[go: up one dir, main page]

CN111850370A - 一种粗晶WC-Co硬质合金的制备方法 - Google Patents

一种粗晶WC-Co硬质合金的制备方法 Download PDF

Info

Publication number
CN111850370A
CN111850370A CN202010757992.8A CN202010757992A CN111850370A CN 111850370 A CN111850370 A CN 111850370A CN 202010757992 A CN202010757992 A CN 202010757992A CN 111850370 A CN111850370 A CN 111850370A
Authority
CN
China
Prior art keywords
powder
coarse
grained
cemented carbide
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010757992.8A
Other languages
English (en)
Other versions
CN111850370B (zh
Inventor
张建峰
于淞百
闵凡路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN202010757992.8A priority Critical patent/CN111850370B/zh
Publication of CN111850370A publication Critical patent/CN111850370A/zh
Application granted granted Critical
Publication of CN111850370B publication Critical patent/CN111850370B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种粗晶WC‑Co硬质合金的制备方法,包括以下步骤:(1)预处理WC粉末;(2)配置活化液,再将WC粉末进行活化;(3)过滤、烘干活化后的WC粉末,并进行热处理还原得到表面附着有金属Co颗粒的WC活化粉体;(4)配置镀液;(5)将表面附着有金属Co颗粒的WC活化粉体、C粉和W粉置于镀液中进行化学镀,过滤、清洗并真空干燥得到WC/C/W/Co粗晶复合粉末;(6)将WC/C/W/Co粗晶复合粉末加入成型剂并压制成胚,并烧结成WC‑Co硬质合金。该方法利用原位反应烧结制备出晶粒度大于2μm的粗晶WC‑Co硬质合金,其晶粒度、硬度、横向断裂强度和冲击韧性优异。

Description

一种粗晶WC-Co硬质合金的制备方法
技术领域
本发明涉及一种硬质合金的制备方法;更具体地,涉及一种粗晶WC-Co硬质合金的制备方法。
背景技术
硬质合金是一种具有高硬度、高耐磨性能、优良的红硬性和热稳定性及耐腐蚀性、高强度与优良韧性的复合材料。其中,粗晶WC-Co硬质合金具有优良的硬度、耐磨性以及较高的韧性,被广泛应用于地矿工具、隧道掘进刀具等领域。粗晶的WC-Co硬质合金的制备,通常将平均粒度大于20mm的WC粉末,采用球磨强度适度的湿磨法制备得到粒度符合且分散均匀的WC/Co复合粉末,然而球磨时WC颗粒的粒度难以控制,从而导致烧制的合金中WC颗粒的分布低于或超出2~5mm粗晶标准的范围,最终仅得到具有宽峰晶粒分布的WC-Co硬质合金,晶粒度相同时,宽峰分布的粗晶WC-Co硬质合金的强度和韧性低于窄峰分布合金。此外,球磨获取高均匀性的复合粉末将给WC颗粒带来较高的残余应力,这也不利于合金性能的提升。
发明内容
发明目的:本发明的目的是提供一种能够制备出窄峰分布、硬度、横向断裂强度和冲击韧性好的粗晶WC-Co硬质合金的制备方法。
技术方案:本发明所述的粗晶WC-Co硬质合金的制备方法,包括以下步骤:
(1)将粗颗粒WC粉末进行球磨,清洗、真空干燥得到预处理的WC粉末;
(2)将CoSO4·7H2O和NaH2PO2·7H2O溶于中配置成活化液,再将步骤1中处理后的WC粉末加入活化液中进行活化;
(3)过滤、烘干活化后的WC粉末,并进行热处理还原得到表面附着有金属Co颗粒的WC活化粉体;
(4)将CoSO4·7H2O和Na2C6H5O7·2H2O溶于水中充分络合,依次加入H3BO3和NaH2PO2·7H2O配置成镀液;
(5)将表面附着有金属Co颗粒的WC活化粉体、C粉和W粉置于镀液中,在水浴下搅拌,调节镀液pH值为10~12,并在70~90℃下进行化学镀,过滤、清洗并真空干燥得到WC/C/W/Co粗晶复合粉末;
(6)将WC/C/W/Co粗晶复合粉末加入成型剂并压制成胚,并烧结成WC-Co硬质合金。
其中,步骤1中球磨采用直径为10~13mm的合金球,球料比为1~3:1;步骤2中活化液中CoSO4·7H2O和Na2C6H5O7·2H2O浓度分别为50~60g/L,体积比为1:1~2,活化温度为50~60℃,活化时间为20~30min;步骤3中热处理温度为300~400℃,时间为2~3h;步骤4中CoSO4·7H2O浓度为45~60g/L、Na2C6H5O7·2H2O浓度为50~60g/L、H3BO3浓度为25~30g/L、NaH2PO2·7H2O浓度为30~40g/L;步骤5中调节镀液pH值之前先将镀液预热到70~90℃;步骤5中WC/C/W/Co粗晶复合粉末中C粉和W粉总占比为5~10wt.%,C粉和W粉的质量比为1:15~16,Co镀层为5~10wt.%;步骤6中成型剂为SD-E橡胶,成型剂的含量占总料粉的1.5~2.5wt.%,压胚压制压力为20~100MPa,烧结时在真空条件下,烧结温度在1400~1450℃,烧结后在1~10Pa气压下保温1~2h。
合成原理:本发明中碳粉、钨粉协同包覆方式得到WC/C/W/Co粗晶复合粉末,两种粉末将于钴在碳化钨表面形核生长过程中填充到钴颗粒之间形成C/W/Co镀层,使两种粉体分散更均匀的同时保证了钴层的均匀生长,协同包覆最终获得的WC/C/W/Co粗晶的复合粉末是W和C颗粒镶嵌于Co镀层中的结构,最后在液相烧结过程中,碳粉和钨粉在钴的液相中原位反应,促进粗晶WC晶粒的快速生长的同时形成高性能的WC和高强度的相界面,最终获得具有高综合性能的粗晶WC-Co硬质合金。
有益效果:本发明与现有技术相比,其显著优点是:利用原位反应烧结制备出晶粒度大于2μm的粗晶WC-Co硬质合金,其晶粒度、硬度、横向断裂强度和冲击韧性优异。
具体实施方式
实施例1
