CN111812290B - Water pollution monitoring biosensor, monitoring system and monitoring method - Google Patents
Water pollution monitoring biosensor, monitoring system and monitoring method Download PDFInfo
- Publication number
- CN111812290B CN111812290B CN202010692667.8A CN202010692667A CN111812290B CN 111812290 B CN111812290 B CN 111812290B CN 202010692667 A CN202010692667 A CN 202010692667A CN 111812290 B CN111812290 B CN 111812290B
- Authority
- CN
- China
- Prior art keywords
- water pollution
- grating
- pollution monitoring
- fixing
- elastic beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 121
- 238000003911 water pollution Methods 0.000 title claims abstract description 97
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000000835 fiber Substances 0.000 claims abstract description 47
- 238000005452 bending Methods 0.000 claims abstract description 30
- 230000008859 change Effects 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 43
- 230000003287 optical effect Effects 0.000 claims description 33
- 238000002955 isolation Methods 0.000 claims description 32
- 239000013307 optical fiber Substances 0.000 claims description 17
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 11
- 239000003292 glue Substances 0.000 claims description 8
- 230000007797 corrosion Effects 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 235000015170 shellfish Nutrition 0.000 claims 3
- 238000012806 monitoring device Methods 0.000 claims 1
- 241000237852 Mollusca Species 0.000 description 21
- 235000020637 scallop Nutrition 0.000 description 14
- 241000237503 Pectinidae Species 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- 239000013535 sea water Substances 0.000 description 8
- 230000008602 contraction Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 229920002545 silicone oil Polymers 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000005059 dormancy Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000007779 soft material Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 241000237536 Mytilus edulis Species 0.000 description 1
- 241000237509 Patinopecten sp. Species 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 235000020638 mussel Nutrition 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/186—Water using one or more living organisms, e.g. a fish
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K61/00—Culture of aquatic animals
- A01K61/50—Culture of aquatic animals of shellfish
- A01K61/54—Culture of aquatic animals of shellfish of bivalves, e.g. oysters or mussels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
- G01L1/242—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
- G01L1/246—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Environmental Sciences (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Marine Sciences & Fisheries (AREA)
- Zoology (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Engineering & Computer Science (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及水污染监测技术领域,尤其涉及一种水污染监测生物传感器及监测系统与监测方法。The invention relates to the technical field of water pollution monitoring, in particular to a biosensor for water pollution monitoring, a monitoring system and a monitoring method.
背景技术Background technique
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。The information disclosed in this background section is only intended to increase the understanding of the general background of the present invention, and is not necessarily taken as an acknowledgment or any form of suggestion that the information constitutes the prior art already known to those skilled in the art.
常规的水质监测往往需要到水源地就地取样,将样本水带回实验室或者检测中心进行离线检测,这种技术方法监测周期长,存在时效性差、数据可靠性差的问题,并且成本消耗大,无法实现在线监测。Conventional water quality monitoring often requires local sampling at the water source, and the sample water is brought back to the laboratory or testing center for offline testing. This technical method has a long monitoring cycle, poor timeliness, poor data reliability, and high cost consumption. Online monitoring is not possible.
目前也有部分电子产品可以实现在线水质监测,但是该类电子产品需要供电,在大规模水域内很难多点布放,特别是在海水中,容易被水生生物附着而失效,同时也很难在海洋腐蚀环境下长期工作。将传感器安装在生物体上实现环境监测是一项新技术,但大多数都是采用电子传感器实现的,同样存在不耐腐蚀、不易供电、易受信号传输干扰等问题,无法长期在线监测,不利于水污染情况的监测。At present, there are some electronic products that can realize online water quality monitoring, but such electronic products need power supply, and it is difficult to deploy them at multiple points in large-scale waters, especially in seawater, where they are easy to be attached by aquatic organisms and become invalid. Long-term work in marine corrosive environment. It is a new technology to install sensors on organisms to realize environmental monitoring, but most of them are realized by electronic sensors, which also have problems such as corrosion resistance, difficulty in power supply, and susceptibility to signal transmission interference, which cannot be monitored online for a long time. Conducive to the monitoring of water pollution.
发明内容Contents of the invention
为了解决现有技术中存在的技术问题,本发明的目的是提供一种水污染监测生物传感器及监测系统与监测方法。In order to solve the technical problems existing in the prior art, the object of the present invention is to provide a water pollution monitoring biosensor, a monitoring system and a monitoring method.
为解决以上技术问题,本发明的以下一个或多个实施例提供了如下技术方案:In order to solve the above technical problems, one or more embodiments of the present invention provide the following technical solutions:
第一方面,本发明提供一种水污染监测生物传感器,包括:In a first aspect, the present invention provides a water pollution monitoring biosensor, comprising:
水生生物,为活的双壳贝类生物体;Aquatic organisms are living bivalve organisms;
光栅固定结构,包括第一固定基座、第二固定基座和弹性梁片,弹性梁片为拱形结构,其第一固定部和第二固定部分别安装于第一固定基座和第二固定基座上,使其中部的弯曲部位于两个固定基座中间;两个固定基座分别固定于水生生物的两个壳体表面;The grating fixing structure includes a first fixing base, a second fixing base and an elastic beam. The elastic beam is an arched structure, and its first fixing part and second fixing part are respectively installed on the first fixing base and the second fixing base. On the fixed base, the curved part in the middle is located between the two fixed bases; the two fixed bases are respectively fixed on the two shell surfaces of the aquatic organisms;
光栅,为光纤布拉格光栅,粘附于光栅固定结构的弯曲部的外侧;The grating, which is a fiber Bragg grating, is adhered to the outside of the curved portion of the grating fixing structure;
水生生物的两个壳体的开合通过两个固定基座带动弯曲部扩张或收缩,进而带动光栅规律性扩张或收缩,产生信号的变化。The opening and closing of the two shells of the aquatic organism drives the expansion or contraction of the curved part through the two fixed bases, and then drives the regular expansion or contraction of the grating, resulting in a signal change.
第二方面,本发明提供一种水污染监测系统,包括:In a second aspect, the present invention provides a water pollution monitoring system, comprising:
所述水污染监测生物传感器;The water pollution monitoring biosensor;
解调仪,通过光缆与生物传感器的光栅连接;The demodulator is connected with the grating of the biosensor through an optical cable;
计算机,与解调仪连接。The computer is connected with the demodulator.
第三方面,本发明提供一种水污染监测方法,包括如下步骤:In a third aspect, the present invention provides a water pollution monitoring method, comprising the steps of:
双壳贝类生物体的呼吸引起两个外壳的张合运动,通过两个固定基座传递到弹性梁片上,引起弹性梁片的弯曲部的舒张或压缩,进而使紧贴在弹性梁片弯曲部上的光栅同步发生形变,引起光栅中心波长的改变;The respiration of the bivalve mollusk organisms causes the opening and closing movement of the two shells, which is transmitted to the elastic beam through the two fixed bases, causing the expansion or compression of the curved part of the elastic beam, and then bending The grating on the upper part is deformed synchronously, causing the central wavelength of the grating to change;
通过监测光栅中心波长的变化规律,来监测双壳贝类生物体所处水域的水质情况。By monitoring the change rule of the central wavelength of the grating, the water quality of the water area where the bivalve mollusk organisms are located is monitored.
与现有技术相比,本发明的以上一个或多个技术方案取得了以下有益效果:Compared with the prior art, the above one or more technical solutions of the present invention have achieved the following beneficial effects:
水污染监测生物传感器在使用时,将第一固定基座和第二固定基座固定在扇贝等双壳贝类生物体上,然后将其放置于待监测的水体中,通过监测生物体生理特征变化,实时反应水质污染、含氧量、农药含量等一系列指标来完成水污染的监测,实现借助生物载体实现水污染情况的监测,方便进行水体监测。When the water pollution monitoring biosensor is in use, fix the first fixed base and the second fixed base on bivalve mollusks such as scallops, and then place them in the water body to be monitored. Changes, real-time response to a series of indicators such as water pollution, oxygen content, and pesticide content to complete the monitoring of water pollution, realize the monitoring of water pollution with the help of biological carriers, and facilitate water body monitoring.
光纤布拉格光栅贴附于弯曲部的外侧,更容易发生均匀应变,进而产生规律性信号。此外,弯曲部具有一定的弹性,可以及时复位,且在一定受力范围内不会出现塑性形变,以保证监测的准确性。The fiber Bragg grating is attached to the outside of the bending part, which is more prone to uniform strain and then generates regular signals. In addition, the bending part has a certain degree of elasticity, can be reset in time, and will not appear plastic deformation within a certain force range, so as to ensure the accuracy of monitoring.
该水污染监测方法是利用双壳贝类生物体作为水污染程度的感知体,通过光纤传感器采集获得生物体的活动特征,从而实现水污染指标的监测,对于水污染监测,特别是对生物体能够产生直接影响的水质污染监测具有更加有效和直接的在线监测效果。The water pollution monitoring method is to use bivalve mollusc organisms as the sensing body of water pollution degree, and obtain the activity characteristics of organisms through optical fiber sensor collection, thereby realizing the monitoring of water pollution indicators. For water pollution monitoring, especially for organisms Water pollution monitoring that can have a direct impact has a more effective and direct on-line monitoring effect.
利用光纤布拉格光栅感应双壳贝类生物体的活动特征,通过光缆将光栅的应变信号向外传递,通过该种方式进行监测时,监测距离可达上百公里,无需中继站、无需供电,解决了目前生物传感器离线采样、电子传感器远程长期在线监测困难的问题,为海洋信息监测网的铺设提供必要监测手段。Fiber Bragg gratings are used to sense the activity characteristics of bivalve molluscs, and the strain signals of the gratings are transmitted outwards through optical cables. When monitoring in this way, the monitoring distance can reach hundreds of kilometers without relay stations or power supply, which solves the problem At present, the difficulty of off-line sampling of biosensors and remote long-term online monitoring of electronic sensors provides necessary monitoring means for the laying of marine information monitoring networks.
此外,还可以将多个生物传感器进行串联,采用波分复用可以实现多个传感器的串联检测,大大减少了布线分线难度,为实际海洋布设提供了便利。In addition, multiple biosensors can be connected in series, and the series detection of multiple sensors can be realized by using wavelength division multiplexing, which greatly reduces the difficulty of wiring and branching, and provides convenience for actual ocean layout.
附图说明Description of drawings
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings constituting a part of the present invention are used to provide a further understanding of the present invention, and the schematic embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute improper limitations to the present invention.
图1为本发明实施例提供的水污染监测生物传感器的结构示意图;Fig. 1 is the structural representation of the water pollution monitoring biosensor provided by the embodiment of the present invention;
图2为本发明实施例提供的水污染监测生物传感器的局部结构示意图;Fig. 2 is a partial structural schematic diagram of a water pollution monitoring biosensor provided by an embodiment of the present invention;
图3为本发明实施例提供的弹性梁片的结构示意图;Fig. 3 is a schematic structural diagram of an elastic beam provided by an embodiment of the present invention;
图4为本发明实施例提供的第一固定基座的结构示意图;Fig. 4 is a schematic structural diagram of a first fixed base provided by an embodiment of the present invention;
图5为本发明实施例提供的第二固定基座的结构示意图;Fig. 5 is a schematic structural diagram of a second fixed base provided by an embodiment of the present invention;
图6为本发明实施例提供的水污染监测系统的结构示意图;FIG. 6 is a schematic structural diagram of a water pollution monitoring system provided by an embodiment of the present invention;
图7为本发明实施例提供的双壳贝类生物体健康态与病态波形示例图;Fig. 7 is an example diagram of healthy and sick waveforms of bivalve organisms provided by the embodiment of the present invention;
图8为本发明实施例提供的双壳贝类生物体在正常水质环境下呼吸、滤食、休眠波形图。Fig. 8 is a waveform diagram of respiration, filter feeding and dormancy of bivalve mollusc organisms provided by an embodiment of the present invention in a normal water quality environment.
其中,1、第一固定基座,101、第一卡槽,102、第一孔;Wherein, 1, the first fixed base, 101, the first card slot, 102, the first hole;
2、第二固定基座,201、第二卡槽,202、第二孔,203、光纤槽;2. The second fixed base, 201, the second card slot, 202, the second hole, 203, the fiber slot;
3、弹性梁片,301、第一固定部,302、第二固定部,303、弯曲部;3. The elastic beam, 301, the first fixing part, 302, the second fixing part, 303, the bending part;
4、光纤布拉格光栅,5、隔离仓,6、光缆,7、光缆缓冲保护套,8、计算机,9、解调仪,10、双壳贝类。4. Optical fiber Bragg grating, 5. Isolation chamber, 6. Optical cable, 7. Optical cable buffer protection sleeve, 8. Computer, 9. Demodulator, 10. Bivalve mollusk.
具体实施方式Detailed ways
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the present invention. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used here is only for describing specific embodiments, and is not intended to limit exemplary embodiments according to the present invention. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that when the terms "comprising" and/or "comprising" are used in this specification, they mean There are features, steps, operations, means, components and/or combinations thereof.
第一方面,本发明提供一种水污染监测生物传感器,包括:In a first aspect, the present invention provides a water pollution monitoring biosensor, comprising:
水生生物,为活的双壳贝类生物体;Aquatic organisms are living bivalve organisms;
光栅固定结构,包括第一固定基座、第二固定基座和弹性梁片,弹性梁片为拱形结构,其第一固定部和第二固定部分别安装于第一固定基座和第二固定基座上,使其中部的弯曲部位于两个固定基座中间;两个固定基座分别固定于水生生物的两个壳体表面;The grating fixing structure includes a first fixing base, a second fixing base and an elastic beam. The elastic beam is an arched structure, and its first fixing part and second fixing part are respectively installed on the first fixing base and the second fixing base. On the fixed base, the curved part in the middle is located between the two fixed bases; the two fixed bases are respectively fixed on the two shell surfaces of the aquatic organisms;
光栅,为光纤布拉格光栅,粘附于光栅固定结构的弯曲部的外侧;The grating, which is a fiber Bragg grating, is adhered to the outside of the curved portion of the grating fixing structure;
水生生物的两个壳体的开合通过两个固定基座带动弯曲部扩张或收缩,进而带动光栅规律性扩张或收缩,产生信号的变化。The opening and closing of the two shells of the aquatic organism drives the expansion or contraction of the curved part through the two fixed bases, and then drives the regular expansion or contraction of the grating, resulting in a signal change.
在一些实施例中,弯曲部未发生弹性形变时,第一固定基座与第二固定基座平行。采用该种结构,两个固定基座之间的开合可以更灵敏地传递到弯曲部上,进而使弯曲部的变形更加灵敏,有利于提高监测的灵敏度。In some embodiments, when the bending portion is not elastically deformed, the first fixing base is parallel to the second fixing base. With this structure, the opening and closing between the two fixed bases can be transmitted to the bending part more sensitively, thereby making the deformation of the bending part more sensitive, which is beneficial to improving the sensitivity of monitoring.
在一些实施例中,弯曲部的外侧壁处于隔离仓内,隔离仓内部填充有隔离液。In some embodiments, the outer sidewall of the curved portion is in the isolation chamber, and the interior of the isolation chamber is filled with isolation liquid.
弯曲部的外侧壁是指弯曲部的外凸的一侧的侧壁,光栅粘贴于该侧壁上,将光栅置于隔离液中,可以将光栅与外界的水体隔离,以保证光栅的正常工作,并保证光栅的使用寿命。The outer wall of the curved part refers to the side wall of the convex side of the curved part, the grating is pasted on the side wall, and the grating is placed in the spacer fluid, which can isolate the grating from the outside water body to ensure the normal operation of the grating , and guarantee the service life of the grating.
进一步的,所述防水隔离壁的材质为橡胶或塑料。Further, the material of the waterproof partition wall is rubber or plastic.
进一步的,所述隔离液为硅油。硅油具有较高的耐热性、耐水性、电绝缘性和较小的表面张力,可用作隔离剂。其它液体成分也可以,需具有对金属和橡胶没有腐蚀的特性,且在常规海水或淡水四季温度范围内不结冰、不汽化、膨胀系数小等特征。Further, the spacer fluid is silicone oil. Silicone oil has high heat resistance, water resistance, electrical insulation and low surface tension, and can be used as a release agent. Other liquid components are also available, and must have the characteristics of no corrosion to metal and rubber, and the characteristics of non-freezing, non-vaporization, and small expansion coefficient in the four-season temperature range of conventional seawater or freshwater.
进一步的,所述隔离仓包裹于弹性梁片和光栅的外部。Further, the isolation bin is wrapped on the outside of the elastic beams and the grating.
更进一步的,隔离仓的一端固定于第一固定基座上,另一端固定于第二固定基座上。Furthermore, one end of the isolation bin is fixed on the first fixed base, and the other end is fixed on the second fixed base.
在一些实施例中,第一固定基座上设置有第一卡槽,第二固定基座上设置有第二卡槽,弹性梁片的第一固定部和第二固定部分别插合于第一卡槽和第二卡槽内。In some embodiments, the first fixing base is provided with a first card slot, the second fixing base is provided with a second card slot, and the first fixing part and the second fixing part of the elastic beam are inserted into the first fixing part respectively. Inside the first card slot and the second card slot.
进一步的,所述弹性梁片的材质为不锈钢或纤维复合材料。具有较强的弹性和耐海水侵蚀性。Further, the elastic beam is made of stainless steel or fiber composite material. It has strong elasticity and resistance to seawater erosion.
在一些实施例中,第一固定基座和第二固定基座通过防水胶粘结于双壳贝类生物体的壳体上。In some embodiments, the first fixing base and the second fixing base are bonded to the shell of the bivalve organism by waterproof glue.
进一步的,第一固定基座与壳体的粘结位置处设置有第一孔,第二固定基座与壳体的粘结位置处设置有第二孔,第一孔和第二孔均为通孔。Further, a first hole is provided at the bonding position of the first fixed base and the housing, and a second hole is provided at the bonding position of the second fixed base and the housing, the first hole and the second hole are both through hole.
第一孔和第二孔的设置便于向固定基座与壳体之间涂防水胶,以提高固定基座与壳体之间的粘结强度。此外,采用该种结构,可以先将固定基座与壳体定位后,再通过第一孔和第二孔向内注射粘合剂,有助于更好地实现固定基座的定位固定。The arrangement of the first hole and the second hole is convenient to apply waterproof glue between the fixed base and the shell, so as to improve the bonding strength between the fixed base and the shell. In addition, with this structure, the fixed base and the housing can be positioned first, and then the adhesive can be injected inward through the first hole and the second hole, which helps to better realize the positioning and fixing of the fixed base.
在一些实施例中,第一固定基座或第二固定基座上设置有槽体。In some embodiments, the first fixed base or the second fixed base is provided with a groove.
该槽体用于放置光缆,以便于将光缆与光栅连接。The groove is used to place the optical cable so as to connect the optical cable with the grating.
第二方面,本发明提供一种水污染监测系统,包括:In a second aspect, the present invention provides a water pollution monitoring system, comprising:
所述水污染监测生物传感器;The water pollution monitoring biosensor;
解调仪,通过光缆与生物传感器的光栅连接;The demodulator is connected with the grating of the biosensor through an optical cable;
计算机,与解调仪连接。The computer is connected with the demodulator.
在一些实施例中,光栅与光缆的连接处设置有光缆缓冲保护套。用于保护光纤布拉格光栅与光缆的连接。In some embodiments, an optical cable buffer and protective sheath is provided at the connection between the grating and the optical cable. It is used to protect the connection between fiber Bragg grating and optical cable.
进一步的,所述光缆缓冲保护套设置于光纤槽内。Further, the optical cable buffer protection sleeve is arranged in the optical fiber groove.
所述水污染监测生物传感器的数量根据实际需要可以扩展传感器数量,传感器之间相互串联。The number of biosensors for water pollution monitoring can be expanded according to actual needs, and the sensors are connected in series.
第三方面,本发明提供一种水污染监测方法,包括如下步骤:In a third aspect, the present invention provides a water pollution monitoring method, comprising the steps of:
双壳贝类生物体的呼吸引起两个外壳的张合运动,通过两个固定基座传递到弹性梁片上,引起弹性梁片的弯曲部的舒张或压缩,进而使紧贴在弹性梁片弯曲部上的光栅同步发生形变,引起光栅中心波长的改变;The respiration of the bivalve mollusk organisms causes the opening and closing movement of the two shells, which is transmitted to the elastic beam through the two fixed bases, causing the expansion or compression of the curved part of the elastic beam, and then bending The grating on the upper part is deformed synchronously, causing the central wavelength of the grating to change;
通过监测光栅中心波长的变化规律,来监测双壳贝类生物体所处水域的水质情况。By monitoring the change rule of the central wavelength of the grating, the water quality of the water area where the bivalve mollusk organisms are located is monitored.
本发明实施例提供了一种新型水污染监测生物传感器,水污染监测传感器用于固定于扇贝等双壳贝类生物体上。图1为本发明实施例提供的一种水污染监测传感器的结构示意图。如图1所示,本发明实施例提供的水污染监测传感器包括第一固定基座1、第二固定基座2、弹性梁片3和光纤布拉格光栅4。An embodiment of the present invention provides a novel biosensor for water pollution monitoring. The water pollution monitoring sensor is used to be fixed on bivalve mollusks such as scallops. Fig. 1 is a schematic structural diagram of a water pollution monitoring sensor provided by an embodiment of the present invention. As shown in FIG. 1 , the water pollution monitoring sensor provided by the embodiment of the present invention includes a first fixed base 1 , a second fixed
弹性梁片3的一端固定连接第一固定基座1,弹性梁片3的另一端固定连接第二固定基座2,即弹性梁片3实现将第一固定基座1和第二固定基座2连接在一起。第一固定基座1和第二固定基座2用于固定连接扇贝等双壳贝类生物体的壳体。弹性梁片3具有良好的弹性,可起到良好的传动作用。在本发明实施例中,第一固定基座1和第二固定基座2的后端连接弹性梁片3,第一固定基座1和第二固定基座2的前端用于固定连接扇贝等双壳贝类生物体。One end of the
当将水污染监测传感器通过第一固定基座1和第二固定基座2固定在生物体上时,生物体的呼吸引起其上下两张外壳的张合,从而带动第一固定基座1和第二固定基座2的张合运动,第一固定基座1和第二固定基座2的张合运动传导至弹性梁片3上,引起弹性梁片3的弯曲形变。光纤布拉格光栅4固定设置在弹性梁片3上,当弹性梁片3发生弯曲形变时,弯曲形变会引起紧贴在弹性梁片3上的光纤布拉格光栅4随之同步产生应变,从而引起光纤布拉格光栅4中心波长的改变。When the water pollution monitoring sensor is fixed on the organism through the first fixed base 1 and the second fixed
光纤布拉格光栅的中心反射波长为:The central reflection wavelength of the fiber Bragg grating is:
(1),式中:为导模的有效折射率,为光栅的固有周期。 (1), where: is the effective refractive index of the guided mode, is the natural period of the grating.
当波长满足布拉格条件式(1)时,入射光将被光纤光栅反射回去。When the wavelength satisfies the Bragg condition (1), the incident light will be reflected back by the fiber grating.
由公式(1)可知,光纤光栅的中心反射波长随和的改变而改变。光纤布拉格光栅对于应力很敏感,应力通过弹光效应和光纤光栅周期的变化来影响。From the formula (1), it can be known that the central reflection wavelength of the fiber grating with and changed by changes. Fiber Bragg gratings are sensitive to stress, and the stress passes through the elasto-optic effect and the period of the fiber grating changes to affect .
当光纤光栅仅受应力作用时,光纤光栅的折射率和周期发生变化,引起中心反射波长移动,因此有:When the fiber grating is only subjected to stress, the refractive index and period of the fiber grating change, causing the central reflection wavelength move, so there are:
(2) (2)
式中:为折射率的变化,为光栅周期的变化。In the formula: is the change in the refractive index, is the change of grating period.
光栅产生应力时的折射率变化:Refractive index change when the grating is stressed:
(3) (3)
式中:In the formula:
(4) (4)
是轴向应力,是纤芯材料的泊松比,、是弹光系数,是有效弹光系数。 is the axial stress, is the Poisson's ratio of the core material, , is the elastic-optical coefficient, is the effective elastic-optical coefficient.
假设光纤光栅是绝对均匀的,也就是说,光栅的周期相对变化率和光栅段的物理长度的相对变化率是一致的。Assume that the fiber grating is absolutely uniform, that is, the relative rate of change of the period of the grating is consistent with the relative rate of change of the physical length of the grating segment.
(5) (5)
所以公式(3)可写成:So formula (3) can be written as:
(6) (6)
公式(6)就是裸光纤光栅应力测量的一般计算公式。Formula (6) is the general calculation formula for bare fiber grating stress measurement.
轴向应力是由光栅所受到的双壳贝类生物体张合引起梁片弯曲造成的,即双壳贝类生物体张合引起了光纤光栅应力变化,通过公式(6)可以建立起双壳贝类呼吸以及滤食贝壳张合度 Q与光纤光栅中心波长的对应关系: axial stress It is caused by the bending of the beam caused by the opening and closing of the bivalve organisms that the grating is subjected to, that is, the opening and closing of the bivalve organisms causes the stress change of the fiber grating, and the bivalve respiration can be established by formula (6). And the opening and closing degree Q of the filter-feeding shell and the central wavelength of the fiber grating Corresponding relationship:
Δ(7),其中,为斜率系数。Δ (7), where, is the slope coefficient.
根据以上公式,只要测量得出光栅中心波长的变化量即可测量出双壳贝类生物体张合呼吸以及滤食的频率特征规律。According to the above formula, as long as the variation of the center wavelength of the grating is measured, the frequency characteristics of opening and closing respiration and filter feeding of bivalve organisms can be measured.
在本发明实施例中,双壳贝类生物体优选扇贝,扇贝生存能力强,但不局限于扇贝,可根据实际检测水体进行选择。当选用扇贝时,如附图1所示,双壳贝类10被夹持在第一固定基座1和第二固定基座2的远离其固定连接弹性梁片3的一端,第一固定基座1和第二固定基座2分别固定连接双壳贝类10的上下两个贝壳上。In the embodiment of the present invention, bivalve molluscs are preferably scallops, which have high viability, but are not limited to scallops, and can be selected according to the actual detection of water bodies. When selecting scallops for use, as shown in accompanying drawing 1,
生物体呼吸滤食规律与水质成分之间的对应关系,可根据不同成分与生物体特征改变规律建立专业的数据库,不同种贝壳对不同成分的响应关系也不同,同种贝壳对于不同的成分响应关系也不同,但是,确定的贝壳与确定的成分其对应响应关系是确定的,例如,石油污染与扇贝张合呼吸活跃度间存在明显的对应关系。因此,通过监测生物体生理特征变化实时反应水质污染、含氧量、农药含量等一系列指标来完成水污染的监测,实现借助生物载体实现水污染情况的监测,方便进行水体监测。The corresponding relationship between the respiration and feeding laws of organisms and water quality components can establish a professional database according to the changes in different components and biological characteristics. Different types of shells have different responses to different components, and the same type of shells respond to different components. The relationship is also different, but the corresponding response relationship between certain shells and certain components is certain. For example, there is an obvious corresponding relationship between oil pollution and scallop opening and closing respiratory activity. Therefore, the monitoring of water pollution is completed by monitoring the changes in the physiological characteristics of organisms in real time to reflect a series of indicators such as water pollution, oxygen content, and pesticide content, and realizes the monitoring of water pollution with the help of biological carriers, which is convenient for water body monitoring.
本发明实施例提供的水污染监测传感器,主要用于水体环境中,如海洋水体等。为防止水体对弹性梁片3和光纤布拉格光栅4在水体中被腐蚀或是被水体生物附着而影响水污染监测传感器的使用,本发明实施例提供的水污染监测传感器上还包括隔离仓5。隔离仓5固定连接第一固定基座1和第二固定基座2,且弹性梁片3和光纤布拉格光栅4位于隔离仓5内,隔离仓5用于防止弹性梁片3和光纤布拉格光栅4在水体中被腐蚀或是被水体生物附着。隔离仓5使用弹性软材制作而成。可选的,隔离仓5的弹性软材可以选择防水的橡胶材料或者防水薄膜材料等。进一步,隔离仓5内填充硅油,可更好的保护弹性梁片3和光纤布拉格光栅4,并且便于水污染监测传感器在水下使用。The water pollution monitoring sensor provided by the embodiments of the present invention is mainly used in water body environment, such as ocean water body and the like. In order to prevent the water body from corroding the
弹性梁片3可以采用高Cr、Ni低C耐海水侵蚀不锈钢、FeAlMo合金不锈钢材料、具有弹性的耐海水侵蚀纤维复合材料等,进而使弹性梁片3具有较强弹性和耐海水侵蚀性。The
隔离仓5包括隔离仓内侧片和隔离仓外侧片,隔离仓内侧片和隔离仓外侧片的一端固定连接第一固定基座1,另一端固定连接第二固定基座2,隔离仓外侧片位于第一固定基座1和第二固定基座2的端部,隔离仓内侧片位于第一固定基座1和第二固定基座2相对的内侧,且隔离仓内侧片和隔离仓外侧片连接成一个腔体,将弹性梁片3和光纤布拉格光栅4包裹其内部。The
图2为本发明实施例提供的一种水污染监测传感器的局部结构示意图。图2示出了本发明实施例中弹性梁片3、第一固定基座1和第二固定基座2的基本结构。图3为本发明实施例中提供的弹性梁片的结构示意图;图4为本发明实施例中提供的第一固定基座的结构示意图;图5为本发明实施例中提供的第二固定基座的结构示意图。下面结合图2-5对本发明实施例提供的弹性梁片3、第一固定基座1和第二固定基座2进行详细描述。Fig. 2 is a schematic diagram of a partial structure of a water pollution monitoring sensor provided by an embodiment of the present invention. Fig. 2 shows the basic structure of the
如图3所示,本发明实施例提供的弹性梁片3包括第一固定部301、第二固定部302和弯曲部303,弯曲部303连接第一固定部301和第二固定部302。弹性梁片3通过所述第一固定部301固定连接第一固定基座1,弹性梁片3通过所述第二固定部302固定连接第二固定基座2,光纤布拉格光栅4固定设置在所述弯曲部303上。弯曲部303凹面朝向第一卡槽101和第二卡槽201,凸面朝向102和202方向,弯曲部303通过301和302与固定连接第一固定基座1的101和第二固定基座2的201固定连接。As shown in FIG. 3 , the
具体的,第一固定部301和第二固定部302为平直结构,便于实现与第一固定基座1和第二固定基座2的连接,第一固定部301和第二固定部302之间的距离可根据扇贝等双壳贝类生物体的实际厚度进行选择。在本发明实施例中,光纤布拉格光栅4固定于弯曲部303上,便于实现对光纤布拉格光栅4的触发。当扇贝等双壳贝类生物体的贝壳张合带动第一固定基座1和第二固定基座2张合,张合的第一固定基座1和第二固定基座2通过弹性梁片3的第一固定部301和第二固定部302传递至弹性梁片3的弯曲部303,从而触发光纤布拉格光栅4,即弯曲部303发生弯曲形变时,弯曲形变会引起紧贴在弹性梁片3上的光纤布拉格光栅4随之同步产生应变,从而引起光纤布拉格光栅4中心波长的改变。第一固定部301、第二固定部302和弯曲部303组合便于更加精确的触发光纤布拉格光栅4,进而可以更加准确的测量出生物体张合呼吸以及滤食的频率特征规律。Specifically, the first fixing
优选的,光纤布拉格光栅4设置在弹性梁片3的弯曲部303的外侧,有利于光纤布拉格光栅4的触发,同时便于光纤布拉格光栅4的安装。Preferably, the fiber Bragg grating 4 is arranged outside the bending
如图4所示,在本发明实施例中,第一固定基座1上设置第一卡槽101。弹性梁片3通过第一卡槽101卡合连接所述第一固定基座1。弹性梁片3的第一固定部301卡合连接第一卡槽101。As shown in FIG. 4 , in the embodiment of the present invention, a
如图4所示,在第一固定基座1远离其固定连接弹性梁片3的一端设置第一孔102。在本发明实施例中,水污染监测传感器通常采用防水胶将第一固定基座1固定在扇贝等双壳贝类生物体的贝壳上,因此设置第一孔102的设置便于涂放防水胶,加固贝壳与水污染监测传感器的连接,有效防止水污染监测传感器从贝壳上脱落,提高水污染监测传感器与贝壳之间连接的稳定性。在本发明实施例中,第一孔102为通孔。优选的,第一孔102的数量为两个,但不局限于两个,可根据具体使用需求进行选择。As shown in FIG. 4 , a
进一步,如图5所示,在本发明实施例中,第二固定基座2上设置第二卡槽201。弹性梁片3通过第二卡槽201卡合连接所述第二固定基座2。可选的,弹性梁片3的第二固定部302卡合连接第二卡槽201。Further, as shown in FIG. 5 , in the embodiment of the present invention, a
如图5所示,在第二固定基座2远离其固定连接弹性梁片3的一端设置第二孔202。在本发明实施例中,水污染监测传感器通常采用防水胶将第二固定基座2固定在扇贝等双壳贝类生物体的贝壳上,因此设置第二孔202便于涂放防水胶,加固贝壳与水污染监测传感器的连接,有效防止水污染监测传感器从贝壳上脱落,提高水污染监测传感器与贝壳之间连接的稳定性。在本发明实施例中,第二孔202为通孔。优选的,第二孔202的数量为两个,但不局限于两个,可根据具体使用需求进行选择。As shown in FIG. 5 , a
更进一步,为方便实现第一固定基座1和第二固定基座2与扇贝等双壳贝类生物体的固定连接,第一固定基座1和第二固定基座2前端设置有通孔102、202,用于有效固定贝壳和基座,能够防止滑落和松动。Furthermore, in order to facilitate the fixed connection between the first fixed base 1 and the second fixed
在本发明实施例中,水污染监测传感器还包括光缆6,光缆6连接所述光纤布拉格光栅4。光缆6用于实现光纤布拉格光栅4中心波长的输出,更加方便水污染监测传感器的连接使用。In the embodiment of the present invention, the water pollution monitoring sensor further includes an
进一步,光纤布拉格光栅4与所述光缆6连接处设置光缆缓冲保护套7,所述光缆缓冲保护套7套设在所述光纤布拉格光栅4与所述光缆6的连接接头上。光缆缓冲保护套7用于保护光纤布拉格光栅4与光缆6的连接。Further, an optical cable
更进一步,为方便光缆6的安装,第一固定基座1或第二固定基座2上设置光纤槽,光缆缓冲保护套7嵌设在所述光纤槽内。如附图5所示,第二固定基座2上设置光纤槽203,光纤槽203穿过第二卡槽201,光缆缓冲保护套7嵌设在光纤槽203内,当第二卡槽201卡接弹性梁片3后,将光缆6通过光缆缓冲保护套7压制在光纤槽203内。Furthermore, in order to facilitate the installation of the
基于本发明实施例提供的水污染监测传感器,本发明还提供了一种水污染监测系统。图6为本发明实施例中提供的一种水污染监测系统的结构示意图。如图6所示,本发明实施例中提供的水污染监测系统包括计算机8、解调仪9和若干水污染监测传感器。所述水污染监测传感器为上述实施例所述的水污染监测传感器。所述解调仪9的信号输入端通过光缆连接所述水污染监测传感器的光纤布拉格光栅4的输出端,所述解调仪9的信号输出端连接计算机8。计算机8通过解调仪9获得光纤布拉格光栅4的光栅中心波长的变化曲线,从而可以获得该生物体的呼吸滤食特征规律,进而推算出相应的水污染特性参数。Based on the water pollution monitoring sensor provided by the embodiment of the invention, the invention also provides a water pollution monitoring system. Fig. 6 is a schematic structural diagram of a water pollution monitoring system provided in an embodiment of the present invention. As shown in Fig. 6, the water pollution monitoring system provided in the embodiment of the present invention includes a computer 8, a
在本发明实施例中,水污染监测系统可安装多个水污染监测传感器,根据实际需要可以扩展传感器数量。优选的,每个水污染监测传感器所采用的光纤光栅基准中心波长均不同,进而可以实现波分复用,即包括了多个传感探头的一组水污染监测传感器相互之间可共用一个光纤/光缆通道而不串扰,多个水污染监测传感器之间可以通过光纤分路器或者光纤耦合器并联,也可设计为串联方式。每组水污染监测传感器通过光缆连接,进行信号传输。光纤光缆为特氟龙等抗拉型多芯光缆,既可作为信号传输用,又可作为收放传感器的缆绳使用。In the embodiment of the present invention, a plurality of water pollution monitoring sensors can be installed in the water pollution monitoring system, and the number of sensors can be expanded according to actual needs. Preferably, the fiber grating reference center wavelengths used by each water pollution monitoring sensor are different, and then wavelength division multiplexing can be realized, that is, a group of water pollution monitoring sensors that include a plurality of sensing probes can share an optical fiber with each other. /Optical cable channel without crosstalk, multiple water pollution monitoring sensors can be connected in parallel through optical fiber splitters or optical fiber couplers, or can be designed in series. Each group of water pollution monitoring sensors is connected through an optical cable for signal transmission. The optical fiber cable is a tensile multi-core optical cable such as Teflon, which can be used not only for signal transmission, but also as a cable for retracting and releasing sensors.
在本发明实施例提供的水污染监测系统中,选择生命健康、适合被监测水域生存的双壳贝类生物体,例如扇贝等,根据图6所示组装封装水污染监测传感器,双壳贝类生物体被稳定夹持在水污染监测传感器的第一固定基座1和第二固定基座2中间,并通过上下基座预留的第一孔和第二孔涂敷快速固化水泥或者耐水胶,有利于双壳贝类生物体长期牢固地固定在第一固定基座1和第二固定基座2上。In the water pollution monitoring system provided in the embodiment of the present invention, select bivalve mollusc organisms that are healthy and suitable for survival in the monitored waters, such as scallops, etc., and assemble and package the water pollution monitoring sensor according to Figure 6, bivalve molluscs The organism is stably clamped between the first fixed base 1 and the second fixed
解调仪9通过连接光纤光缆6与水污染监测传感器阵列连接在一起,解调仪9与计算机8通过网线接口连接,计算机上设置有读取数据软件,能够实时监测各个水污染监测传感器内封装的光纤布拉格光栅中心波长。The
例设,图7为水质投毒前后双壳贝类生物体健康态与病态波形图,图8为某一种双壳贝类生物体在正常水质环境下呼吸、滤食、休眠波形图。那么根据图7和图8中数据可实时监控水质的变动情况。例如,一些蚌类贝壳在70-80%的时间内处于张开状态,以便摄取食物和氧气,但遇到水源污染的情况下,其贝壳关闭的时间会有所改变。As an example, Fig. 7 is a waveform diagram of healthy and sick bivalve organisms before and after water poisoning, and Fig. 8 is a waveform diagram of respiration, filter feeding and dormancy of a certain bivalve organism in a normal water quality environment. Then according to the data in Figure 7 and Figure 8, the change of water quality can be monitored in real time. For example, some mussel shells are open 70-80% of the time to allow access to food and oxygen, but the timing of their shell closure changes in the presence of water pollution.
同时,因不同的生物体种类具有不同的基本生物特征,因此,在实际应用时,往往选择多个水污染监测传感器阵列式布放,所采用的生物体品种保证一致。此外,在水域内设置一标准水箱,水箱内水质为标准健康水质,例如海水为无污染的健康海水水源,淡水为普通饮用水水源取水等普通常见无明显污染的水。水箱内布放的水污染监测传感器采集到的数据设为标准值信号,其他传感器信号与标准值信号进行比对观察,特征相同或相近则认为水质安全,有巨大波动差异则判为异常。布放在同一水域位置的多个水污染监测传感器互为参考,其中某一个水污染监测传感器出现异常,例如生物体死亡造成信号特征消失时,其他水污染监测传感器均无异常,则可排除异常水污染监测传感器信号,作为失效信号处理。At the same time, because different types of organisms have different basic biological characteristics, in practical applications, multiple water pollution monitoring sensors are often selected for array deployment, and the types of organisms used are guaranteed to be consistent. In addition, a standard water tank is set up in the water area, and the water quality in the water tank is standard healthy water quality, for example, seawater is healthy seawater water source without pollution, and fresh water is ordinary drinking water source water and other common water without obvious pollution. The data collected by the water pollution monitoring sensors placed in the water tank is set as the standard value signal, and the signals of other sensors are compared with the standard value signal for observation. If the characteristics are the same or similar, the water quality is considered safe, and if there is a huge fluctuation difference, it is judged as abnormal. Multiple water pollution monitoring sensors placed in the same water area refer to each other. If one of the water pollution monitoring sensors is abnormal, for example, when the signal characteristic disappears due to the death of organisms, the other water pollution monitoring sensors have no abnormality, and the abnormality can be ruled out. The water pollution monitoring sensor signal is treated as a failure signal.
在本发明实施例中,水污染监测系统中串联若干水污染监测传感器。串联方式可以采用一根光纤串若干水污染监测传感器,当需要很多传感器布放的时候,串联仅一根光缆然后结合采用波分复用可以实现,大大减少了布线分线难度,为进行水污染监测的布设提供便利,尤其为实际海洋布设提供了便利。In the embodiment of the present invention, several water pollution monitoring sensors are connected in series in the water pollution monitoring system. The series method can use one optical fiber to string several water pollution monitoring sensors. When many sensors are required to be deployed, only one optical cable can be connected in series and combined with wavelength division multiplexing, which greatly reduces the difficulty of wiring and branching. It provides convenience for the deployment of monitoring, especially for actual ocean deployment.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010692667.8A CN111812290B (en) | 2020-07-17 | 2020-07-17 | Water pollution monitoring biosensor, monitoring system and monitoring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010692667.8A CN111812290B (en) | 2020-07-17 | 2020-07-17 | Water pollution monitoring biosensor, monitoring system and monitoring method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111812290A CN111812290A (en) | 2020-10-23 |
CN111812290B true CN111812290B (en) | 2023-04-07 |
Family
ID=72865542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010692667.8A Active CN111812290B (en) | 2020-07-17 | 2020-07-17 | Water pollution monitoring biosensor, monitoring system and monitoring method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111812290B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW202238088A (en) * | 2021-03-24 | 2022-10-01 | 奇博科技股份有限公司 | Sensor with sensing line pretensioned using rebound device and manufacturing and use methods thereof |
CN114041437B (en) * | 2021-11-02 | 2022-09-27 | 鲁东大学 | A device and method for real-time recording of bivalve shell opening and closing activities |
CN115420308A (en) * | 2022-07-12 | 2022-12-02 | 上海海洋大学 | Sensor and method for digitally monitoring shell opening behavior of bivalve shellfish |
CN117661674A (en) * | 2023-12-09 | 2024-03-08 | 江苏力达自动化设备有限公司 | Energy-saving water supply equipment for pump station |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004317504A (en) * | 2003-03-31 | 2004-11-11 | K Mikimoto & Co Ltd | Method for detecting harmful environment of water quality, and system for monitoring water quality environment |
CN106840013A (en) * | 2016-12-29 | 2017-06-13 | 北京希卓信息技术有限公司 | Sliding monitoring sensor and Slope Sliding strain monitoring system |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2713778B1 (en) * | 1993-12-08 | 1996-01-26 | Inst Fs Rech Expl Mer | Apparatus for detecting pollution of aquatic environments. |
RU2361207C1 (en) * | 2008-06-20 | 2009-07-10 | Сергей Викторович Холодкевич | Method of biological monitoring aquatic medium based on recording position of cockleshells of bivalved conchiferes and system to this end |
GB0920796D0 (en) * | 2009-11-27 | 2010-01-13 | Biotarisk As | Pollution monitoring |
GB201001957D0 (en) * | 2010-02-05 | 2010-03-24 | Biotarisk As | Pollution monitoring |
CN101982744B (en) * | 2010-09-21 | 2012-11-14 | 东南大学 | Composite tactile sensor and sensor array |
CN203100683U (en) * | 2013-02-28 | 2013-07-31 | 永大科技集团有限公司 | Fiber grating displacement sensor |
CN204612855U (en) * | 2015-05-23 | 2015-09-02 | 西安科技大学 | Based on the air pressure sensing structure of Fiber Bragg Grating FBG |
CN204855081U (en) * | 2015-07-31 | 2015-12-09 | 西安科技大学 | Hydraulic pressure sensing structure based on optic fibre bragg grating |
CN106857343A (en) * | 2017-03-09 | 2017-06-20 | 山东省科学院海洋仪器仪表研究所 | The INSITU REAL TIME and its device of a kind of Bivalve aquatile behavior reaction |
CN208420237U (en) * | 2018-08-13 | 2019-01-22 | 刘绍波 | A kind of fiber grating tension sensor |
AU2019100307A4 (en) * | 2019-03-22 | 2019-05-02 | Sovereign Investments Australia Pty Ltd | The present invention uses a new biological monitoring (biomonitoring) technique to monitor the effects of environmental perturbations on aquatic environments. |
CN111165402A (en) * | 2020-01-19 | 2020-05-19 | 山东省科学院海洋仪器仪表研究所 | A novel bivalve aquatic organism behavior response monitoring sensor device and monitoring method |
-
2020
- 2020-07-17 CN CN202010692667.8A patent/CN111812290B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004317504A (en) * | 2003-03-31 | 2004-11-11 | K Mikimoto & Co Ltd | Method for detecting harmful environment of water quality, and system for monitoring water quality environment |
CN106840013A (en) * | 2016-12-29 | 2017-06-13 | 北京希卓信息技术有限公司 | Sliding monitoring sensor and Slope Sliding strain monitoring system |
Non-Patent Citations (2)
Title |
---|
董天奇 ; 魏达 ; 雷宇 ; 何焰蓝 ; 胡小景 ; .基于Bragg光纤光栅传感器的监测系统设计.物理实验.2010,(第02期),全文. * |
陈士勇 ; 王令充 ; 嵇晶 ; 吴皓 ; 吴秋惠 ; 张坤 ; .双壳类贝壳的应用研究进展.中国海洋药物.2011,(第01期),全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN111812290A (en) | 2020-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111812290B (en) | Water pollution monitoring biosensor, monitoring system and monitoring method | |
Alwis et al. | Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress | |
CN101858796B (en) | Seawater temperature profile measurement method based on fiber grating principle | |
Khonina et al. | Optical fibre-based sensors—an assessment of current innovations | |
CN102410850A (en) | Reflective optical fiber sensor device | |
CN105352554A (en) | Fiber grating pH/temperature sensor, preparation method and detection system | |
CN102620858A (en) | Double long period fiber grating (LPFG) temperature and humidity sensor | |
CN101975627A (en) | System for detecting temperature and depth of sea water by fiber bragg grating | |
CN110864742A (en) | All-fiber temperature and salt depth sensor based on micro-nano fiber coupler interferometer | |
US20180172536A1 (en) | FIBER OPTIC PRESSURE APPARATUS, METHODS, and APPLICATIONS | |
CN202453113U (en) | Sensor for measuring temperature and salinity of seawater based on fibre Bragg grating (FBG) | |
Liu et al. | Submarine optical fiber sensing system for the real-time monitoring of depth, vibration, and temperature | |
CN2935132Y (en) | A Biosensor Based on Long Period Fiber Bragg Grating | |
CN210742122U (en) | A label-free temperature-compensated grating type micro-nano optical fiber biosensor | |
CN202033127U (en) | Consumptive temperature depth profile measuring system using fiber grating sensor | |
CN103512850A (en) | Gross-volume monitoring sensing device for corrosion states and temperature field states of reinforcing steel bars in concrete | |
CN107167263B (en) | Tap water pipe leakage detection experiment platform based on optical fiber Raman temperature sensor | |
CN201828277U (en) | Reflective optical fiber sensor device | |
Bedi et al. | Design and analysis of FBG based sensor for detection of damage in oil and gas pipelines for safety of marine life | |
CN204855016U (en) | Optics jettisons formula ocean temperature depth [record] section accuracy of measurement | |
CN104257363A (en) | FBG (Fiber Bragg Grating) pulse-taking sensor probe and intensive array type optical fiber pulse-taking instrument | |
Villarreal Jiménez et al. | An efficient optoelectronic system for remote salinity water sensing | |
Lyons et al. | An optical fibre sensor for in situ measurement of external species in fluids based on artificial neural network pattern recognition | |
Cortazar et al. | A low-cost fiber-optic system for monitoring the state of structural health of a mechanical cable | |
CN103048002A (en) | Reflective optical fiber sensor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |