CN111826606A - A kind of surface plasma oxidation method of aluminum and aluminum alloy - Google Patents
A kind of surface plasma oxidation method of aluminum and aluminum alloy Download PDFInfo
- Publication number
- CN111826606A CN111826606A CN201910330677.4A CN201910330677A CN111826606A CN 111826606 A CN111826606 A CN 111826606A CN 201910330677 A CN201910330677 A CN 201910330677A CN 111826606 A CN111826606 A CN 111826606A
- Authority
- CN
- China
- Prior art keywords
- arc
- aluminum
- oxidation
- argon gas
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 59
- 230000003647 oxidation Effects 0.000 title claims abstract description 57
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 30
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 21
- 239000007789 gas Substances 0.000 claims abstract description 50
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000001301 oxygen Substances 0.000 claims abstract description 20
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000005516 engineering process Methods 0.000 claims abstract description 16
- 238000010891 electric arc Methods 0.000 claims abstract description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 84
- 229910052786 argon Inorganic materials 0.000 claims description 42
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 16
- 239000010936 titanium Substances 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 239000011159 matrix material Substances 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910001882 dioxygen Inorganic materials 0.000 claims description 2
- 238000010849 ion bombardment Methods 0.000 claims description 2
- 238000005488 sandblasting Methods 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 abstract description 9
- 238000005260 corrosion Methods 0.000 abstract description 9
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 abstract description 4
- 238000007745 plasma electrolytic oxidation reaction Methods 0.000 abstract description 4
- 238000003912 environmental pollution Methods 0.000 abstract description 3
- 230000005684 electric field Effects 0.000 abstract description 2
- 239000007769 metal material Substances 0.000 abstract description 2
- 238000012986 modification Methods 0.000 abstract description 2
- 230000004048 modification Effects 0.000 abstract description 2
- -1 oxygen ions Chemical class 0.000 abstract description 2
- 230000001681 protective effect Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000000956 alloy Substances 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/36—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
本发明属于金属材料表面改性技术领域,具体涉及一种铝及铝合金表面进行等离子体氧化的方法。采用电弧增强辉光放电(AEGD)技术完成,通过电弧放电产生电子流,然后电子与氧气等气体碰撞使其电离,产生氧等离子体,在基体表面施加正偏压电场,产生辉光放电,将带负电的氧离子吸引到基体表面进行氧化反应,从而生成氧化铝保护膜层。该方法与传统的微弧氧化、阳极氧化技术相比,具有无环境污染等优点,可有效提高铝合金表面的抗点蚀性能。The invention belongs to the technical field of surface modification of metal materials, and particularly relates to a method for plasma oxidation of aluminum and aluminum alloy surfaces. It is completed by arc enhanced glow discharge (AEGD) technology. The electron flow is generated by arc discharge, and then the electrons collide with oxygen and other gases to ionize them to generate oxygen plasma, and a positive bias electric field is applied to the surface of the substrate to generate glow discharge. The negatively charged oxygen ions are attracted to the surface of the substrate for oxidation reaction, thereby forming an aluminum oxide protective film layer. Compared with the traditional micro-arc oxidation and anodic oxidation technology, the method has the advantages of no environmental pollution, etc., and can effectively improve the pitting corrosion resistance of the aluminum alloy surface.
Description
技术领域:Technical field:
本发明属于金属材料表面改性技术领域,具体涉及一种铝及铝合金表面进行等离子体氧化的方法。The invention belongs to the technical field of surface modification of metal materials, and particularly relates to a method for plasma oxidation of aluminum and aluminum alloy surfaces.
背景技术:Background technique:
铝及铝合金材料具有相对密度小、比强度高、塑性好、导电导热性能优异、易加工成形、价格低等一系列优点,广泛应用于航空航天、船舶制造、兵器工业和轻工建材等多个领域,是具有经济价值和商业应用意义的关键材料之一。尤其是,铝合金材料可以在大气中与空气中的氧化合,在合金表面形成一薄层氧化膜。但是这种氧化膜较薄,一般仅为2nm且呈现多孔结构,在海水或海洋环境条件下,氯离子易穿透氧化膜造成点腐蚀,往往难以满足要求。因此,常需利用电化学手段对合金表面进行处理,在铝合金表面形成一层均匀、连续、致密的多孔氧化铝薄膜,使材料表面的耐蚀性、耐磨性提高。Aluminum and aluminum alloy materials have a series of advantages such as low relative density, high specific strength, good plasticity, excellent electrical and thermal conductivity, easy processing and forming, and low price. They are widely used in aerospace, shipbuilding, weapon industry and light industry building materials. It is one of the key materials with economic value and commercial application significance. In particular, aluminum alloy materials can combine with oxygen in the air to form a thin oxide film on the surface of the alloy. However, this kind of oxide film is relatively thin, generally only 2nm and has a porous structure. Under the conditions of seawater or marine environment, chloride ions easily penetrate the oxide film and cause pitting corrosion, which is often difficult to meet the requirements. Therefore, it is often necessary to treat the surface of the alloy by electrochemical means to form a uniform, continuous and dense porous alumina film on the surface of the aluminum alloy, so as to improve the corrosion resistance and wear resistance of the material surface.
一些表面处理方法(如:阳极氧化、化学氧化、微弧氧化等)虽有较广泛应用,但是这些技术制备的氧化膜缺陷较多,对环境污染较大。随着社会的发展,对铝合金质量和环保节能的要求越来越高,人们开始采用一些真空处理方法,如:离子渗氮、离子渗氧以及离子注入等辉光放电为核心的方法。如:中国台湾的Fu-Hsing Li等用 13.6MHz的射频离子装置,氧化2h能够在铝表面制备厚度约60nm的结晶氧化铝层(Lu F H,Tsai H D,Chieh YC.Plasma oxidation of Al thin films on Si substrates.Thin Solid Films,2008,516(8):1871-1876)。德国的Raveh等利用微波离子氧化技术制备 20nm厚无定形氧化铝层(Raveh A,Tsameret Z K,Grossman E.Surface characterization of thin layers ofaluminium oxide.Surface and Coatings Technology,1997,88(1):103-111)。Although some surface treatment methods (such as: anodizing, chemical oxidation, micro-arc oxidation, etc.) are widely used, the oxide films prepared by these technologies have many defects and cause great environmental pollution. With the development of society, the requirements for the quality of aluminum alloys and environmental protection and energy saving are getting higher and higher, and people have begun to adopt some vacuum treatment methods, such as ion nitriding, ion oxygenation and ion implantation. Such as: Fu-Hsing Li of Taiwan, China, etc., using a 13.6MHz radio frequency ion device, oxidation for 2h can prepare a crystalline alumina layer with a thickness of about 60nm on the aluminum surface (Lu F H, Tsai HD, Chieh YC. Plasma oxidation of Al thin films on Si substrates. Thin Solid Films, 2008, 516(8):1871-1876). Raveh et al. in Germany used microwave ion oxidation technology to prepare 20nm thick amorphous aluminum oxide layer (Raveh A, Tsameret Z K, Grossman E. Surface characterization of thin layers of aluminum oxide. Surface and Coatings Technology, 1997, 88(1): 103-111 ).
国内也有采用空心阴极放电辅助离子氧化处理铝合金(李杨、张念武、徐惠忠、邱剑勋、赵相金、王硕,铝合金空心阴极放电辅助离子氧化技术的研究,烟台大学学报(自然科学与工程版),2014,27(4):271-274),制备储20~500nm 厚的致密光滑的氧化层(Al2O3)。在浓度为3.5wt%的NaCl溶液中对未处理和离子氧化样品进行浸泡腐蚀实验,经过浸泡20天后,未处理样品受到严重腐蚀,而氧化样品表面无明显腐蚀现象。总体而言,离子渗氧后可有效改善铝合金得抗腐蚀性能,但氧化层厚度仍较薄,其厚度仍有待提高。There are also hollow cathode discharge assisted ion oxidation treatment of aluminum alloys in China (Li Yang, Zhang Nianwu, Xu Huizhong, Qiu Jianxun, Zhao Xiangjin, Wang Shuo, Research on Aluminum Alloy Hollow Cathode Discharge Assisted Ion Oxidation Technology, Journal of Yantai University (Natural Science and Engineering Edition), 2014 , 27(4): 271-274), to prepare a dense and smooth oxide layer (Al 2 O 3 ) with a thickness of 20-500 nm. Immersion corrosion experiments were carried out on the untreated and ion-oxidized samples in NaCl solution with a concentration of 3.5wt%. After soaking for 20 days, the untreated samples were severely corroded, while the surface of the oxidized samples had no obvious corrosion phenomenon. In general, ion oxygen infiltration can effectively improve the corrosion resistance of aluminum alloys, but the thickness of the oxide layer is still thin, and its thickness still needs to be improved.
发明内容SUMMARY OF THE INVENTION
针对现有铝及铝合金氧化技术的不足,本发明的目的是提供一种铝及铝合金表面进行等离子体氧化的方法,在有效改善铝合金得抗腐蚀性能的同时,使氧化层厚度得到提高。Aiming at the deficiencies of the existing aluminum and aluminum alloy oxidation technologies, the purpose of the present invention is to provide a method for plasma oxidation of aluminum and aluminum alloy surfaces, which can effectively improve the corrosion resistance of aluminum alloys and increase the thickness of the oxide layer. .
为了实现上述目的,本发明的技术方案为:In order to achieve the above object, the technical scheme of the present invention is:
一种铝及铝合金表面等离子体氧化方法,采用电弧增强辉光放电技术来实现铝及铝合金表面的等离子体氧化。A plasma oxidation method of aluminum and aluminum alloy surfaces, which adopts arc-enhanced glow discharge technology to realize plasma oxidation of aluminum and aluminum alloy surfaces.
所述的铝及铝合金表面等离子体氧化方法,采用电弧增强辉光放电技术时,在电弧阴极靶外侧设置辅助阳极,且对辅助阳极进行通水冷却;辅助阳极采用无氧铜,并与弧源阴极相连。In the method for surface plasma oxidation of aluminum and aluminum alloys, when the arc-enhanced glow discharge technology is adopted, an auxiliary anode is arranged outside the arc cathode target, and the auxiliary anode is cooled by water; the auxiliary anode is made of oxygen-free copper, and is connected with the arc. source and cathode are connected.
所述的铝及铝合金表面等离子体氧化方法,采用电弧增强辉光放电技术进行等离子体氧化过程中,基体接偏压电源正极,真空室壁接偏压电源负极。In the method for plasma oxidation of aluminum and aluminum alloy surfaces, in the process of plasma oxidation by arc-enhanced glow discharge technology, the substrate is connected to the positive electrode of the bias power supply, and the wall of the vacuum chamber is connected to the negative electrode of the bias power supply.
所述的铝及铝合金表面等离子体氧化方法,具体步骤如下:Described aluminum and aluminum alloy surface plasma oxidation method, concrete steps are as follows:
(1)基体预清洗:基体表面经喷砂后在酒精溶液中超声1~30分钟,经热风吹干后装入真空室内的工件架上,等待处理;(1) Substrate pre-cleaning: After sandblasting, the substrate surface is ultrasonicated in alcohol solution for 1 to 30 minutes, dried by hot air, and then loaded into the workpiece rack in the vacuum chamber, waiting for processing;
(2)氩离子轰击:采用纯钛靶,当真空室内真空度达到1×10-3Pa~1×10-2Pa时,对真空室加热至200~500℃;向真空室通入氩气,氩气气压控制在0.1~5Pa之间;同时,开启纯钛靶弧源,弧电流为60~150A,纯钛靶弧光放电后会产生电子流,将氩气电离,基体加脉冲负偏压在-400~-1500V范围内,偏压占空比在30~90%范围内,使氩气发生辉光放电,对基体进行辉光清洗10~120分钟;(2) Argon ion bombardment: using pure titanium target, when the vacuum degree in the vacuum chamber reaches 1×10 -3 Pa~1×10 -2 Pa, heat the vacuum chamber to 200~500℃; pass argon gas into the vacuum chamber , the argon gas pressure is controlled between 0.1~5Pa; at the same time, the pure titanium target arc source is turned on, and the arc current is 60~150A. After the pure titanium target arc discharge, an electron flow will be generated, ionizing the argon gas, and applying a pulse negative bias to the matrix. In the range of -400~-1500V, the duty cycle of the bias voltage is in the range of 30~90%, so that the argon gas glow discharges, and the substrate is glow cleaned for 10~120 minutes;
(3)等离子体氧化:采用纯钛靶,调整氩气气压为0.1~5Pa范围内,同时通入氧气,氩气流量在100~1000sccm范围内,氧气流量为氩气流量的5~50%范围内,对基体施加脉冲正偏压10V~500V,偏压占空比为10~80%范围内;调节弧电流为 60~150A,氧化时间为10~300分钟;(3) Plasma oxidation: use a pure titanium target, adjust the argon gas pressure within the range of 0.1-5Pa, and at the same time feed oxygen, the argon gas flow rate is within the range of 100-1000sccm, and the oxygen gas flow rate is within the range of 5-50% of the argon gas flow rate Inside, a pulse positive bias voltage of 10V-500V is applied to the substrate, and the bias duty cycle is within the range of 10-80%; the arc current is adjusted to 60-150A, and the oxidation time is 10-300 minutes;
(4)氧化结束后,停弧、停基体脉冲偏压、停止通入氩气和氧气,继续抽真空,工件随炉冷却至100℃以下,打开真空室,取出工件,氧化过程结束。(4) After the oxidation is completed, stop the arc, stop the pulse bias of the substrate, stop feeding argon and oxygen, continue to vacuumize, the workpiece is cooled to below 100 ℃ with the furnace, open the vacuum chamber, take out the workpiece, and the oxidation process is over.
所述的铝及铝合金表面等离子体氧化方法,氧化过程结束后,氧化层厚度范围为0.01~2微米。In the method for surface plasma oxidation of aluminum and aluminum alloys, after the oxidation process is completed, the thickness of the oxide layer ranges from 0.01 to 2 microns.
本发明的设计思想是:The design idea of the present invention is:
本发明在辉光放电的基础上,利用电弧放电增强,以进一步提高等离子体密度,从而提高氧化层厚度。本发明采用电弧增强辉光放电(AEGD)技术完成,通过电弧放电产生电子流,然后电子与氧气等气体碰撞使其电离,产生氧等离子体,在基体表面施加正偏压电场,产生辉光放电,将带负电的氧离子吸引到基体表面进行氧化反应,从而生成氧化铝保护膜层。On the basis of glow discharge, the present invention utilizes arc discharge enhancement to further increase plasma density, thereby increasing the thickness of the oxide layer. The invention adopts arc enhanced glow discharge (AEGD) technology to complete, generates electron flow through arc discharge, and then the electrons collide with oxygen and other gases to make them ionized to generate oxygen plasma, and a positive bias electric field is applied on the surface of the substrate to generate glow After discharge, the negatively charged oxygen ions are attracted to the surface of the substrate for oxidation reaction, thereby forming an aluminum oxide protective film layer.
与现有技术相比,本发明的优点及有益效果是:Compared with the prior art, the advantages and beneficial effects of the present invention are:
1、本发明采用电弧增强辉光放电(AEGD)技术来实现铝及铝合金表面的等离子体氧化,与阳极氧化及微弧氧化相比,具有对环境无污,氧化速度快,获得氧化层厚度较厚等优点。1. The present invention adopts arc-enhanced glow discharge (AEGD) technology to realize plasma oxidation of aluminum and aluminum alloy surfaces. Compared with anodic oxidation and micro-arc oxidation, it has the advantages of no pollution to the environment, fast oxidation speed, and obtains the thickness of the oxide layer. Thicker and so on.
2、本发明方法制备的氧化层可以有效提高海洋环境下铝合金的耐点蚀性能。2. The oxide layer prepared by the method of the present invention can effectively improve the pitting corrosion resistance of the aluminum alloy in the marine environment.
3、本发明在电弧阴极靶外侧设置辅助阳极,且对辅助阳极进行通水冷却,辅助阳极所起的作用是:吸引带负电的电子,通过电子与气体分子碰撞,使气体发生离化。3. In the present invention, an auxiliary anode is arranged on the outside of the arc cathode target, and the auxiliary anode is cooled by water. The function of the auxiliary anode is to attract negatively charged electrons, and ionize the gas through the collision of the electrons with the gas molecules.
具体实施方式:Detailed ways:
下面,通过实施例对本发明进一步详细阐述。Hereinafter, the present invention will be further described in detail through examples.
实施例1Example 1
本实施例中,基材采用纯铝,试样块尺寸为20mm×10mm×10mm,氧化面尺寸为20mm×10mm。氧化前,基体表面先经过研磨、抛光,在酒精溶液中超声清洗10 分钟、干燥后,放入真空室内的工件架上,待真空室内真空度达到4×10-3Pa时,对真空室加热至350℃,打开气体质量流量控制器,向真空室通入氩气,设定氩气流量为500sccm,气压控制在3.0Pa,同时开启纯钛靶弧源,弧电流为80A,纯钛靶产生弧光放电后会产生电子流,将氩气电离,基体加脉冲负偏压为-700V,偏压占空比为70%,使氩气发生辉光放电,对基体进行辉光清洗40分钟;然后调整氩气气压为2.0Pa,同时通入氧气,氧气流量为氩气流量的20%,对基体施加脉冲正偏压200V,偏压占空比为30%;调节弧电流为80A,氧化时间为90分钟;氧化结束后,停弧、停基体脉冲偏压、停止通入气体,继续抽真空,工件随炉冷却至100℃以下,打开真空室,取出工件,氧化过程结束。In this embodiment, pure aluminum is used as the base material, the size of the sample block is 20 mm×10 mm×10 mm, and the size of the oxidized surface is 20 mm×10 mm. Before oxidation, the surface of the substrate is ground and polished, ultrasonically cleaned in alcohol solution for 10 minutes, dried, and placed on the workpiece rack in the vacuum chamber. When the vacuum degree in the vacuum chamber reaches 4×10 -3 Pa, the vacuum chamber is heated. When the temperature reaches 350°C, turn on the gas mass flow controller, pass argon gas into the vacuum chamber, set the argon gas flow rate to 500sccm, and control the air pressure to 3.0Pa. At the same time, turn on the pure titanium target arc source, the arc current is 80A, and the pure titanium target generates After the arc discharge, electron flow will be generated, ionizing the argon gas, the matrix will be pulsed with a negative bias voltage of -700V, and the bias duty ratio will be 70%, so that the argon gas will undergo glow discharge, and the matrix will be glow cleaned for 40 minutes; then Adjust the argon gas pressure to 2.0Pa, and feed oxygen at the same time, the oxygen flow rate is 20% of the argon gas flow rate, apply a pulse positive bias voltage of 200V to the substrate, and the bias duty cycle is 30%; adjust the arc current to 80A, and the oxidation time is 90 minutes; after the oxidation, stop the arc, stop the pulse bias of the substrate, stop the gas supply, continue to vacuum, the workpiece is cooled to below 100 ℃ with the furnace, open the vacuum chamber, take out the workpiece, and the oxidation process is over.
所得氧化层外观为银灰色,扫描电镜测试氧化层厚度为0.4微米。The appearance of the obtained oxide layer is silver-gray, and the thickness of the oxide layer measured by scanning electron microscope is 0.4 μm.
实施例2Example 2
本实施例中,基材采用铝合金(牌号为2024),试样尺寸为20mm×10mm×10mm,氧化面尺寸为20mm×10mm。氧化前,基体表面先经过研磨、抛光,在酒精溶液中超声清洗15分钟、干燥后,放入真空室内的工件架上,待真空室内真空度达到2×10-3Pa 时,对真空室加热至450℃,打开气体质量流量控制器,向真空室通入氩气,设定氩气流量为350sccm,气压控制在2.0Pa,同时开启纯钛靶弧源,弧电流为90A,纯钛靶产生弧光放电后会产生电子流,将氩气电离,基体加脉冲负偏压为-800V,偏压占空比为60%,使氩气发生辉光放电,对基体进行辉光清洗60分钟;然后调整氩气气压为1.5Pa,同时通入氧气,氧气流量为氩气流量的15%,对基体施加脉冲正偏压150V,偏压占空比为25%;调节弧电流为80A,氧化时间为120分钟;氧化结束后,停弧、停基体脉冲偏压、停止通入气体,继续抽真空,工件随炉冷却至100℃以下,打开真空室,取出工件,氧化过程结束。In this embodiment, the base material is aluminum alloy (brand 2024), the size of the sample is 20mm×10mm×10mm, and the size of the oxidized surface is 20mm×10mm. Before oxidation, the surface of the substrate is ground and polished, ultrasonically cleaned in alcohol solution for 15 minutes, dried, and placed on the workpiece rack in the vacuum chamber. When the vacuum degree in the vacuum chamber reaches 2×10 -3 Pa, the vacuum chamber is heated. When the temperature reaches 450°C, turn on the gas mass flow controller, pass argon gas into the vacuum chamber, set the argon gas flow rate to 350sccm, and control the air pressure to 2.0Pa. At the same time, turn on the pure titanium target arc source, the arc current is 90A, and the pure titanium target generates After the arc discharge, electron flow will be generated, ionizing the argon gas, the substrate will be pulsed with a negative bias voltage of -800V, and the bias duty cycle will be 60%, so that the argon gas will undergo glow discharge, and the substrate will be glow cleaned for 60 minutes; then Adjust the argon gas pressure to 1.5Pa, and feed oxygen at the same time, the oxygen flow rate is 15% of the argon gas flow rate, apply a pulse positive bias voltage of 150V to the substrate, and the bias duty ratio is 25%; adjust the arc current to 80A, and the oxidation time is 120 minutes; after the oxidation, stop the arc, stop the pulse bias of the substrate, stop the gas supply, continue to vacuumize, the workpiece is cooled to below 100 ℃ with the furnace, open the vacuum chamber, take out the workpiece, and the oxidation process is over.
所得氧化层外观为银灰色,扫描电镜测试氧化层厚度为0.5微米。The appearance of the obtained oxide layer is silver-gray, and the thickness of the oxide layer measured by scanning electron microscope is 0.5 μm.
实施例3Example 3
本实施例中,基材采用铝合金(牌号为6061),试样尺寸为20mm×10mm×10mm,氧化面尺寸为20mm×10mm。氧化前,基体表面先经过研磨、抛光,在酒精溶液中超声清洗20分钟、干燥后,放入真空室内的工件架上,待真空室内真空度达到6×10-3Pa 时,对真空室加热至400℃,打开气体质量流量控制器,向真空室通入氩气,设定氩气流量为600sccm,气压控制在3.5Pa,同时开启纯钛靶弧源,弧电流为100A,纯钛靶产生弧光放电后会产生电子流,将氩气电离,基体加脉冲负偏压为-600V,偏压占空比为80%,使氩气发生辉光放电,对基体进行辉光清洗60分钟;然后调整氩气气压为2.5Pa,同时通入氧气,氧气流量为氩气流量的20%,对基体施加脉冲正偏压200V,偏压占空比为20%;调节弧电流为90A,氧化时间为180分钟;氧化结束后,停弧、停基体脉冲偏压、停止通入气体,继续抽真空,工件随炉冷却至100℃以下,打开真空室,取出工件,氧化过程结束。In this embodiment, the base material is aluminum alloy (the grade is 6061), the size of the sample is 20mm×10mm×10mm, and the size of the oxidized surface is 20mm×10mm. Before oxidation, the surface of the substrate is ground and polished, ultrasonically cleaned in alcohol solution for 20 minutes, dried, and placed on the workpiece rack in the vacuum chamber. When the vacuum degree in the vacuum chamber reaches 6×10 -3 Pa, the vacuum chamber is heated. When the temperature reaches 400°C, turn on the gas mass flow controller, pass argon gas into the vacuum chamber, set the argon gas flow rate to 600sccm, and control the air pressure to 3.5Pa. At the same time, turn on the pure titanium target arc source, the arc current is 100A, and the pure titanium target generates After the arc discharge, electron flow will be generated, ionizing the argon gas, the matrix will be pulsed with a negative bias voltage of -600V, and the bias duty cycle will be 80%, so that the argon gas will undergo glow discharge, and the matrix will be glow cleaned for 60 minutes; then Adjust the argon gas pressure to 2.5Pa, and feed oxygen at the same time, the oxygen flow rate is 20% of the argon gas flow rate, apply a pulse positive bias voltage of 200V to the substrate, and the bias duty ratio is 20%; adjust the arc current to 90A, and the oxidation time is 180 minutes; after the oxidation, stop the arc, stop the pulse bias of the substrate, stop the gas supply, continue to vacuumize, the workpiece is cooled to below 100 ℃ with the furnace, open the vacuum chamber, take out the workpiece, and the oxidation process is over.
所得氧化层外观为银灰色,扫描电镜测试氧化层厚度为0.9微米。The appearance of the obtained oxide layer is silver-gray, and the thickness of the oxide layer measured by scanning electron microscope is 0.9 μm.
实施例4Example 4
本实施例中,基材采用铝合金(牌号为7075),试样尺寸为20mm×10mm×10mm,氧化面尺寸为20mm×10mm。氧化前,基体表面先经过研磨、抛光,在酒精溶液中超声清洗25分钟、干燥后,放入真空室内的工件架上,待真空室内真空度达到2×10-3Pa 时,对真空室加热至500℃,打开气体质量流量控制器,向真空室通入氩气,设定氩气流量为300sccm,气压控制在1.8Pa,同时开启纯钛靶弧源,弧电流为100A,纯钛靶产生弧光放电后会产生电子流,将氩气电离,基体加脉冲负偏压为-900V,偏压占空比为70%,使氩气发生辉光放电,对基体进行辉光清洗60分钟;然后调整氩气气压为1.8Pa,同时通入氧气,氧气流量为氩气流量的25%,对基体施加脉冲正偏压250V,偏压占空比为30%;调节弧电流为70A,氧化时间为150分钟;氧化结束后,停弧、停基体脉冲偏压、停止通入气体,继续抽真空,工件随炉冷却至100℃以下,打开真空室,取出工件,氧化过程结束。In this embodiment, the base material is aluminum alloy (the grade is 7075), the size of the sample is 20mm×10mm×10mm, and the size of the oxidized surface is 20mm×10mm. Before oxidation, the surface of the substrate is ground and polished, ultrasonically cleaned in alcohol solution for 25 minutes, dried, and placed on the workpiece rack in the vacuum chamber. When the vacuum degree in the vacuum chamber reaches 2×10 -3 Pa, the vacuum chamber is heated. When the temperature reaches 500°C, turn on the gas mass flow controller, pass argon gas into the vacuum chamber, set the argon gas flow rate to 300sccm, and control the air pressure to 1.8Pa. At the same time, open the pure titanium target arc source, the arc current is 100A, and the pure titanium target generates After the arc discharge, electron flow will be generated, ionizing the argon gas, the matrix will be pulsed with a negative bias voltage of -900V, and the bias duty cycle will be 70%, so that the argon gas will undergo glow discharge, and the matrix will be glow cleaned for 60 minutes; then Adjust the argon gas pressure to 1.8Pa, and feed oxygen at the same time, the oxygen flow rate is 25% of the argon gas flow rate, apply a pulse positive bias voltage of 250V to the substrate, and the bias duty ratio is 30%; adjust the arc current to 70A, and the oxidation time is 150 minutes; after the oxidation, stop the arc, stop the pulse bias of the substrate, stop the gas supply, continue to vacuumize, the workpiece is cooled to below 100 ℃ with the furnace, open the vacuum chamber, take out the workpiece, and the oxidation process is over.
所得氧化层外观为银灰色,扫描电镜测试氧化层厚度为0.8微米。The appearance of the obtained oxide layer is silver gray, and the thickness of the oxide layer measured by scanning electron microscope is 0.8 μm.
实施例结果表明,本发明铝及铝合金表面进行等离子体氧化的方法,该方法与传统的微弧氧化、阳极氧化技术相比,具有无环境污染等优点,可有效提高铝合金表面的抗点蚀性能。The results of the examples show that the method for plasma oxidation of aluminum and aluminum alloy surfaces of the present invention has the advantages of no environmental pollution compared with traditional micro-arc oxidation and anodic oxidation technologies, and can effectively improve the resistance of the aluminum alloy surface. corrosion performance.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910330677.4A CN111826606A (en) | 2019-04-23 | 2019-04-23 | A kind of surface plasma oxidation method of aluminum and aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910330677.4A CN111826606A (en) | 2019-04-23 | 2019-04-23 | A kind of surface plasma oxidation method of aluminum and aluminum alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111826606A true CN111826606A (en) | 2020-10-27 |
Family
ID=72912359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910330677.4A Pending CN111826606A (en) | 2019-04-23 | 2019-04-23 | A kind of surface plasma oxidation method of aluminum and aluminum alloy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111826606A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114369790A (en) * | 2021-11-30 | 2022-04-19 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | A kind of aluminum super hemisphere manufacturing process |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101709449A (en) * | 2009-11-24 | 2010-05-19 | 大连海事大学 | Surface oxidation treatment device and method of aluminum alloy |
KR20120116558A (en) * | 2011-04-13 | 2012-10-23 | 바코스 주식회사 | High speed film forming apparatus, and film forming method using the same |
WO2013165036A1 (en) * | 2012-05-02 | 2013-11-07 | 바코스 주식회사 | High-speed film-forming device and film-forming method using same |
CN105177493A (en) * | 2015-09-22 | 2015-12-23 | 华南理工大学 | Electric arc plasma auxiliary low-voltage nitriding method for surface of hot-working die |
-
2019
- 2019-04-23 CN CN201910330677.4A patent/CN111826606A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101709449A (en) * | 2009-11-24 | 2010-05-19 | 大连海事大学 | Surface oxidation treatment device and method of aluminum alloy |
KR20120116558A (en) * | 2011-04-13 | 2012-10-23 | 바코스 주식회사 | High speed film forming apparatus, and film forming method using the same |
WO2013165036A1 (en) * | 2012-05-02 | 2013-11-07 | 바코스 주식회사 | High-speed film-forming device and film-forming method using same |
CN105177493A (en) * | 2015-09-22 | 2015-12-23 | 华南理工大学 | Electric arc plasma auxiliary low-voltage nitriding method for surface of hot-working die |
Non-Patent Citations (1)
Title |
---|
JÖRG VETTER等: ""Arc-enhanced glow discharge in vacuum arc machines"", 《SURFACE AND COATINGS TECHNOLOGY》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114369790A (en) * | 2021-11-30 | 2022-04-19 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | A kind of aluminum super hemisphere manufacturing process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103805996B (en) | The compounding method of the first plated film of a kind of metal material surface nitriding again | |
CN109797363B (en) | Arc light electron source assisted ion nitriding process | |
CN109112602B (en) | A laser method for improving the bonding force between ceramic coating and metal substrate | |
CN107338409B (en) | Process method for preparing nitrogen-based hard coating by adjustable magnetic field arc ion plating | |
CN105755427B (en) | A kind of austenitic stainless steel and its compound plasma intensifying method | |
CN111224121A (en) | In-situ preparation method of composite modified layer on the surface of stainless steel bipolar plate of proton exchange membrane fuel cell | |
CN109082647B (en) | Preparation method of DLC protective film on aluminum alloy surface | |
CN108060398A (en) | A kind of fuel cell composite Nano coating and its plating method | |
US20200199734A1 (en) | Magnesium alloy surface coating method and corrosion-resistant magnesium alloy prepared thereby | |
CN103774096B (en) | A kind of preparation method of anti-oxidant rigid composite coating | |
CN101158022A (en) | Austenitic stainless steel electron beam assisted plasma surface modification method and equipment | |
CN102560349A (en) | Coating part and preparing method thereof | |
CN101503794A (en) | Technique for preparing decorative TiN film on steel surface | |
CN102534720A (en) | Preparation method for metal ceramic composite coating on surface of aluminum alloy | |
CN101122004A (en) | A New Vacuum Surface Strengthening Technology and Equipment | |
CN111826606A (en) | A kind of surface plasma oxidation method of aluminum and aluminum alloy | |
CN102409380A (en) | A Method for Improving the Corrosion Resistance of Aluminum Alloy Micro-arc Oxidation Film Layer | |
CN100537851C (en) | Magnesium, aluminium alloy electrolytic solution for differential arc oxidization surface treatment in aluminates system | |
CN103774092B (en) | It is a kind of to prepare conductive and corrosion-resistant finishes method in Mg alloy surface | |
CN101220456A (en) | Method for magnetron arc ion plating stainless steel protective layer on the surface of NdFeB magnet | |
CN101570875A (en) | Method for forming brown ceramic membrane on surface of Mg-Li alloy | |
CN101386976A (en) | A process of magnetron sputtering TiN film on the surface of magnesium alloy | |
CN108796493B (en) | Hole sealing modification method for cold spraying coating on surface of light metal | |
CN101195926A (en) | Method for acquiring TiAl/Al2O3composite material ceramic film on aluminum alloy surface | |
CN103628060A (en) | Novel electrode material with surface subjected to molybdenum infiltration and titanium nitride deposition and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201027 |
|
RJ01 | Rejection of invention patent application after publication |