pot synthesis of high-flux b-oriented MFI zeolite membranes for Xe recovery;Xuerui Wang et al.;《ACS Applied Materials & Interfaces》;20180911;第10卷;第33574-33580页 *
Xenon recycling in an anaesthetic closed-system using carbon molecular sieve membranes;S. Lagorsse et al.;《Journal of Membrane Science》;20070602;第301卷;第29-38页 *

Also Published As

Publication number Publication date
CN111821818B (en) 2025-02-11
CN111821818A (en) 2020-10-27
CN111874881A (en) 2020-11-03

Similar Documents

Publication Publication Date Title
CN111874881B (en) Method for purifying xenon by using DD3R molecular sieve membrane
US10807042B2 (en) Moisture swing carbon dioxide enrichment process
Wong et al. A review and future prospect of polymer blend mixed matrix membrane for CO2 separation
JP2988625B2 (en) Temperature swing adsorption method
Belmabkhout et al. Amine-bearing mesoporous silica for CO2 removal from dry and humid air
TW306884B (en)
Xomeritakis et al. Microporous sol–gel derived aminosilicate membrane for enhanced carbon dioxide separation
US8337594B2 (en) Use of a microporous crystalline material of zeolitic nature with RHO structure in natural gas processing
ES2304475T3 (en) FAST CYCLE PSA WITH CARBON ACTIVATED AS ADSORBENT.
AU2008336265B2 (en) A plant and process for recovering carbon dioxide
JP2006512946A (en) Method and apparatus for reducing carbon dioxide concentration in air
US20160115029A1 (en) Helium recovery process and apparatus
US6187077B1 (en) Separation of CF4 and C2F6 from a perfluorocompound mixture
CN103635248B (en) CO2Zeolite membrane separation and recovery system
KR20090085082A (en) Xenon recovery system and recovery device
CA2096927A1 (en) Moisture removal from a wet gas
US6060032A (en) Layered adsorbent bed for carbon monoxide production
US9005345B2 (en) Nano-channel enhanced composite membranes
BR112019003474B1 (en) ADSORPTION PROCESS FOR XENON RECOVERY
JP3853398B2 (en) Carbon dioxide recovery method and carbon dioxide adsorbent
Bo et al. Fabrication of high-quality SSZ-13 zeolite membranes for efficient SF6 recovery
Siriwardane et al. Adsorption and desorption of CO2 on solid sorbents
JP4180991B2 (en) Carbon dioxide adsorption method
CN106999900A (en) Synthesis of ultra-small pore aluminosilicates by controlled structural collapse of zeolites
EP2854989A1 (en) Purification of air

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant