CN111808926A - A kind of wheat panicle branch gene DNA sequence amplification method, branch gene and application - Google Patents
A kind of wheat panicle branch gene DNA sequence amplification method, branch gene and application Download PDFInfo
- Publication number
- CN111808926A CN111808926A CN202010728388.2A CN202010728388A CN111808926A CN 111808926 A CN111808926 A CN 111808926A CN 202010728388 A CN202010728388 A CN 202010728388A CN 111808926 A CN111808926 A CN 111808926A
- Authority
- CN
- China
- Prior art keywords
- gene
- wheat
- branch
- branched
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 141
- 241000209140 Triticum Species 0.000 title claims abstract description 125
- 235000021307 Triticum Nutrition 0.000 title claims abstract description 123
- 238000000034 method Methods 0.000 title claims abstract description 26
- 108091028043 Nucleic acid sequence Proteins 0.000 title claims abstract description 19
- 230000003321 amplification Effects 0.000 title claims description 8
- 238000003199 nucleic acid amplification method Methods 0.000 title claims description 8
- 241000495841 Oenanthe oenanthe Species 0.000 claims abstract description 20
- 238000010367 cloning Methods 0.000 claims abstract description 10
- 238000009395 breeding Methods 0.000 claims abstract description 6
- 150000001413 amino acids Chemical class 0.000 claims abstract description 5
- 230000001488 breeding effect Effects 0.000 claims abstract description 5
- 108020004414 DNA Proteins 0.000 claims description 30
- 238000012408 PCR amplification Methods 0.000 claims description 16
- 239000002299 complementary DNA Substances 0.000 claims description 16
- 240000008042 Zea mays Species 0.000 claims description 12
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 11
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 11
- 235000009973 maize Nutrition 0.000 claims description 11
- 238000012163 sequencing technique Methods 0.000 claims description 11
- 241000196324 Embryophyta Species 0.000 claims description 10
- 241000209504 Poaceae Species 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 4
- 238000001962 electrophoresis Methods 0.000 claims description 4
- 241000894007 species Species 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000003757 reverse transcription PCR Methods 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 2
- 101150083557 Ear gene Proteins 0.000 claims 4
- 241000878006 Miscanthus sinensis Species 0.000 claims 1
- 230000002068 genetic effect Effects 0.000 claims 1
- 238000004458 analytical method Methods 0.000 abstract description 9
- 238000012360 testing method Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 5
- 108091026890 Coding region Proteins 0.000 abstract description 3
- 230000009418 agronomic effect Effects 0.000 abstract description 3
- 230000033228 biological regulation Effects 0.000 abstract description 3
- 238000012214 genetic breeding Methods 0.000 abstract description 3
- 238000012795 verification Methods 0.000 abstract 1
- 108700026220 vif Genes Proteins 0.000 abstract 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 10
- 235000007264 Triticum durum Nutrition 0.000 description 10
- 241000209143 Triticum turgidum subsp. durum Species 0.000 description 10
- 125000003275 alpha amino acid group Chemical group 0.000 description 9
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 241001024327 Oenanthe <Aves> Species 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 240000007594 Oryza sativa Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 238000001502 gel electrophoresis Methods 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000010839 reverse transcription Methods 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 238000002864 sequence alignment Methods 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000209082 Lolium Species 0.000 description 2
- 238000002123 RNA extraction Methods 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 230000010429 evolutionary process Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 101150044508 key gene Proteins 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- OSBLTNPMIGYQGY-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;boric acid Chemical compound OB(O)O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O OSBLTNPMIGYQGY-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 238000010853 Molecular phylogenetic tree analysis Methods 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 244000062793 Sorghum vulgare Species 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 239000008051 TBE buffer Substances 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 238000003766 bioinformatics method Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000004577 ear development Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000002887 multiple sequence alignment Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Botany (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明涉及基因工程技术领域,特别是一种小麦穗分枝基因DNA序列扩增方法、分枝基因及应用。The invention relates to the technical field of genetic engineering, in particular to a method for amplifying a DNA sequence of a branching gene of wheat ears, a branching gene and application thereof.
背景技术Background technique
目前为止,小麦是世界上绝大多数地区种植比较广泛的一类粮食作物,为全人类提供大部分的能量消耗基础,因此提高小麦的产量,是稳定全球经济的基础,同样也是国民经济持续健康发展的重要目标。小麦的产量与小麦的结实部位息息相关。研究表明,小麦产量构成的三要素中,小麦穗数起着主要作用,因此对于小麦穗形态发育的研究,不仅有利于人们对小麦穗发育的理论认识,还有利于小麦的丰产育种。So far, wheat is a type of food crop that is widely planted in most parts of the world, providing most of the energy consumption basis for all human beings. Therefore, increasing the output of wheat is the basis for stabilizing the global economy, and it is also the sustainable and healthy national economy. important development goals. The yield of wheat is closely related to the fruiting part of the wheat. Studies have shown that among the three elements of wheat yield, the number of wheat ears plays a major role. Therefore, the research on the morphological development of wheat ears is not only beneficial to people's theoretical understanding of wheat ear development, but also to high-yield breeding of wheat.
小麦穗在小麦发育和分枝性状的形成中起到了重要的作用。穗分枝小麦通过主穗轴节上形成枝穗轴来增加小麦的穗粒数,穗大粒多从而提高小麦的产量。有关控制小麦穗分枝性状的基因目前尚无明确的定位。克隆出控制小麦分枝的相关基因并将其定位,不仅可以弄清控制小麦分枝发育的理论基础,还可以应用于小麦的高产育种。Wheat ears play an important role in wheat development and branching traits. The spike-branched wheat increases the number of grains per spike through the formation of branch-cob on the main cob node, and increases the yield of wheat with larger spikes and more grains. The genes that control wheat panicle branching traits have not yet been clearly identified. Cloning and localization of related genes controlling branching in wheat can not only clarify the theoretical basis for controlling branching development in wheat, but also be applied to high-yield breeding of wheat.
穗分枝小麦的穗分枝在其发育和形成过程中,可能有涉及到关于小麦穗部侧枝的形成和发育,而探讨调控小麦侧枝形成的关键基因的调控机制,对分枝小麦控制穗分枝的基因进行定位研究及克隆分析具有十分重要的理论意义和实际意义,对进一步了解穗分枝小麦的分枝穗形成至关重要,同时也为众多小麦育种学者打开一扇通往绿色革命道路的大门。In the process of development and formation of panicle branching in wheat, the formation and development of panicle branch may be involved in the formation and development of wheat panicle. To explore the regulatory mechanism of key genes regulating the formation of wheat side shoots, the control of panicle branching in branched wheat The location study and cloning analysis of branch genes are of great theoretical and practical significance, which are crucial to further understanding the branch panicle formation in branched wheat, and also open a road to the green revolution for many wheat breeders. door.
发明内容SUMMARY OF THE INVENTION
针对上述现有技术存在的问题,本发明提供一种小麦穗分枝基因DNA序列扩增方法及应用,对分枝小麦控制穗分枝的基因进行定位研究及克隆分析,为培育出更多优良的小麦品种,丰富育种资源,进而培育出具有优良的农艺性状、高产抗倒伏的作物新品种提供基础,为作物分子的遗传育种和性状改良、种质创新提供较好的科学基础。Aiming at the problems existing in the above-mentioned prior art, the present invention provides a DNA sequence amplification method and application of a wheat ear branching gene, and conducts localization research and cloning analysis on the gene that controls ear branching in branched wheat, in order to cultivate more excellent It provides the basis for the development of new crop varieties with excellent agronomic traits, high yield and lodging resistance, and provides a good scientific basis for the genetic breeding, trait improvement and germplasm innovation of crop molecules.
为了实现上述目的,本发明采用的技术方案是:一种小麦穗分枝基因DNA序列扩增方法,包括以下步骤:In order to achieve the above-mentioned purpose, the technical scheme adopted in the present invention is: a method for amplifying the DNA sequence of a branch gene of wheat ear, comprising the following steps:
(1)取多种不同品种的小麦进行基因组DNA及总RNA提取,根据GenBank已公开的禾本科植物中bd1基因与tb1基因,设计基因特异性引物;(1) Extracting genomic DNA and total RNA from wheat of a variety of different varieties, and designing gene-specific primers according to the bd1 gene and tb1 gene in Poaceae that have been disclosed by GenBank;
(2)根据已提取的基因组DNA和cDNA为模板,采用bd1基因和tb1分枝基因引物进行PCR扩增;(2) According to the extracted genomic DNA and cDNA as templates, use bd1 gene and tb1 branch gene primers to carry out PCR amplification;
(3)对PCR扩增结果克隆测序,将测序结果进行同源性比对或根据已扩增出的分支基因为模板设计基因特异性引物进行RT-PCR反应,电泳检测后测序,分析步骤(2)中PCR扩增所得到基因是否为小麦穗分枝基因。(3) clone and sequence the PCR amplification result, carry out the homology comparison of the sequenced results or design gene-specific primers according to the amplified branch gene as a template to carry out RT-PCR reaction, sequence after electrophoresis detection, and analyze step ( 2) Whether the gene obtained by PCR amplification is a wheat panicle branch gene.
优选的是,步骤(1)中多种不同品种的小麦至少包括分枝小麦、未分枝小麦、中国春、小白芒。Preferably, the various varieties of wheat in step (1) include at least branched wheat, unbranched wheat, Chinese spring, and small white awn.
上述任一方案中优选的是,步骤(1)中禾本科植物为玉米,根据玉米中bd1基因GenBank:AY178191.1与tb1基因GenBank:U94494.1,利用Primer 5.0软件在两端UTR区设计一对基因特异性引物。Preferably in any of the above-mentioned schemes, the grasses in step (1) are maize, and according to the bd1 gene GenBank: AY178191.1 and tb1 gene GenBank: U94494.1 in maize, a Primer 5.0 software is used to design a UTR region at both ends. Gene-specific primers.
上述任一方案中优选的是,所设计基因特异性引物序列见序列表中的SEQ NO.1-SEQ NO.4所示。Preferably in any of the above solutions, the designed gene-specific primer sequences are shown in SEQ NO.1-SEQ NO.4 in the sequence listing.
上述任一方案中优选的是,所设计基因特异性引物序列信息为Preferably in any of the above-mentioned schemes, the designed gene-specific primer sequence information is
上述任一方案中优选的是,步骤(2)中,PCR扩增时已提取的基因组DNA和cDNA为模板,bd1基因和tb1分枝基因引物,配制10uL PCR体系:1uL模板,上下游引物各0.5uL,5uLTrans 2×EasySuperMix,补加ddH2O至10uL体系。Preferably in any of the above-mentioned schemes, in step (2), the extracted genomic DNA and cDNA during PCR amplification are templates, bd1 gene and tb1 branch gene primers, prepare 10uL PCR system: 1uL template, each upstream and downstream primers. 0.5uL, 5uL Trans 2×Easy SuperMix, supplemented with ddH2O to 10uL system.
上述任一方案中优选的是,步骤(3)之后还包括步骤(4),即在得到分枝基因全长之后对其最大开放阅读框进行分析,由此得出基因序列所对应的氨基酸序列,并对该氨基酸序列进行分析,得出其在进化过程之中的保守区。利用NCBI和DNAMAN软件构建其系统进化树,分析小麦中分枝基因在物种进化过程中与其他植物之间亲缘关系的远近。Preferably in any of the above-mentioned schemes, step (3) is also included after step (4), that is, after obtaining the full length of the branched gene, its maximum open reading frame is analyzed, thereby obtaining the corresponding amino acid sequence of the gene sequence. , and analyzed the amino acid sequence to obtain its conserved region in the evolutionary process. The phylogenetic tree was constructed using NCBI and DNAMAN software to analyze the distance between branch genes in wheat and other plants in the process of species evolution.
本发明还提供基于小麦穗分枝基因cDNA序列全长设计的特异性PCR引物组合物,引物序列为序列表中SEQ NO.5至SEQ NO.6所示的序列。SEQ NO.5所述引物序列为TB1-F2:5’-AGGACGGCTCCAGCAGCCTCT-3’,SEQ NO.6所述引物序列为TB1-R2:5’-GTGCGGGAGTAGTTCTAATACCGT-3’,交由上海英俊生物有限公司合成。The present invention also provides a specific PCR primer composition designed based on the full-length cDNA sequence of the wheat panicle branching gene, and the primer sequences are the sequences shown in SEQ NO.5 to SEQ NO.6 in the sequence table. The primer sequence of SEQ NO.5 is TB1-F2: 5'-AGGACGGCTCCAGCAGCCTCT-3', and the primer sequence of SEQ NO.6 is TB1-R2: 5'-GTGCGGGAGTAGTTCTAATACCGT-3', which was synthesized by Shanghai Yingjun Biological Co., Ltd. .
本发明还提供分枝小麦、未分枝小麦、中国春、小白芒四种小麦的tb1基因DNA序列全长,序列号分别为KU847345、KU847346、KU847347、KU847348,基因序列见序列表中的SEQNO.7、SEQ NO.8、SEQ NO.9、SEQ NO.10所示。The present invention also provides the full-length DNA sequences of the tb1 genes of the four types of wheat: branched wheat, unbranched wheat, Chinese spring and Xiaobaimang, the sequence numbers are KU847345, KU847346, KU847347, KU847348, and the gene sequences are shown in SEQNO in the sequence table .7, SEQ NO.8, SEQ NO.9, SEQ NO.10.
本发明还提供上述小麦穗分枝基因DNA序列所编码的氨基酸。The present invention also provides the amino acid encoded by the above-mentioned wheat panicle branch gene DNA sequence.
本发明还提供上述小麦穗分枝基因DNA序列在筛选小麦穗分枝分子育种、分析小麦分枝基因在物种进化过程中与其他植物之间亲缘关系的远近上的应用。The invention also provides the application of the above-mentioned DNA sequence of the wheat ear branching gene in screening the molecular breeding of wheat ear branching and analyzing the distance between the wheat branching gene and other plants in the species evolution process.
本发明还提供上述小麦穗分枝基因在制备分支基因小麦上的应用。The present invention also provides the application of the above-mentioned wheat panicle branch gene in preparing branch gene wheat.
有益效果beneficial effect
分枝基因是调控小麦穗部性状发生分枝突变的关键基因。为研究小麦分枝基因的功能及其对小麦穗分枝的作用机制,本申请以分枝小麦、未分枝小麦、中国春、小白芒四个品种的小麦叶片为试验材料,采用同源克隆的方法,在四种小麦中分别扩增出bd1分枝基因片段和tb1基因全长。分析可知bd1基因与试验预期结果不符,而对四种小麦tb1基因分析得知,该基因编码区全长1059bp,共编码352个氨基酸,通过验证确为分枝基因,该基因参与了小麦穗分枝的调控。Branching genes are key genes that regulate the branching mutation of wheat panicle traits. In order to study the function of wheat branching gene and its mechanism of action on wheat panicle branching, the present application takes the wheat leaves of four varieties of branched wheat, unbranched wheat, Chinese spring and Xiaobaimang as test materials, and adopts homologous wheat leaves. The cloning method was used to amplify the bd1 branch gene fragment and the full length of the tb1 gene in four kinds of wheat. The analysis shows that the bd1 gene does not match the expected results of the experiment, and the analysis of the four wheat tb1 genes shows that the coding region of the gene is 1059 bp in length and encodes a total of 352 amino acids. Branch regulation.
本发明提供一种小麦穗分枝基因DNA序列扩增方法及应用,对分枝小麦控制穗分枝的基因进行定位研究及克隆分析,为培育出更多优良的小麦品种,丰富育种资源,进而培育出具有优良的农艺性状、高产抗倒伏的作物新品种提供基础,为作物分子的遗传育种和性状改良、种质创新提供较好的科学基础。The invention provides a DNA sequence amplification method and application of a wheat panicle branching gene, and conducts localization research and cloning analysis on the gene that controls panicle branching in branched wheat. Cultivate new crop varieties with excellent agronomic traits, high yield and lodging resistance, and provide a good scientific basis for the genetic breeding of crop molecules, trait improvement, and germplasm innovation.
附图说明Description of drawings
图1为四种不同品种的小麦穗形比较,1为分枝小麦;2为未分枝小麦;3为中国春;4为小白芒;Figure 1 is a comparison of the wheat spike shape of four different varieties, 1 is branched wheat; 2 is unbranched wheat; 3 is Chinese spring; 4 is Xiaobaimang;
图2为提取的小麦基因组DNA及总RNA凝胶电泳检测结果;Fig. 2 is the detection result of the extracted wheat genomic DNA and total RNA gel electrophoresis;
图3为特异性引物扩增结果,M为2000bp Marker;1为分枝小麦;2为未分枝小麦;3为中国春小麦;4为小白芒;Figure 3 is the amplification results of specific primers, M is 2000bp Marker; 1 is branched wheat; 2 is unbranched wheat; 3 is Chinese spring wheat; 4 is Xiaobaimang;
图4为小麦穗分枝基因(片段)序列比对图;Fig. 4 is a sequence alignment diagram of wheat ear branching gene (fragment);
图5为tb1基因特异性引物在cDNA及DNA中扩增结果,M为2000bp Marker;1为分枝小麦;2为未分枝小麦;3为中国春小麦;4为小白芒;Figure 5 shows the amplification results of tb1 gene-specific primers in cDNA and DNA, M is 2000bp Marker; 1 is branched wheat; 2 is unbranched wheat; 3 is Chinese spring wheat;
图6为四种小麦穗分枝tb1基因序列比对图;Fig. 6 is four kinds of wheat panicle branches tb1 gene sequence alignment diagram;
图7为不同植物TB1同源蛋白的分子进化树图;Figure 7 is a molecular evolutionary tree diagram of different plant TB1 homologous proteins;
图8为分枝小麦tb1基因cDNA全长序列及编码氨基酸序列,其中标注的ATG为起始密码子,TGA为终止密码子,方框内依次为该氨基酸序列的SP区、TCP区以及R区。Figure 8 is the full-length cDNA sequence and the encoded amino acid sequence of the branched wheat tb1 gene, wherein the marked ATG is the start codon, TGA is the stop codon, and the squares are the SP region, the TCP region and the R region of the amino acid sequence in turn .
具体实施方式Detailed ways
下面对本发明作进一步说明。The present invention will be further described below.
实施例1Example 1
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
本发明提供一种小麦穗分枝基因DNA序列扩增方法:详细方法如下:1材料The present invention provides a DNA sequence amplification method of wheat panicle branching gene: the detailed method is as follows: 1. Materials
(1.1)试验材料(1.1) Test material
普通小麦品种“中国春”、“小白芒”,均选自中国小麦微核心种质;“分枝麦”、“未分枝麦”为“郑麦9023”的大穗形突变体、“分枝小麦”为“郑麦9023”的分枝穗突变体,试验材料均种植于滁州学院花山小麦试验基地。每年四月初分别采取四个小麦品种刚抽穗时的幼嫩叶片和幼嫩穗部组织,四种小麦穗形比较如图1所示,提取各品种叶片DNA和穗部组织总RNA,并将提取的基因组DNA和总RNA分别保存于﹣20℃和﹣80℃环境中。Common wheat varieties "China Spring" and "Xiaobaimang" were selected from the micro-core germplasm of Chinese wheat; "branched wheat" and "unbranched wheat" were large spike mutants of "Zhengmai 9023", "Zhengmai 9023" "Branch wheat" is a branched panicle mutant of "Zhengmai 9023", and the experimental materials were all planted in the Huashan wheat experimental base of Chuzhou University. At the beginning of April every year, the young leaves and young panicle tissues of four wheat varieties were collected when they were just heading. The comparison of the four wheat ear shapes is shown in Figure 1. The leaf DNA and total RNA of the panicle tissues of each variety were extracted and extracted. The genomic DNA and total RNA were stored at -20°C and -80°C, respectively.
(1.2)试验试剂(1.2) Test reagents
DNA和RNA提取:RNAiso Plus,反转录试剂,C2H5OH,EasyPure Plant Genomic DNAKit试剂盒;引物,Trans 2×EasySuperMix,灭菌超纯水;琼脂糖凝胶电泳:琼脂糖、0.5×TBE缓冲液、Marker,核酸染液;胶回收试剂盒等。DNA and RNA extraction: RNAiso Plus, Reverse Transcription Reagent, C 2 H 5 OH, EasyPure Plant Genomic DNAKit; primers,
(1.3)试验仪器(1.3) Test equipment
冷冻高速离心机(安徽嘉文),超低温冰箱(赛默飞),洁净操作台(苏州),微量移液枪及大中小枪头,PCR反应仪,凝胶电泳紫外分析仪,金属浴,手掌低速离心机,分析天平,高压蒸汽灭菌锅等。Refrigerated high-speed centrifuge (Anhui Jiawen), ultra-low temperature refrigerator (Thermo Fishery), clean operating table (Suzhou), micropipettes and large, medium and small tips, PCR reactor, gel electrophoresis UV analyzer, metal bath, palm low speed Centrifuges, analytical balances, autoclaves, etc.
2试验方法2 Test methods
(2.1)基因组DNA及总RNA提取(2.1) Extraction of genomic DNA and total RNA
参考Transgene公司生产的EasyPure Plant Genomic DNA Kit试剂盒说明书操作,取四种不同品种小麦幼嫩叶片于事先高温灭菌后的研钵中,加入液氮后快速研磨至粉末状,将粉末转移到灭菌冷冻后的1.5mL离心管中,按试剂盒操作步骤进行基因组DNA提取,提取的DNA样品保存于﹣20℃冰箱中备用。Refer to the instruction manual of the EasyPure Plant Genomic DNA Kit produced by Transgene, take four different varieties of wheat young leaves in a mortar that has been sterilized by high temperature in advance, add liquid nitrogen and quickly grind to powder, and transfer the powder to a sterilizer. After the bacteria were frozen in a 1.5mL centrifuge tube, the genomic DNA was extracted according to the operation steps of the kit, and the extracted DNA samples were stored in a -20°C refrigerator for future use.
基因组总RNA的提取参照TaKaRa公司生产的RNA提取裂解液提取步骤进行,提取的四种小麦穗部组织基因组总RNA保存于﹣80℃冰箱中备用。提取的分枝小麦、未分枝小麦、中国春、小白芒小麦的叶片基因组DNA和穗部组织总RNA,进行凝胶电泳检测,结果如图2所示。The extraction of total genomic RNA was carried out according to the extraction steps of RNA extraction lysate produced by TaKaRa Company. The extracted total genomic RNA of four kinds of wheat panicle tissues was stored in a -80℃ refrigerator for future use. The extracted leaf genomic DNA and panicle tissue total RNA of branched wheat, unbranched wheat, Chinese spring, and small white awn wheat were detected by gel electrophoresis, and the results are shown in Figure 2.
(2.2)基因组总RNA的反转录(2.2) Reverse transcription of total genomic RNA
根据天根生物有限公司生产的反转录试剂盒操作步骤,进行操作:在已灭菌的PCR管中依次加入5ug基因组总RNA,2μL oligo(dT)Primer(50pmol/L)引物,用RNase-freeWater补齐至14.5μL;70℃条件下加热5min,反应结束后立即冰上冷却后离心30s。在冰上依次加入4uL 5×First-Strand Buffer(含DTT),0.5uL RNasin,1uL(200U)TRANScript M-MLV,用移液枪混匀,25℃反应10min。42℃反应50min;95℃反应5min终止反应。将产物稀释10倍后,用内参基因检测反转录质量,进行后续PCR扩增试验。According to the operation steps of the reverse transcription kit produced by Tiangen Biotechnology Co., Ltd., the operation was performed: 5ug total genomic RNA, 2μL oligo(dT) Primer (50pmol/L) primers were sequentially added to the sterilized PCR tube, and RNase- Make up freeWater to 14.5 μL; heat at 70°C for 5 min, immediately after the reaction, cool on ice and centrifuge for 30 s. Add 4uL 5×First-Strand Buffer (containing DTT), 0.5uL RNasin, and 1uL (200U) TRANScript M-MLV in sequence on ice, mix well with a pipette, and react at 25°C for 10min. React at 42°C for 50 min; react at 95°C for 5 min to terminate the reaction. After the product was diluted 10 times, the quality of reverse transcription was detected with the internal reference gene, and the subsequent PCR amplification test was carried out.
(2.3)分枝基因特异引物设计(2.3) Design of branched gene-specific primers
查阅相关文献得知玉米中的bd1基因与tb1基因都属于调控玉米分枝的一类关键基因,对玉米分枝的形成也起着重要的调控作用。目前对该基因的克隆主要集中在禾本科植物中,有关小麦bd1基因与tb1同源基因的克隆尚无研究。因此根据玉米中bd1基因(GenBank:AY178191.1)与tb1基因(GenBank:U94494.1)的保守性,利用Primer 5.0软件在两端UTR区设计一对基因特异性引物,通过长片段PCR扩增其整个编码区。所设计引物序列信息如下表1,所有引物均交由上海英俊生物科技公司合成。According to relevant literature, both bd1 and tb1 genes in maize belong to a class of key genes regulating maize branching, and also play an important role in the formation of maize branching. At present, the cloning of this gene is mainly concentrated in Poaceae, and there is no research on the cloning of wheat bd1 gene and tb1 homologous gene. Therefore, according to the conservation of the bd1 gene (GenBank: AY178191.1) and the tb1 gene (GenBank: U94494.1) in maize, a pair of gene-specific primers were designed in the UTR regions at both ends using Primer 5.0 software, and amplified by long fragment PCR its entire coding region. The sequence information of the designed primers is shown in Table 1 below, and all primers were synthesized by Shanghai Yingjun Biotechnology Company.
表1引物名称及序列Table 1 Primer names and sequences
Table 1 the name and sequence of the primerTable 1 the name and sequence of the primer
(2.4)目的基因PCR扩增(2.4) PCR amplification of target gene
根据已提取的基因组DNA和cDNA为模板,bd1基因和tb1分枝基因引物,配制10uLPCR体系:1uL模板,上下游引物各0.5uL,5uL Trans 2×EasySuperMix,补加ddH2O至10uL体系。以bd1基因为引物的一组PCR反应程序为94℃预变性3min;94℃变性30s,56℃退火30s,72℃延伸1min共35个循环;72℃10min;以tb1基因为引物的一组PCR反应程序:94℃3min;94℃30s,55℃30s,72℃1min共35循环;72℃10min结束反应。(2.4.1)小麦bd1基因特异性引物PCR扩增According to the extracted genomic DNA and cDNA as templates, primers for bd1 gene and tb1 branch gene, prepare a 10uL PCR system: 1uL template, 0.5uL upstream and downstream primers,
BD-R1,BD-F1作为特异性引物,分别以模板DNA和cDNA进行PCR扩增,结果在以cDNA为模版的体系中未检测到结果,表明bd1基因在小麦抽穗期的穗部组织中不表达。DNA中扩增结果如图3所示;将扩增得到的目的条带进行纯化后送到上海生工生物有限公司进行测序,得到一段248bp的序列。BD-R1 and BD-F1 were used as specific primers to carry out PCR amplification with template DNA and cDNA respectively. The results showed that no results were detected in the system using cDNA as the template, indicating that the bd1 gene was not involved in the panicle tissue of wheat at heading stage. Express. The amplification results in the DNA are shown in Figure 3; the amplified target band was purified and sent to Shanghai Sangon Biological Co., Ltd. for sequencing, and a 248bp sequence was obtained.
bd1基因扩增序列比对分析Alignment and Analysis of Amplified Sequences of bd1 Gene
NCBI中blast比对结果显示此四段序列与小麦染色体3B染色体上一段序列(GenBank:HG670306.1)的同源度最高为94%,DNAMAN比对发现,分枝小麦中扩增出的序列与未分枝小麦种扩增出的序列存在差异,如图4所示,比对序列依次为分枝小麦、未分枝小麦和玉米bd1序列,比对结果同源度为56.55%。从穗分枝bd1基因的248bp比较结果看,不符合试验预期结果。The blast comparison in NCBI showed that the four sequences had the highest homology of 94% with a sequence on chromosome 3B of wheat (GenBank: HG670306.1). There are differences in the amplified sequences of unbranched wheat species. As shown in Figure 4, the aligned sequences are branched wheat, unbranched wheat and maize bd1 sequences, and the homology of the alignment results is 56.55%. From the comparison result of 248bp of bd1 gene of panicle branch, it does not meet the expected result of the experiment.
(2.4.2)小麦tb1基因特异性引物PCR扩增(2.4.2) PCR amplification of wheat tb1 gene specific primers
以TB1-R1,TB1-F1为一对基因特异性引物,分别以cDNA和DNA为模板进行PCR扩增,PCR产物经凝胶电泳检测结果如下图5所示;根据所扩增的电泳结果可知在以DNA和以cDNA为模板时所扩增长度均为1000bp左右,将所扩增得到的目的条带进行TA克隆,并送样至上海华津生物有限公司测序测序。分别在分枝小麦、未分枝小麦、中国春以及小白芒中得到1199bp、1165bp、1186bp、1191bp的cDNA序列以及1119bp、1122bp、1124bp、1115bp的DNA序列。Using TB1-R1 and TB1-F1 as a pair of gene-specific primers, PCR amplification was carried out with cDNA and DNA as templates respectively. The results of PCR products detected by gel electrophoresis are shown in Figure 5 below; according to the amplified electrophoresis results, it can be seen that When DNA and cDNA are used as templates, the amplified length is about 1000 bp. The amplified target band is cloned by TA, and the samples are sent to Shanghai Huajin Biological Co., Ltd. for sequencing. The cDNA sequences of 1199bp, 1165bp, 1186bp and 1191bp and the DNA sequences of 1119bp, 1122bp, 1124bp and 1115bp were obtained from branched wheat, unbranched wheat, Chinese spring and Xiaobaimang respectively.
小麦tb1基因序列比对分析Sequence alignment analysis of wheat tb1 gene
经过PCR反应——送样测序——结果比对分析,四种小麦中tb1基因的DNA测序长度分别是1119bp、1122bp、1124bp、1115bp、经DNAMAN序列比对后发现相似性为88.64%。比对结果如下图6所示:其中,WF为未分枝小麦、FZ为分枝小麦、CS为中国春、BM为小白芒,*为相同序列。经NCBI进行blast比对之后发现其与禾本科黑麦草tb1基因相似度达83%,与水稻中tb1基因相似性高达80%,与玉米tb1基因相似度为70%,则可基本确定所扩增的基因为小麦中的tb1基因。将此四条序列提交NCBI注册,获得分枝小麦、未分枝小麦、中国春、小白芒四种小麦的tb1基因序列的序列号分别为KU847345、KU847346、KU847347、KU847348且分枝小麦与未分枝小麦之间存在个别碱基差异,由此可以推测出tb1基因可能是导致小麦穗分枝的关键基因,由于分枝基因的个别碱基发生突变而使得原本表现分枝性状的小麦突变为不分枝的性状。After PCR reaction-sampling sequencing-result comparison analysis, the DNA sequencing lengths of tb1 gene in four kinds of wheat were 1119bp, 1122bp, 1124bp, 1115bp respectively, and the similarity was 88.64% after DNAMAN sequence comparison. The comparison results are shown in Figure 6 below: wherein, WF is unbranched wheat, FZ is branched wheat, CS is Chinese spring, BM is Xiaobaimang, and * is the same sequence. After blast comparison by NCBI, it was found that the similarity with the tb1 gene of ryegrass from the family Poaceae was 83%, the similarity with the tb1 gene in rice was as high as 80%, and the similarity with the tb1 gene in maize was 70%. The gene is the tb1 gene in wheat. The four sequences were submitted to NCBI for registration, and the serial numbers of the tb1 gene sequences of the four types of wheat: branched wheat, unbranched wheat, Chinese spring and Xiaobaimang were KU847345, KU847346, KU847347, KU847348, and branched wheat and unbranched wheat were obtained. There are individual base differences between branched wheat, so it can be speculated that the tb1 gene may be the key gene that causes wheat panicle branching. Due to the mutation of individual bases in the branching gene, the original branching trait of wheat is mutated to non-branching. branching traits.
(2.5)tb1基因与其他禾本科植物TB1同源基因的系统进化关系(2.5) Phylogenetic relationship between tb1 gene and TB1 homologous genes of other grasses
为进一步明确tb1基因的功能,了解它与其他禾本科植物TB1同源基因的系统进化关系,我们根据分枝基因在NCBI中比对情况,选择了水稻(GenBank:AY286002.1)、非洲粟(GenBank:AY631857.1)、早竹(GenBank:DQ842223.1)、黑麦草(GenBank:GU987123.1)、玉米(GenBank:U94494.1)等几种禾本科植物TB1蛋白序列与所扩增得到四种小麦的TB1蛋白质序列进行比对分析,比对结果表明他们的保守区内的氨基酸序列基本一致,总体相似度为67.7%,且分为三个保守进化区,分别为SP区、TCP区、R区,都属于禾本科TCP家族转录因子。In order to further clarify the function of tb1 gene and understand its phylogenetic relationship with TB1 homologous genes of other grasses, we selected rice (GenBank: AY286002.1), African millet ( GenBank: AY631857.1), early bamboo (GenBank: DQ842223.1), ryegrass (GenBank: GU987123.1), maize (GenBank: U94494.1) and other grasses The TB1 protein sequences of wheat species were compared and analyzed, and the comparison results showed that the amino acid sequences in their conserved regions were basically the same, with an overall similarity of 67.7%, and they were divided into three conserved evolution regions, namely SP region, TCP region, The R regions belong to the Poaceae TCP family of transcription factors.
不同植物TB1同源蛋白的分子进化树分析,如图7所示。其中分枝小麦tb1基因cDNA全长序列及编码氨基酸序列如图8所示,四种小麦的tb1基因的氨基酸序列在NCBI中blastp进行氨基酸序列比对,结果显示四种小麦的tb1基因编码的氨基酸序列与小麦中TCP结构域蛋白的序列相似度最高达87%,与TCP转录因子蛋白和TB1蛋白质序列相似度分别为87%和86%。根据相关文献表述,禾本科植物玉米与水稻之中的tb1基因具有一些共同的调控元件,如TCP转录因子。由此可知,在四种小麦之中扩增出的序列确为tb1基因,且与玉米和水稻等禾本科植物同属一个蛋白质家族,参与小麦穗部发生分枝性状的过程中起调控作用。(2.5.1)PCR扩增结果克隆测序Molecular phylogenetic tree analysis of different plant TB1 homologous proteins is shown in Figure 7. The full-length cDNA sequence and the encoded amino acid sequence of the branched wheat tb1 gene are shown in Figure 8. The amino acid sequences of the four wheat tb1 genes were compared in NCBI with blastp. The results showed that the amino acids encoded by the four wheat tb1 genes The sequence similarity with the TCP domain protein in wheat was up to 87%, and the sequence similarity with the TCP transcription factor protein and TB1 protein was 87% and 86%, respectively. According to relevant literature, the tb1 gene in the grasses maize and rice share some common regulatory elements, such as the TCP transcription factor. It can be seen that the amplified sequence in the four types of wheat is indeed the tb1 gene, which belongs to the same protein family as maize and rice and other gramineous plants, and plays a regulatory role in the process of branching traits in wheat ears. (2.5.1) PCR Amplification Results Cloning and Sequencing
将PCR扩增之后的产物进行切胶纯化并将纯化之后的样品送样到生工生物(上海)有限公司进行测序。The products after PCR amplification were subjected to gel cutting purification and the purified samples were sent to Sangon Biology (Shanghai) Co., Ltd. for sequencing.
(2.5.2)测序结果的生物信息学分析(2.5.2) Bioinformatics analysis of sequencing results
利用DNAMAN软件的Alignment多重序列比对将测序结果进行同源性比对,并在NCBI上进行BLAST分析,分析PCR扩增所得到基因是否为小麦穗分枝基因。在得到分枝基因全长之后对其最大开放阅读框(Open Reading Frame,ORF)进行分析,由此导出基因序列所对应的氨基酸序列,并对该氨基酸序列进行分析,得出其在进化过程之中的保守区。利用NCBI和DNAMAN软件构建其系统进化树,分析小麦中分枝基因在物种进化过程中与其他植物之间亲缘关系的远近。The sequencing results were compared for homology using the Alignment multiple sequence alignment of DNAMAN software, and BLAST analysis was performed on NCBI to analyze whether the gene obtained by PCR amplification was a wheat panicle branch gene. After obtaining the full length of the branched gene, its largest open reading frame (Open Reading Frame, ORF) is analyzed, thereby deriving the amino acid sequence corresponding to the gene sequence, and analyzing the amino acid sequence to obtain its evolutionary process. in the conserved region. The phylogenetic tree was constructed using NCBI and DNAMAN software to analyze the distance between branch genes in wheat and other plants in the process of species evolution.
根据已扩增出的分枝小麦中tb1基因为模板设计一对基因特异性引物进行RT-PCR反应,经电泳检测后纯化送样测序,测序结果表明在不同品种小麦中扩增出573bp cDNA片段,通过测序——序列比对分析表明所扩增cDNA片段确为tb1基因。研究调控小麦穗部性状发生分枝的关键基因,对于今后利用分子育种的手段来精准提高小麦的产量和优良品种都具有重要的意义。本申请克隆出调控小麦穗部发生分枝的关键基因,初步分析该分枝基因的表达调控情况,了解分枝基因的作用机制,为育种工作者提供基本信息。According to the amplified tb1 gene in branched wheat as template, a pair of gene-specific primers were designed for RT-PCR reaction. After electrophoresis detection, the samples were purified and sent for sequencing. The sequencing results showed that 573bp cDNA fragments were amplified in different varieties of wheat. , the amplified cDNA fragment is indeed the tb1 gene by sequencing-sequence alignment analysis. It is of great significance to study the key genes that regulate the branching of wheat panicle traits for the future use of molecular breeding methods to accurately improve wheat yield and fine varieties. The present application clones the key gene that regulates the branching of the wheat panicle, preliminarily analyzes the expression and regulation of the branching gene, understands the action mechanism of the branching gene, and provides basic information for breeders.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. Substitutions should be covered within the protection scope of the present invention.
序列表sequence listing
<110> 滁州学院<110> Chuzhou College
<120> 一种小麦穗分枝基因DNA序列扩增方法、分枝基因及应用<120> A method for amplifying DNA sequence of wheat panicle branch gene, branch gene and application
<130>001<130>001
<160> 10<160> 10
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 22<211> 22
<212> DNA<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 1<400> 1
gcggcgtgcg tgtagacgaa gt 22gcggcgtgcg tgtagacgaa gt 22
<210> 2<210> 2
<211> 22<211> 22
<212> DNA<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 2<400> 2
gcggcaggaa cgaccagacc at 22gcggcaggaa cgaccagacc at 22
<210> 3<210> 3
<211> 19<211> 19
<212> DNA<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 3<400> 3
ggagtcccat cagtaaagc 19ggagtcccat cagtaaagc 19
<210> 4<210> 4
<211> 24<211> 24
<212> DNA<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 4<400> 4
gtgcgggagt agttctaata ccgt 24gtgcgggagt agttctaata ccgt 24
<210> 5<210> 5
<211> 21<211> 21
<212> DNA<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 5<400> 5
aggacggctc cagcagcctc t 21aggacggctc cagcagcctc t 21
<210> 6<210> 6
<211> 24<211> 24
<212> DNA<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 6<400> 6
gtgcgggagt agttctaata ccgt 24gtgcgggagt agttctaata ccgt 24
<210> 7<210> 7
<211> 1097<211> 1097
<212> DNA<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 7<400> 7
tttgattcgc tagaccatgg acttgcccct ttaccaacag ctgcagatca gccctccctc 60tttgattcgc tagaccatgg acttgcccct ttaccaacag ctgcagatca gccctccctc 60
gccaaaggcg ccggatcacc aatccttgct ctactatcat tcctcccctg catttgccgc 120gccaaaggcg ccggatcacc aatccttgct ctactatcat tcctcccctg catttgccgc 120
cgacgccttc caccacagct acctctgtgc cggtgccgcg acgccgcccc ctgccgagat 180cgacgccttc caccacagct acctctgtgc cggtgccgcg acgccgcccc ctgccgagat 180
cgacatccac ccgccgccgg agctgcagct gatggtgatg gatccggctc cggcgccaaa 240cgacatccac ccgccgccgg agctgcagct gatggtgatg gatccggctc cggcgccaaa 240
gggagatgga actgcaaccg gcctgcgcct gggtggaggc ctaggcctcg acagcgccgc 300gggagatgga actgcaaccg gcctgcgcct gggtggaggc ctaggcctcg acagcgccgc 300
cgccgccacg aaaaacaaac accgcaacat atgcatatgc ggcgggatga gggacaggcg 360cgccgccacg aaaaacaaac accgcaacat atgcatatgc ggcgggatga gggacaggcg 360
gatgcggatg tccctctacc tcgacctcaa cttcttcttc ttccaggaca tggacatgct 420gatgcggatg tccctctacc tcgacctcaa cttcttcttc ttccaggaca tggacatgct 420
cgacttcgac aaggccaccg tgaaatggct ccggctcccc tctaaggccg ccgtcgccat 480cgacttcgac aaggccaccg tgaaatggct ccggctcccc tctaaggccg ccgtcgccat 480
cgtcaaggtt gtgactgagt cctcctcctg cgactgcgac gactacggct ccctctccct 540cgtcaaggtt gtgactgagt cctcctcctg cgactgcgac gactacggct ccctctccct 540
ctccgacggc aaccgcaagc agccaccgac agagactgaa gctgatgatg gtgatcaggc 600ctccgacggc aaccgcaagc agccaccgac agagactgaa gctgatgatg gtgatcaggc 600
aagaagaaaa agccagtgcc aacggcaacg gcaacggccc ccccaaaccg cagccgaaat 660aagaagaaaa agccagtgcc aacggcaacg gcaacggccc ccccaaaccg cagccgaaat 660
tgacattggc ccacgcgatc cccatccccg actcgaggac gaggacccgg gcgcgggaga 720tgacattggc ccacgcgatc cccatccccg actcgaggac gaggacccgg gcgcgggaga 720
gggagaggga gcggactaag aaccagatgc ggatgctgac gctgacgctc gcgtctacca 780gggagaggga gcggactaag aaccagatgc ggatgctgac gctgacgctc gcgtctacca 780
ttaacatcgg cagccaccgc catgggcatg gcgagggcga ggcgagtacg actcgatccc 840ttaacatcgg cagccaccgc catgggcatg gcgagggcga ggcgagtacg actcgatccc 840
gaagcctttg atttttctct cctcgtcctc gtccatgtcc acagctgaat ctgaattggg 900gaagcctttg atttttctct cctcgtcctc gtccatgtcc acagctgaat ctgaattggg 900
aggtgctcgt gctcgtcgtc cgatgcgaag cgatcatgat ctgtgctctc ggctacggca 960aggtgctcgt gctcgtcgtc cgatgcgaag cgatcatgat ctgtgctctc ggctacggca 960
ggtgtacgga tagcagaagg caacggacta ctactactca gcatggagct agcagcggca 1020ggtgtacgga tagcagaagg caacggacta ctactactca gcatggagct agcagcggca 1020
tgtcgagcct caggtggtgt ttacgttctc ccaactcccc tactccataa ctgcagaaga 1080tgtcgagcct caggtggtgt ttacgttctc ccaactcccc tactccataa ctgcagaaga 1080
cgtcgacttg cgtatgt 1097cgtcgacttg cgtatgt 1097
<210> 8<210> 8
<211> 1116<211> 1116
<212> DNA<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 8<400> 8
ttttgcatcg ctagtccatg gacttgcccc tttaccaaca gctgcagatc agccctccct 60ttttgcatcg ctagtccatg gacttgcccc tttaccaaca gctgcagatc agccctccct 60
cgccaaaggc gccggatcac caatccttgc tctactatca ttcctcccct gcatttgccg 120cgccaaaggc gccggatcac caatccttgc tctactatca ttcctcccct gcatttgccg 120
ccgactcctt ccaccacagc tacctctgtg ccggtgccgc gacgcccacc gcgcccgagg 180ccgactcctt ccaccacagc tacctctgtg ccggtgccgc gacgcccacc gcgcccgagg 180
tcgacatcga ccacccgccg gagctggagc tgatgctgat ggatccggct ccggggccaa 240tcgacatcga ccacccgccg gagctggagc tgatgctgat ggatccggct ccggggccaa 240
agggtgatgg tgttggaacc ggcctgcgcc tgggtggagg tgtaggcctc gaggcggcgg 300agggtgatgg tgttggaacc ggcctgcgcc tgggtggagg tgtaggcctc gaggcggcgg 300
ccgcggccgc gaccgagagg gaccggcaga tatggatctg caccgccggg aggatgaggg 360ccgcggccgc gaccgagagg gaccggcaga tatggatctg caccgccggg aggatgaggg 360
accggcggat gtccctctcc ctcgacctca ccttcttctt cttcccggtc ctggacatgc 420accggcggat gtccctctcc ctcgacctca ccttcttctt cttcccggtc ctggacatgc 420
tcgacttcga caaggacacc aagaaagggc tctggctcct ctctaaggca aagggcgcca 480tcgacttcga caaggacacc aagaaagggc tctggctcct ctctaaggca aagggcgcca 480
tcgtcaaggt cgtgactgag tcctcgtcct gcgactgcga cgactacggc tccctctccc 540tcgtcaaggt cgtgactgag tcctcgtcct gcgactgcga cgactacggc tccctctccc 540
tctccgacgt cgaccgcaag cagcagccgc cagggactga agctgaaggt ggtgatcacg 600tctccgacgt cgaccgcaag cagcagccgc cagggactga agctgaaggt ggtgatcacg 600
gcaagaagca gatgccagtg ccaacggcaa ccagaacggc accccccaaa ccgcagccgc 660gcaagaagca gatgccagtg ccaacggcaa ccagaacggc accccccaaa ccgcagccgc 660
aaatgacatt ggccagtgcg atcccgatca acgactcgaa gtcgaggacg aaggcgaggg 720aaatgacatt ggccagtgcg atcccgatca acgactcgaa gtcgaggacg aaggcgaggg 720
agagggcgag ggagcggact aaggacaaga tgcggatgcg atgggtgacg ctcgcgttta 780agagggcgag ggagcggact aaggacaaga tgcggatgcg atgggtgacg ctcgcgttta 780
aaatcaacat cgagccggcc gccatgggca tggcggcggg cgaggcgagt tcgacttgat 840aaatcaacat cgagccggcc gccatgggca tggcggcggg cgaggcgagt tcgacttgat 840
cacgaagcct atgatcatga tctctcgctc ctcgaccatg aacacagcag aatctgaatt 900cacgaagcct atgatcatga tctctcgctc ctcgaccatg aacacagcag aatctgaatt 900
gggaggtagg tggtgctcgt cgtcgatgcc agagcgatca cgatctgtgc tctcggctat 960gggaggtagg tggtgctcgt cgtcgatgcc agagcgatca cgatctgtgc tctcggctat 960
tgggaagtgg gacgggatac agaaggcaaa cgtgctacta ctatcagtta tgcaagctag 1020tgggaagtgg gacgggatac agaaggcaaa cgtgctacta ctatcagtta tgcaagctag 1020
cagttggcaa tgtcgagctt caggtgggta gttgtttcta ttttcccaca ctccctagct 1080cagttggcaa tgtcgagctt caggtgggta gttgtttcta ttttcccaca ctccctagct 1080
cctaaatgca gaagacgtcg agtatgcgta cgctac 1116cctaaatgca gaagacgtcg agtatgcgta cgctac 1116
<210> 9<210> 9
<211> 1114<211> 1114
<212> DNA<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 9<400> 9
ctcatgatcg ctagtccatg gacttgcccc tttaccaaca gctgcagatc agccctccct 60ctcatgatcg ctagtccatg gacttgcccc tttaccaaca gctgcagatc agccctccct 60
cgccaaaggc gccggatcac caatccttgc tctactatca ttcctcccct gcatttgccg 120cgccaaaggc gccggatcac caatccttgc tctactatca ttcctcccct gcatttgccg 120
ccgactcctt ccaccacagc tacctctgtg ccggtgccgc gacgcccccc gctgccgagg 180ccgactcctt ccaccacagc tacctctgtg ccggtgccgc gacgcccccc gctgccgagg 180
tcgacatcca caacccgccg gcgctgctgc tgatggatat ggatccggct ccggggccaa 240tcgacatcca caacccgccg gcgctgctgc tgatggatat ggatccggct ccggggccaa 240
agggtgatgg tgttgcaacc ggactgcgcc tgggtggagg cctaggcctc gaggcggccg 300agggtgatgg tgttgcaacc ggactgcgcc tgggtggagg cctaggcctc gaggcggccg 300
ccgcggccac gaaaaagaaa gacaggaaca tatgcatatg caccgggatg aggatgaggg 360ccgcggccac gaaaaagaaa gacaggaaca tatgcatatg caccgggatg aggatgaggg 360
agatgcggat gcccctctcc ctcgacctca ccttcttctt cttcccggtc ctggacatgt 420agatgcggat gcccctctcc ctcgacctca ccttcttctt cttcccggtc ctggacatgt 420
tcgacttcga caaggacacc aagaagtggc tccggctcct ctctaaggcc gccgtcgcca 480tcgacttcga caaggacacc aagaagtggc tccggctcct ctctaaggcc gccgtcgcca 480
tcgtcaaggt catgactgag tcctcctcct gcgactgcga cgactacggc tccctctccc 540tcgtcaaggt catgactgag tcctcctcct gcgactgcga cgactacggc tccctctccc 540
tctccgacgg caaccgcaag cacccaccgc cagagactga agctgaagat ggtgatcacg 600tctccgacgg caaccgcaag cacccaccgc cagagactga agctgaagat ggtgatcacg 600
gcaagaagaa aaagccagtg ccaacggcaa ccacaacggc accccccaaa ccgcagccgc 660gcaagaagaa aaagccagtg ccaacggcaa ccacaacggc accccccaaa ccgcagccgc 660
aattgacatt ggcccacgcg ctccccatcc ccgactcgaa gtcgaggacg agggcgcggg 720aattgacatt ggcccacgcg ctccccatcc ccgactcgaa gtcgaggacg agggcgcggg 720
agagggcgag ggagcggact aagaaccaga tgcggatgcg atggctgacg ctcgcgtcta 780agagggcgag ggagcggact aagaaccaga tgcggatgcg atggctgacg ctcgcgtcta 780
caattaacat cggagccggc cgccatgggc gtggcggcgg cgaggggagt tcgactcgat 840caattaacat cggagccggc cgccatgggc gtggcggcgg cgaggggagt tcgactcgat 840
cccgaagcct ttgattttga tctctctcgt cctcgtccat gaccacagct gagctggagg 900cccgaagcct ttgattttga tctctctcgt cctcgtccat gaccacagct gagctggagg 900
tgggaggtag gtcgtgctcg atgtcgatgc cgagcgaaca tgatctgtgg ttcggctacg 960tgggaggtag gtcgtgctcg atgtcgatgc cgagcgaaca tgatctgtgg ttcggctacg 960
ggcaggggga cggatacaga aggcaaacta ctactactac tcagtcatgg agctggcagt 1020ggcaggggga cggatacaga aggcaaacta ctactactac tcagtcatgg agctggcagt 1020
ggcaatgtcg agtcgtcagt tgtagtttac tctattcccc caaactcccc tagctccata 1080ggcaatgtcg agtcgtcagt tgtagtttac tctattcccc caaactcccc tagctccata 1080
aatgcagaca gacgttgcac tatggcgttt cagt 1114aatgcagaca gacgttgcac tatggcgttt cagt 1114
<210> 10<210> 10
<211> 1076<211> 1076
<212> DNA<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 10<400> 10
ttggattcgc tagcccatgg acttgcccct ttaccaacag ctgcagatca gccctccctc 60ttggattcgc tagcccatgg acttgcccct ttaccaacag ctgcagatca gccctccctc 60
gccaaaggcg ccggatcacc aatccttgct ctactatcat tcctcccctg cattcgccgc 120gccaaaggcg ccggatcacc aatccttgct ctactatcat tcctcccctg cattcgccgc 120
cgacgccttc caccacagct acctctgtgc cggtgccgcg acgccgcccg ctgccgagat 180cgacgccttc caccacagct acctctgtgc cggtgccgcg acgccgcccg ctgccgagat 180
cgacaaccag ccgccgccgg agctgctgct gatggatcag gctccggcgc caagggcaga 240cgacaaccag ccgccgccgg agctgctgct gatggatcag gctccggcgc caagggcaga 240
cggtgttgga accgcacaag gcctgcgcgg cggtggaggc ctcgacagcg cggcggccgc 300cggtgttgga accgcacaag gcctgcgcgg cggtggaggc ctcgacagcg cggcggccgc 300
cgcggccagg aaagaccggc acagcaagat atgcaccgcc ggcgggatga gggaccggcg 360cgcggccagg aaagaccggc acagcaagat atgcaccgcc ggcgggatga gggaccggcg 360
gatgcggctg tccctcgacg tcgcccgcaa gttcttcgcg ctccaggaca tgctcggctt 420gatgcggctg tccctcgacg tcgcccgcaa gttcttcgcg ctccaggaca tgctcggctt 420
cgacaaggcc agcaagacgg tgcaatggct cctcgatacg tcaaagggcg ccatcaggga 480cgacaaggcc agcaagacgg tgcaatggct cctcgatacg tcaaagggcg ccatcaggga 480
ggtcatgact gacgaggcgt cctccgactg cgaggaggac ggctccagca gcctctccgt 540ggtcatgact gacgaggcgt cctccgactg cgaggaggac ggctccagca gcctctccgt 540
cgtcgacggc aagcacaagc cgccagggac ggaggctgga ggtggtgatc acggcgaggg 600cgtcgacggc aagcacaagc cgccagggac ggaggctgga ggtggtgatc acggcgaggg 600
gaagaagcca gtgccaaggg cagccagaag ggcacccgcc aatccaaaac cgcaaaggaa 660gaagaagcca gtgccaaggg cagccagaag ggcacccgcc aatccaaaac cgcaaaggaa 660
attggccagt gcgcacccga tccccgacaa ggagtcgagg acgaaggccc gggagagggc 720attggccagt gcgcacccga tccccgacaa ggagtcgagg acgaaggccc gggagagggc 720
gagggagcgg acgagggaaa agaaccggat gcgatgggtg acgctcgcgt ccacaattaa 780gagggagcgg acgagggaaa agaaccggat gcgatgggtg acgctcgcgt ccacaattaa 780
catcgagccg gcagccaccg gcatggcggc ggcgagggcg aggcgagttg gtcacgaatc 840catcgagccg gcagccaccg gcatggcggc ggcgagggcg aggcgagttg gtcacgaatc 840
cgaacaattt gatctatcgc tcctcgtcca tgaacacatc aagagctgaa ttggaggagg 900cgaacaattt gatctatcgc tcctcgtcca tgaacacatc aagagctgaa ttggaggagg 900
ggtgctcgtc gtccatgccg agcgaagcga tcatgactgg cttcggctat ggagggtacg 960ggtgctcgtc gtccatgccg agcgaagcga tcatgactgg cttcggctat ggagggtacg 960
gaagcagcgg caactactac cagtatcagc tggagcagca atgggagctc ggtggcagtg 1020gaagcagcgg caactactac cagtatcagc tggagcagca atgggagctc ggtggcagtg 1020
gtgtttacca actcgcagtc cctactgata atgccgcgac atgccgtacg gtatga 1076gtgtttacca actcgcagtc cctactgata atgccgcgac atgccgtacg gtatga 1076
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010728388.2A CN111808926A (en) | 2020-07-24 | 2020-07-24 | A kind of wheat panicle branch gene DNA sequence amplification method, branch gene and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010728388.2A CN111808926A (en) | 2020-07-24 | 2020-07-24 | A kind of wheat panicle branch gene DNA sequence amplification method, branch gene and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111808926A true CN111808926A (en) | 2020-10-23 |
Family
ID=72861185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010728388.2A Pending CN111808926A (en) | 2020-07-24 | 2020-07-24 | A kind of wheat panicle branch gene DNA sequence amplification method, branch gene and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111808926A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117511962A (en) * | 2023-12-01 | 2024-02-06 | 榆林学院 | Gene for regulating wheat ear branching and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102676681A (en) * | 2012-05-29 | 2012-09-19 | 张卫东 | Primer special for detecting wheat spike branching suppression related gene and application of primer |
CN106086034A (en) * | 2016-06-18 | 2016-11-09 | 南京农业大学 | One wheatear type developmental regulation gene wbh1 and molecular marker thereof and application |
-
2020
- 2020-07-24 CN CN202010728388.2A patent/CN111808926A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102676681A (en) * | 2012-05-29 | 2012-09-19 | 张卫东 | Primer special for detecting wheat spike branching suppression related gene and application of primer |
CN106086034A (en) * | 2016-06-18 | 2016-11-09 | 南京农业大学 | One wheatear type developmental regulation gene wbh1 and molecular marker thereof and application |
Non-Patent Citations (6)
Title |
---|
CAI,H.等: "GenBank: KU847345.1", 《NCBI》 * |
CAI,H.等: "GenBank: KU847346.1", 《NCBI》 * |
CAI,H.等: "GenBank: KU847347.1", 《NCBI》 * |
CAI,H.等: "GenBank: KU847348.1", 《NCBI》 * |
CHUCK,G.等: "GenBank: AY178191.1", 《NCBI》 * |
DOEBLEY,J.等: "GenBank: U94494.1", 《NCBI》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117511962A (en) * | 2023-12-01 | 2024-02-06 | 榆林学院 | Gene for regulating wheat ear branching and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111593058B (en) | Bna-miR169n gene and application thereof in controlling drought resistance of brassica napus | |
CN111172173B (en) | Method for reducing plant height of corn or delaying flowering | |
CN110184247A (en) | Alfalfa epiphysin synthesizes gene M sASMT and its application in regulation plant epiphysin and Flavonoid substances synthesis | |
CN111235180A (en) | How to shorten the flowering period of corn | |
CN107267523A (en) | A kind of bacterial leaf spot resistance albumen and encoding gene | |
CN109486831B (en) | A kind of nopal radish anthocyanin biosynthesis regulator gene RsAN1 and its application | |
CN112961229B (en) | Rubber tree transcription factor HbICE4 and coding gene and application thereof | |
CN111808926A (en) | A kind of wheat panicle branch gene DNA sequence amplification method, branch gene and application | |
CN112778408B (en) | Rubber tree transcription factor HbICE2, and coding gene and application thereof | |
CN107674872B (en) | Gene sequence of a transcription factor AgDREB1 related to celery stress resistance and its application | |
CN112626069A (en) | Soybean gma-miR4359b gene, expression vector thereof, preparation method and application thereof | |
CN113564198A (en) | Application of RNAi (ribonucleic acid interference) on PALM1 gene to increase number of small leaves of leguminous forage | |
CN112410356A (en) | Resveratrol synthase gene RS derived from radix tetrastigme and application thereof | |
CN101338315A (en) | A gene for improving plant stress resistance and its application | |
CN115786366B (en) | Eggplant cold resistance regulating gene, protein and application thereof | |
CN106222171B (en) | A method for improving soybean yield using RNAi technology | |
CN111662368B (en) | Rubber grass drought-enduring gene TkMYC2, protein, primer, vector, host bacterium and application thereof | |
CN108148843A (en) | Chinese milk vetch LEAFY genes and its application | |
CN112195189A (en) | Barley transcription factor HvWRKY6 gene and application thereof in wheat stripe rust and leaf rust resistance | |
CN114990140A (en) | Cassava pyridoxal kinase gene and application thereof in improving salt tolerance of plants | |
CN112410352A (en) | 4-coumaric acid-coenzyme A ligase gene Th4CL and application thereof | |
CN112359051A (en) | Phenylalanine ammonia lyase gene ThPAL from radix tetrastigme and application thereof | |
CN111621503A (en) | Barley transcription factor HvWRKY70 gene and application thereof in stripe rust and powdery mildew resistance of wheat | |
Zhao et al. | Characterization and expression analysis of WOX2 homeodomain transcription factor in Aegilops tauschii | |
CN112410354B (en) | Cinnamic acid-4-hydroxylase gene ThC4H and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201023 |