(1)将500g粒度为10~15μm的粗WC粉,以无水酒精作为湿磨介质在滚筒式球磨机中球磨,无水酒精的含量为200mL/kg,磨球直径选用13mm,球料比为3:1;球磨12h后进行真空干燥得到预处理的WC粉末;
(2)将50g的CoSO4·7H2O和50g的NaH2PO2·7H2O溶解于蒸馏水中配置成1L活化液,再取100g预处理的WC粉末置于1L活化液中机械搅拌,在50℃下进行活化,活化时间为30min;
(3)过滤、烘干活化后的WC粉末,并在马弗炉中400℃下热处理2h得到表面附着有金属Co颗粒的WC活化粉体;
(4)将55g CoSO4·7H2O和50g Na2C6H5O7·2H2O溶解于800mL蒸馏水中充分络合,再依次加入25g H3BO3和40g NaH2PO2·7H2O配置成900mL镀液;
(5)然后将24.82g WC活化粉末、2.9g C粉和0.19g W粉置于上述镀液中,在80℃水浴下进行机械搅拌,采用NaOH调节pH为11,添加蒸馏水使镀液为1L,并在80℃下进行化学镀60min,化学镀后过滤、清洗并真空干燥得到31.04g WC/0.614wt.%C/9.386wt.%W/10wt.%Co复合粉末。
(6)在WC/0.614wt.%C/9.386wt.%W/10wt.%Co复合粉末中加入2.5wt.%的SD-E成型剂,并进行造粒,造粒后过80目的筛网,在20MPa的压力下压制成型;将压胚在置于真空条件下进行烧结,烧结温度在1400℃,保温时间为1h,得到WC-Co硬质合金。
实施例2
(1)将500g粒度为10~15μm的粗WC粉,以无水酒精作为湿磨介质在滚筒式球磨机中球磨,无水酒精的含量为200mL/kg,磨球直径选用13mm,球料球料比为3:1;球磨12h后进行真空干燥得到预处理的WC粉末;
(2)将50g的CoSO4·7H2O和50g的NaH2PO2·7H2O溶解于蒸馏水中配置成1L活化液,再取100g预处理的WC粉末置于1L活化液中机械搅拌,在50℃下进行活化,活化时间为30min;
(3)过滤、烘干活化后的WC粉末,并在马弗炉中300℃下热处理3h得到表面附着有金属Co颗粒的WC活化粉体;
(4)将50g CoSO4·7H2O和50g Na2C6H5O7·2H2O溶解于800mL蒸馏水中充分络合,再依次加入25g H3BO3和30g NaH2PO2·7H2O配置成900mL镀液;
(5)然后将15.6g WC活化粉末、0.12g C粉和1.83g W粉置于上述镀液中,在70℃水浴下进行机械搅拌,采用NaOH调节pH为11,添加蒸馏水使镀液为1L,并在70℃下进行化学镀60min,化学镀后过滤、清洗并真空干燥得到19.48g WC/0.307wt.%C/4.693wt.%W/8wt.%Co复合粉末。
(6)在WC/0.614wt.%C/9.386wt.%W/10wt.%Co复合粉末中加入2.5wt.%SD-E成型剂,并进行造粒,造粒后过80目的筛网,在20MPa的压力下压制成型;将压胚在置于真空条件下进行烧结,烧结温度在1450℃,保温时间为1h,得到WC-Co硬质合金。
对比例1
本对比例与实施例1的区别是:在化学镀的步骤中未添加C粉和W粉,化学镀后制得WC/10wt.%Co复合粉末。
对比例2
本对比例与实施例2的区别是:未对粗WC粉进行球磨预处理。
对实施例1~2和对比例1~2进行性能测试,结果如表1所示,从表中可以看出,四种粗晶硬质合金中孔隙基本一致,实施例1~2的硬质合金平均晶粒度大于2μm,包覆的C/W/Co镀层均匀,C和W颗粒分散均匀,所制备的粗晶硬质合金硬度、横向断裂强度和冲击韧性较优,而对比例1和对比例2,前者未添加碳粉和钨粉所制备的粗晶硬质合金晶粒度、硬度、强度和冲击韧性略低,后者因碳化钨粉未进行预处理导致合金粒度较大,且容易产生聚集态WC晶粒而导致性能下降。
表1实施例1~2和对比例1~2进行性能测试结果
Figure BDA0002612209200000041

Claims (10)

1.一种粗晶WC-Co硬质合金的制备方法,其特征在于,包括以下步骤:
(1)将粗颗粒WC粉末进行球磨,清洗、真空干燥得到预处理的WC粉末;
(2)将CoSO4·7H2O和NaH2PO2·7H2O溶于中配置成活化液,再将步骤1中处理后的WC粉末加入活化液中进行活化;
(3)过滤、烘干活化后的WC粉末,并进行热处理还原得到表面附着有金属Co颗粒的WC活化粉体;
(4)将CoSO4·7H2O和Na2C6H5O7·2H2O溶于水中充分络合,依次加入H3BO3和NaH2PO2·7H2O配置成镀液;
(5)将表面附着有金属Co颗粒的WC活化粉体、C粉和W粉置于镀液中,在水浴下搅拌,调节镀液pH值为10~12,并在70~90℃下进行化学镀,过滤、清洗并真空干燥得到WC/C/W/Co粗晶复合粉末;
(6)将WC/C/W/Co粗晶复合粉末加入成型剂并压制成胚,并烧结成WC-Co硬质合金。
2.根据权利要求1所述的粗晶WC-Co硬质合金的制备方法,其特征在于,所述步骤1中球磨采用直径为10~13mm的合金球,球料比为1~3:1。
3.根据权利要求1所述的粗晶WC-Co硬质合金的制备方法,其特征在于,所述步骤2中活化液中CoSO4·7H2O和Na2C6H5O7·2H2O浓度分别为50~60g/L,体积比为1:1~2,活化温度为50~60℃,活化时间为20~30min。
4.根据权利要求1所述的粗晶WC-Co硬质合金的制备方法,其特征在于,所述步骤3中热处理温度为300~400℃,时间为2~3h。
5.根据权利要求1所述的粗晶WC-Co硬质合金的制备方法,其特征在于,所述步骤4中CoSO4·7H2O浓度为45~60g/L、Na2C6H5O7·2H2O浓度为50~60g/L、H3BO3浓度为25~30g/L、NaH2PO2·7H2O浓度为30~40g/L。
6.根据权利要求1所述的粗晶WC-Co硬质合金的制备方法,其特征在于,所述步骤5中调节镀液pH值之前先将镀液预热到70~90℃。
7.根据权利要求1所述的粗晶WC-Co硬质合金的制备方法,其特征在于,所述步骤5中WC/C/W/Co粗晶复合粉末中C粉和W粉总占比为5~10wt.%,C粉和W粉的质量比为1:15~16,Co镀层为5~10wt.%。
8.根据权利要求1所述的粗晶WC-Co硬质合金的制备方法,其特征在于,所述步骤6中成型剂为SD-E橡胶,成型剂的含量占总料粉的1.5~2.5wt.%。
9.根据权利要求1所述的粗晶WC-Co硬质合金的制备方法,其特征在于,所述步骤6中压胚压制压力为20~100MPa。
10.根据权利要求1所述的粗晶WC-Co硬质合金的制备方法,其特征在于,所述步骤6中烧结时在真空条件下,烧结温度在1400~1450℃,烧结后在1~10Pa气压下保温1~2h。
CN202010757992.8A 2020-07-31 2020-07-31 一种粗晶WC-Co硬质合金的制备方法 Active CN111850370B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010757992.8A CN111850370B (zh) 2020-07-31 2020-07-31 一种粗晶WC-Co硬质合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010757992.8A CN111850370B (zh) 2020-07-31 2020-07-31 一种粗晶WC-Co硬质合金的制备方法

Publications (2)

Publication Number Publication Date
CN111850370A true CN111850370A (zh) 2020-10-30
CN111850370B CN111850370B (zh) 2021-11-26

Family

ID=72952847

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010757992.8A Active CN111850370B (zh) 2020-07-31 2020-07-31 一种粗晶WC-Co硬质合金的制备方法

Country Status (1)

Country Link
CN (1) CN111850370B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030223901A1 (en) * 2002-03-13 2003-12-04 Yoshinari Kaieda Process for preparing WC cemented carbide
US6855405B2 (en) * 2001-06-11 2005-02-15 Mitsubishi Materials Corporation Surface-coated carbide alloy tool
CN102534341A (zh) * 2012-02-27 2012-07-04 中南大学 消除超粗和特粗晶硬质合金相界处wc晶粒碎裂现象的方法
CN102560216A (zh) * 2012-02-27 2012-07-11 中南大学 致密包覆型复合粉及超粗与特粗晶硬质合金的制备方法
CN106191609A (zh) * 2016-08-30 2016-12-07 华南理工大学 一种高性能双尺度结构WC‑Co硬质合金的制备方法
CN106636837A (zh) * 2017-01-23 2017-05-10 四川理工学院 一种超粗晶WC‑Co硬质合金的制备方法
CN106756390A (zh) * 2016-12-01 2017-05-31 株洲硬质合金集团有限公司 一种含板状碳化钨晶粒的硬质合金及其制备方法
CN106756160A (zh) * 2016-11-10 2017-05-31 无锡市明盛强力风机有限公司 一种金属陶瓷材料的制备方法
CN109338197A (zh) * 2018-11-06 2019-02-15 河海大学 一种高致密度WC/Co复合材料硬质合金的制备方法
CN110387497A (zh) * 2019-08-28 2019-10-29 河海大学 一种超粗晶WC-Co硬质合金的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855405B2 (en) * 2001-06-11 2005-02-15 Mitsubishi Materials Corporation Surface-coated carbide alloy tool
US20030223901A1 (en) * 2002-03-13 2003-12-04 Yoshinari Kaieda Process for preparing WC cemented carbide
CN102534341A (zh) * 2012-02-27 2012-07-04 中南大学 消除超粗和特粗晶硬质合金相界处wc晶粒碎裂现象的方法
CN102560216A (zh) * 2012-02-27 2012-07-11 中南大学 致密包覆型复合粉及超粗与特粗晶硬质合金的制备方法
CN106191609A (zh) * 2016-08-30 2016-12-07 华南理工大学 一种高性能双尺度结构WC‑Co硬质合金的制备方法
CN106756160A (zh) * 2016-11-10 2017-05-31 无锡市明盛强力风机有限公司 一种金属陶瓷材料的制备方法
CN106756390A (zh) * 2016-12-01 2017-05-31 株洲硬质合金集团有限公司 一种含板状碳化钨晶粒的硬质合金及其制备方法
CN106636837A (zh) * 2017-01-23 2017-05-10 四川理工学院 一种超粗晶WC‑Co硬质合金的制备方法
CN109338197A (zh) * 2018-11-06 2019-02-15 河海大学 一种高致密度WC/Co复合材料硬质合金的制备方法
CN110387497A (zh) * 2019-08-28 2019-10-29 河海大学 一种超粗晶WC-Co硬质合金的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGTONG ET AL.: "Preparation of Co-plated WC powders by a non-precious-Co-activation triggered electroless plating strategy", 《ADVANCED POWDER TECHNOLOGY》 *

Also Published As

Publication number Publication date
CN111850370B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN109252081B (zh) 一种高熵合金粘结相超细碳化钨硬质合金及其制备方法
CN104451322B (zh) 一种碳化钨基硬质合金及其制备方法
CN108486398A (zh) 一种碳化钨-钴硬质合金的制备方法
CN106521204B (zh) 一种原位生长石墨烯增强金属基复合材料的制备方法
WO2020147205A1 (zh) 一种金属材料或金属复合材料的制备方法
CN110846547A (zh) 一种高熵合金结合的碳化钨硬质合金及其制备方法
CN104846231A (zh) 一种铜基石墨烯复合块体材料的制备方法
CN110387497A (zh) 一种超粗晶WC-Co硬质合金的制备方法
CN106756177B (zh) 一种碳化钛陶瓷颗粒增强铜基复合材料的制备方法
CN114086013B (zh) 一种高强高导的超细晶钨铜复合材料及制备方法
CN108411137B (zh) 超细晶碳化钨基硬质合金的制备方法
CN107244918B (zh) 一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法
CN108118178A (zh) 一种原位合成硼化钛-碳化钛复相陶瓷增强铜基复合材料及其制备方法和应用
CN106636835A (zh) 一种含金属间化合物粘结相的硬质合金的制备方法
CN111778424A (zh) 一种有效可控的具有多极孔结构的骨架的制备方法
CN106350721B (zh) 一种板状晶结构高性能WC-Co硬质合金的制备方法
CN113046612B (zh) 一种表层脱碳相梯度硬质合金材料及其制备方法
CN106834778B (zh) 硬质合金以及制备方法
CN111850370A (zh) 一种粗晶WC-Co硬质合金的制备方法
CN115259859A (zh) 一种碳化硼防弹陶瓷材料及其制备方法
CN107419126A (zh) 一种TiB‑TiB2‑Al复合陶瓷的快速制备方法
CN109811235B (zh) 一种高耐磨硬质合金材料及其制备方法与应用
CN107142445B (zh) 一种硬质合金表面渗碳方法
CN103667843B (zh) 一种深孔加工用超细硬质合金刀具材料的制备方法
CN112080661B (zh) 一种超细硬质合金制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant