CN111785987A - Flow field cooling device for bipolar plate - Google Patents
Flow field cooling device for bipolar plate Download PDFInfo
- Publication number
- CN111785987A CN111785987A CN202010744870.5A CN202010744870A CN111785987A CN 111785987 A CN111785987 A CN 111785987A CN 202010744870 A CN202010744870 A CN 202010744870A CN 111785987 A CN111785987 A CN 111785987A
- Authority
- CN
- China
- Prior art keywords
- diffusion layer
- plate
- air diffusion
- flow field
- adjacent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
本发明公开了双极板用流场式散热装置,属于燃料电池散热技术领域。本发明包括位于阴极板和空气扩散层之间的分流板,分流板的两表面均阵列分布有凹陷部,凹陷部和阴极板形成第一空腔以及和空气扩散层之间形成第二空腔,相邻第一空腔和第二空腔相互联通,凹陷部上具有接触部,接触部贴合阴极板或空气扩散层,凹陷部成排布置,相邻两凹陷部凹陷方向相反或相同,凹陷部上具有端口,相邻第一空腔和第二空腔通过端口相互联通,凹陷部上具有引流板,引流板相对空气扩散层倾斜设置,引流板迎液面朝向空气扩散层。本发明通过在流场的上下端成型接触面,极大的提高了其导电和导热性能。
The invention discloses a flow field type heat dissipation device for a bipolar plate, and belongs to the technical field of heat dissipation of fuel cells. The invention includes a distribution plate located between the cathode plate and the air diffusion layer, the two surfaces of the distribution plate are distributed with depressions in an array, the depressions and the cathode plate form a first cavity and form a second cavity between the air diffusion layer and the air diffusion layer , the adjacent first cavities and the second cavities are connected to each other, the concave part has a contact part, the contact part is attached to the cathode plate or the air diffusion layer, the concave parts are arranged in rows, and the concave directions of the two adjacent concave parts are opposite or the same, The concave portion has ports through which adjacent first cavities and second cavities are communicated with each other. By forming contact surfaces at the upper and lower ends of the flow field, the present invention greatly improves its electrical and thermal conductivity.
Description
技术领域technical field
本发明属于燃料电池散热技术领域,特别是涉及双极板用流场式散热装置。The invention belongs to the technical field of heat dissipation of fuel cells, and in particular relates to a flow field type heat dissipation device for bipolar plates.
背景技术Background technique
目前,金属双极板作为燃料电池的核心部件,其作用是膜电极结构支撑,分隔氢气和氧气,收集电子,传导热量,提供氢气和氧气通道,排出反应生成的水,提供冷却液流道等重要作用,其性能很大程度取决于流场结构。通常的金属双极板的流场结构有直通道、蛇形、螺旋形、交指型和网格形等,同时也在不断开发新型流场,如仿生流场、3D流场等,现有的空气侧3D流场与液冷金属双极板和空气扩散层为点或线接触,接触面积不到1%,其导电和导热性能非常差,点或面接触使接触电阻增加,电流流经时发热严重,同时膜电极上的热无法及时传导至液冷金属双极板表面,导致膜电极因局部温度过高而产生破裂,最终报废。At present, the metal bipolar plate is the core component of the fuel cell. Its function is to support the membrane electrode structure, separate hydrogen and oxygen, collect electrons, conduct heat, provide hydrogen and oxygen channels, discharge the water generated by the reaction, and provide cooling liquid flow channels, etc. important role, and its performance largely depends on the flow field structure. The usual flow field structures of metal bipolar plates include straight channel, serpentine, spiral, interdigitated and grid-shaped, etc. At the same time, new flow fields, such as bionic flow fields, 3D flow fields, etc. The air-side 3D flow field is in point or line contact with the liquid-cooled metal bipolar plate and the air diffusion layer, the contact area is less than 1%, and its electrical and thermal conductivity is very poor, the point or surface contact increases the contact resistance, and the current flows through At the same time, the heat on the membrane electrode cannot be conducted to the surface of the liquid-cooled metal bipolar plate in time, resulting in the rupture of the membrane electrode due to the high local temperature, and finally scrapped.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供双极板用流场式散热装置,通过在流场的上下端成型接触面,极大的提高了其导电和导热性能,避免了因不良接触导致其电流发热过大和传热通道受阻导致膜电极温度过高而产生的膜电极破裂、氢气泄漏等不足。The purpose of the present invention is to provide a flow field type heat sink for bipolar plates. By forming contact surfaces at the upper and lower ends of the flow field, the electrical and thermal conductivity properties of the device are greatly improved, and the excessive heat generation and transmission of current caused by poor contact are avoided. The blockage of the thermal channel leads to the failure of the membrane electrode, such as rupture of the membrane electrode and hydrogen leakage caused by the high temperature of the membrane electrode.
为解决上述技术问题,本发明是通过以下技术方案实现的:In order to solve the above-mentioned technical problems, the present invention is achieved through the following technical solutions:
本发明为双极板用流场式散热装置,包括位于阴极板和空气扩散层之间的分流板,分流板的两表面均阵列分布有凹陷部,凹陷部和阴极板形成第一空腔以及和空气扩散层之间形成第二空腔,相邻第一空腔和第二空腔相互联通,凹陷部上具有接触部,接触部贴合阴极板或空气扩散层。The present invention is a flow field type heat sink for bipolar plate, which comprises a flow distribution plate located between a cathode plate and an air diffusion layer. Both surfaces of the flow distribution plate are provided with concave parts in an array, and the concave part and the cathode plate form a first cavity and A second cavity is formed between the air diffusion layer and the adjacent first cavity and the second cavity.
进一步地,凹陷部成排布置,相邻两凹陷部凹陷方向相反或相同。Further, the concave parts are arranged in a row, and the concave directions of two adjacent concave parts are opposite or the same.
进一步地,凹陷部上具有端口,相邻第一空腔和第二空腔通过端口相互联通,相邻两第一空腔或相邻两第二空腔之间通过凹陷部边缘间隙连通。Further, the concave portion is provided with a port, the adjacent first cavities and the second cavities communicate with each other through the ports, and the adjacent two first cavities or the adjacent two second cavities communicate through the edge gap of the concave portion.
进一步地,向空气扩散层方向凹陷的凹陷部,该凹陷部上的接触部贴合空气扩散层,向阴极板方向凹陷的凹陷部,该凹陷部上的接触部贴合阴极板。Further, the concave portion concave in the direction of the air diffusion layer, the contact portion on the concave portion adheres to the air diffusion layer, and the concave portion concave in the direction of the cathode plate, the contact portion on the concave portion adheres to the cathode plate.
进一步地,凹陷部上具有引流板,引流板相对空气扩散层倾斜设置,引流板迎液面朝向空气扩散层。Further, the concave portion is provided with a flow guide plate, the flow guide plate is inclined relative to the air diffusion layer, and the liquid-facing surface of the flow guide plate faces the air diffusion layer.
进一步地,接触部为平直板,触面的尺寸为0.1mm×0.1mm至10mm×10mm。Further, the contact portion is a flat plate, and the size of the contact surface is 0.1 mm×0.1 mm to 10 mm×10 mm.
进一步地,贴空气扩散层的接触部的面积不大于贴合阴极板2的接触部的面积。Further, the area of the contact part attached to the air diffusion layer is not larger than the area of the contact part attached to the
进一步地,凹陷部为“六边形”型凹陷部或“瓦楞”型凹陷部。Further, the depressions are "hexagonal" type depressions or "corrugated" type depressions.
进一步地,“六边形”型凹陷部中,凹陷部的端口上开设有缺口。Further, in the "hexagonal"-shaped recessed portion, a notch is provided on the port of the recessed portion.
进一步地,“瓦楞”型凹陷部为双向瓦楞结构。Further, the "corrugated" recessed portion is a two-way corrugated structure.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明在流场的上下端成型接触面,极大的提高了其导电和导热性能,避免了因不良接触导致其电流发热过大和传热通道受阻导致膜电极温度过高而产生的膜电极破裂、氢气泄漏等不足,通过分流板控制水在阴极板和空气扩散层的流动方向,使得冲向空气扩散层,进而使得水中的气体在流动中对空气扩散层的表面有一定的冲击作用,产生的强制对流效果使得更多的气体能进入空气扩散层。The invention forms the contact surfaces at the upper and lower ends of the flow field, greatly improving its electrical and thermal conductivity, and avoiding the rupture of the membrane electrode caused by the excessive current heating and the blocked heat transfer channel caused by the bad contact. , hydrogen leakage, etc., the flow direction of water in the cathode plate and the air diffusion layer is controlled by the split plate, so that it rushes to the air diffusion layer, so that the gas in the water has a certain impact on the surface of the air diffusion layer in the flow, resulting in The forced convection effect allows more gas to enter the air diffusion layer.
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。Of course, it is not necessary for any product embodying the present invention to achieve all of the above-described advantages simultaneously.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为双极板用流场式散热装置的结构图;Fig. 1 is the structure diagram of the flow field type heat sink for bipolar plate;
图2为图1A处放大图;Fig. 2 is an enlarged view of Fig. 1A;
图3为双极板用流场式散热装置的结构图;Fig. 3 is the structure diagram of the flow field type heat sink for bipolar plate;
图4为图3的截面示意图;Fig. 4 is the cross-sectional schematic diagram of Fig. 3;
图5为“六边形”型凹陷部引流板的结构图;Figure 5 is a structural diagram of a "hexagonal"-shaped recessed drainage plate;
图6为“瓦楞”型凹陷部引流板的结构图;Fig. 6 is the structure diagram of "corrugated" type depression drainage plate;
图7为双向“瓦楞”型凹陷部引流板的结构图;Figure 7 is a structural diagram of a two-way "corrugated" type depression drainage plate;
附图中,各标号所代表的部件列表如下:In the accompanying drawings, the list of components represented by each number is as follows:
1-阳极板,2-阴极板,3-分流板,4-空气扩散层,5-质子交换膜,6-冷却流动腔,301-接触部,302-引流板,303-第一腔体,304-第二腔体,305-缺口,306-端口,307-凹陷部。1-Anode plate, 2-Cathode plate, 3-Split plate, 4-Air diffusion layer, 5-Proton exchange membrane, 6-Cooling flow cavity, 301-Contact part, 302-Drain plate, 303-First cavity, 304-second cavity, 305-notch, 306-port, 307-recess.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在本发明的描述中,需要理解的是,术语“开孔”、“上”、“下”、“厚度”、“顶”、“中”、“长度”、“内”、“四周”等指示方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的组件或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it is to be understood that the terms "opening", "upper", "lower", "thickness", "top", "middle", "length", "inside", "around", etc. Indicates the orientation or positional relationship, only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the components or elements referred to must have a specific orientation, are constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present invention .
请参阅图1-7所示,本发明为双极板用流场式散热装置:Please refer to Figures 1-7, the present invention is a flow field heat dissipation device for bipolar plates:
其中对于燃料电池中的部分阳极板1、阴极板2、空气扩散层4和质子交换膜5,在阳极板1、阴极板2的散热中,阳极板1设计为波纹型,通过在波纹型的阳极板1和阴极板2形成通道中进行冷却液流动降温,另外的在阴极板2和空气扩散层4之间设置分流板分流板3形成流场。Among them, for part of the
其中,分流板3为整体式设计,为以整体式分流板3,分流板3的两表面均阵列分布有凹陷部307,具体的凹陷部307成排布置,其中,相邻两凹陷部307凹陷方向相反或相同。Wherein, the
相应的凹陷部307和阴极板2形成第一空腔303以及和空气扩散层4之间形成第二空腔304,相邻第一空腔303和第二空腔304相互联通,将燃料电池中产生的水进行排除,进行分流流动产生非固定的流动通道,使得水中的气体分散的更加均匀。The corresponding
具体的,接触部301位于凹陷部307的底腔部,凹陷部307上具有端口306,端口306根据水的流动方向分为进水口和出水口,相邻第一空腔303和第二空腔304通过端口306相互联通,在具体呈现上一空腔的出水口和另一空腔的进水口重合。Specifically, the
另外的,在凹陷部307的成形后,凹陷部307与相邻凹陷部307会形成间隙,相邻两第一空腔303之间通过凹陷部307边缘间隙连通,相邻两第二空腔304之间通过凹陷部307边缘间隙连通。In addition, after the
向空气扩散层4方向凹陷的凹陷部307,该凹陷部307上的接触部301贴合空气扩散层4,向阴极板2方向凹陷的凹陷部307,该凹陷部307上的接触部301贴合阴极板2。The
重要的,凹陷部307上具有接触部301,接触部301贴合阴极板2或空气扩散层4,通过接触部301增加接触面积,依次减小空气扩散层4和阴极板2连接分流板3时产生的电阻,进而减少电流流经电阻的产热,相应的还通过增大接触面积增大热量的导通。Importantly, the
接触部301为平直板,触面的尺寸为0.1mm×0.1mm至10mm×10mm。The
进一步地,贴空气扩散层4的接触部301的面积不大于贴合阴极板2的接触部301的面积,总接触面积确定后,控制贴合空气扩散层4的接触部301的面积,进而增加水和空气扩散层4的接触面积,进而使得水中的气体更加的容易通过空气扩散层4。Further, the area of the
进一步地,凹陷部307上具有引流板302,引流板302相对空气扩散层4倾斜设置,引流板302迎液面朝向空气扩散层4。Further, the
控制水在阴极板2和空气扩散层4的流动方向,使得冲向空气扩散层4,进而使得水中的气体在流动中对空气扩散层4的表面有一定的冲击作用,产生的强制对流效果使得更多的气体能进入空气扩散层4。Control the flow direction of water in the
具体的如图5所示,凹陷部307为“六边形”型凹陷部,即该凹陷部307为一方形的接触部301的三个边连接三个六边形板构成,其中另一边处则为端口306,其中三个六边形板也和上述凹陷部307相邻的且朝向方向相反的凹陷部307共用,其在外形结构上可将一方形的接触部和其边缘处连接的半六边形板三个即梯形板作为一个阵列单元。Specifically, as shown in FIG. 5 , the recessed
端口306边缘处开设有缺口5,通过缺口5的设置可减小凹陷部307的冲压成型难度。The edge of the
具体的如图6所示,凹陷部307为“瓦楞”型,在分流板3上为倾斜设置的,两个“瓦楞”型的凹陷部307作为分流板3上的一个阵列单元,两通向凹陷的“瓦楞”型的凹陷部307分为尾段和腔体段,腔体段的端口作为进水口,腔体段的顶部设置有接触部301,其尾段的边缘处抵于空气扩散层4,且两边缘处分别和一分腔体段的边缘处连接,尾段联通第三个“瓦楞”型的凹陷部307的腔体段,尾段窄于腔体段,腔体段的末尾宽出的部分作为出水口,流向与之联通的两个腔体段。Specifically, as shown in FIG. 6 , the
具体的如图7所示,为上述“瓦楞”型凹陷部307的变形结构,两个“瓦楞”型的凹陷部307作为分流板3上的一个阵列单元,一个阵列单元中的一凹陷部307为尾段和另一为腔体段,且两者凹向方向方向相反形成双向瓦楞结构,在水流动方向上,其同一排依次相连的腔体段和尾段呈波纹状。Specifically, as shown in FIG. 7 , which is the deformation structure of the above-mentioned “corrugated” recessed
其中“瓦楞”型的凹陷部307不开设缺口305。The “corrugated” recessed
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, description with reference to the terms "one embodiment," "example," "specific example," etc. means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one aspect of the present invention. in one embodiment or example. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。The above-disclosed preferred embodiments of the present invention are provided only to help illustrate the present invention. The preferred embodiments do not exhaust all the details, nor do they limit the invention to only the described embodiments. Obviously, many modifications and variations are possible in light of the contents of this specification. The present specification selects and specifically describes these embodiments in order to better explain the principles and practical applications of the present invention, so that those skilled in the art can well understand and utilize the present invention. The present invention is to be limited only by the claims and their full scope and equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010744870.5A CN111785987A (en) | 2020-07-29 | 2020-07-29 | Flow field cooling device for bipolar plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010744870.5A CN111785987A (en) | 2020-07-29 | 2020-07-29 | Flow field cooling device for bipolar plate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111785987A true CN111785987A (en) | 2020-10-16 |
Family
ID=72766533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010744870.5A Pending CN111785987A (en) | 2020-07-29 | 2020-07-29 | Flow field cooling device for bipolar plate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111785987A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114934290A (en) * | 2022-03-09 | 2022-08-23 | 氢克新能源技术(上海)有限公司 | Gas diffusion layer and processing technology thereof |
CN117448858A (en) * | 2023-10-18 | 2024-01-26 | 三一氢能有限公司 | Flow field structure and electrolytic tank |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090239120A1 (en) * | 2006-10-25 | 2009-09-24 | Kazunari Moteki | Gas diffusion layer in a fuel cell |
CN101983452A (en) * | 2008-07-30 | 2011-03-02 | 丰田车体株式会社 | Power generating cell for fuel cell |
US20110244369A1 (en) * | 2009-04-13 | 2011-10-06 | Toyota Shatai Kabushiki Kaisha | Gas channel forming member in fuel cell, method for manufacturing same, and device for molding same |
US20120009489A1 (en) * | 2009-03-31 | 2012-01-12 | Toyota Shatai Kabushiki Kaisha | Fuel battery |
CN102598379A (en) * | 2009-03-31 | 2012-07-18 | 丰田车体株式会社 | Fuel cell |
CN102782918A (en) * | 2011-02-21 | 2012-11-14 | 丰田自动车株式会社 | Fuel cell |
US20120308913A1 (en) * | 2010-03-02 | 2012-12-06 | Toyota Jidosha Kabushiki Kaisha | Controlling fuel cell |
CN103000918A (en) * | 2011-09-09 | 2013-03-27 | 现代自动车株式会社 | Separator for fuel cell |
CN103477485A (en) * | 2011-04-18 | 2013-12-25 | 丰田车体株式会社 | Fuel cell |
CN106169591A (en) * | 2015-05-18 | 2016-11-30 | 现代自动车株式会社 | Fuel cell porous separator |
JP2017130364A (en) * | 2016-01-20 | 2017-07-27 | トヨタ自動車株式会社 | Fuel battery |
CN109478657A (en) * | 2016-07-25 | 2019-03-15 | 株式会社Lg化学 | Demarcation plate and fuel cell pack including the demarcation plate |
US20190103616A1 (en) * | 2017-10-04 | 2019-04-04 | Toyota Shatai Kabushiki Kaisha | Gas flow passage formation plate for fuel cell and fuel cell stack |
CN212257566U (en) * | 2020-07-29 | 2020-12-29 | 杭州祥博传热科技股份有限公司 | Flow field type heat sink for bipolar plate |
-
2020
- 2020-07-29 CN CN202010744870.5A patent/CN111785987A/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090239120A1 (en) * | 2006-10-25 | 2009-09-24 | Kazunari Moteki | Gas diffusion layer in a fuel cell |
CN101983452A (en) * | 2008-07-30 | 2011-03-02 | 丰田车体株式会社 | Power generating cell for fuel cell |
US20120009489A1 (en) * | 2009-03-31 | 2012-01-12 | Toyota Shatai Kabushiki Kaisha | Fuel battery |
CN102598379A (en) * | 2009-03-31 | 2012-07-18 | 丰田车体株式会社 | Fuel cell |
US20110244369A1 (en) * | 2009-04-13 | 2011-10-06 | Toyota Shatai Kabushiki Kaisha | Gas channel forming member in fuel cell, method for manufacturing same, and device for molding same |
CN102265442A (en) * | 2009-04-13 | 2011-11-30 | 丰田车体株式会社 | Gas channel forming member in fuel cell, method for manufacturing same, and device for molding same |
US20120308913A1 (en) * | 2010-03-02 | 2012-12-06 | Toyota Jidosha Kabushiki Kaisha | Controlling fuel cell |
US20130052551A1 (en) * | 2011-02-21 | 2013-02-28 | Toyota Jidosha Kabushiki Kaisha | Fuel cell |
CN102782918A (en) * | 2011-02-21 | 2012-11-14 | 丰田自动车株式会社 | Fuel cell |
CN103477485A (en) * | 2011-04-18 | 2013-12-25 | 丰田车体株式会社 | Fuel cell |
CN103000918A (en) * | 2011-09-09 | 2013-03-27 | 现代自动车株式会社 | Separator for fuel cell |
CN106169591A (en) * | 2015-05-18 | 2016-11-30 | 现代自动车株式会社 | Fuel cell porous separator |
JP2017130364A (en) * | 2016-01-20 | 2017-07-27 | トヨタ自動車株式会社 | Fuel battery |
CN109478657A (en) * | 2016-07-25 | 2019-03-15 | 株式会社Lg化学 | Demarcation plate and fuel cell pack including the demarcation plate |
US20190103616A1 (en) * | 2017-10-04 | 2019-04-04 | Toyota Shatai Kabushiki Kaisha | Gas flow passage formation plate for fuel cell and fuel cell stack |
CN212257566U (en) * | 2020-07-29 | 2020-12-29 | 杭州祥博传热科技股份有限公司 | Flow field type heat sink for bipolar plate |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114934290A (en) * | 2022-03-09 | 2022-08-23 | 氢克新能源技术(上海)有限公司 | Gas diffusion layer and processing technology thereof |
CN114934290B (en) * | 2022-03-09 | 2024-01-30 | 氢克新能源技术(上海)有限公司 | Gas diffusion layer and processing technology thereof |
CN117448858A (en) * | 2023-10-18 | 2024-01-26 | 三一氢能有限公司 | Flow field structure and electrolytic tank |
CN117448858B (en) * | 2023-10-18 | 2024-04-19 | 三一氢能有限公司 | Flow field structure and electrolytic tank |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108695524A (en) | Dual polar plates of proton exchange membrane fuel cell | |
US20110274999A1 (en) | Fuel cell stack | |
CN107658480A (en) | A kind of fuel-cell single-cell and pile of the enhancing of humiture uniformity | |
US10756357B2 (en) | Bipolar plate with coolant flow channel | |
US20090169930A1 (en) | Fuel cell separator and fuel cell stack and reactant gas control method thereof | |
CN111785987A (en) | Flow field cooling device for bipolar plate | |
CN113013437B (en) | Fuel cell cathode runner with gradually-reduced slope structure | |
CN103915631A (en) | Air-cooled integrated bipolar plate for fuel cells | |
CN116487624A (en) | Bipolar plate for fuel cell | |
JP4494409B2 (en) | Multi-cell fuel cell layer and system | |
CN113707902A (en) | Bipolar plate of hydrogen fuel cell and hydrogen fuel cell | |
KR101534940B1 (en) | Bipolar plate for fuel cell and fuel cell using the same | |
CN116864728B (en) | Fuel cell bipolar plate structure and fuel cell stack | |
CN112909284A (en) | Bipolar plate for fuel cell with isosceles triangle area and fuel cell | |
CN110289431B (en) | Z-shaped fuel cell flow field plate | |
KR101636613B1 (en) | Separator for Fuel Cell and High Temperature Polymer Electrolyte Membrane Fuel Cell Having the Same | |
CN212257566U (en) | Flow field type heat sink for bipolar plate | |
CN117059854A (en) | Double-sheet stamping connector and electric pile of high-temperature solid oxide battery | |
CN116826094A (en) | Flow guiding type porous flow passage for hydrogen fuel cell and bipolar plate structure | |
CN115149024A (en) | Fuel cell bipolar plate structure and fuel cell stack | |
CN113097519A (en) | High-temperature heat pipe rib connecting plate of solid oxide fuel cell | |
TWI476986B (en) | Fuel cell stack and its separator | |
CN220358139U (en) | Air-cooled fuel cell stack and bipolar plate thereof | |
CN220796806U (en) | Bipolar plate | |
CN211045597U (en) | Bipolar plate and fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201016 |