[go: up one dir, main page]

CN111769180B - LED epitaxial growth method suitable for small-spacing display screen - Google Patents

LED epitaxial growth method suitable for small-spacing display screen Download PDF

Info

Publication number
CN111769180B
CN111769180B CN202010662051.6A CN202010662051A CN111769180B CN 111769180 B CN111769180 B CN 111769180B CN 202010662051 A CN202010662051 A CN 202010662051A CN 111769180 B CN111769180 B CN 111769180B
Authority
CN
China
Prior art keywords
layer
growing
sccm
flow rate
ingan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010662051.6A
Other languages
Chinese (zh)
Other versions
CN111769180A (en
Inventor
徐平
王杰
谢鹏杰
周佐华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangneng Hualei Optoelectrical Co Ltd
Original Assignee
Xiangneng Hualei Optoelectrical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangneng Hualei Optoelectrical Co Ltd filed Critical Xiangneng Hualei Optoelectrical Co Ltd
Priority to CN202010662051.6A priority Critical patent/CN111769180B/en
Publication of CN111769180A publication Critical patent/CN111769180A/en
Application granted granted Critical
Publication of CN111769180B publication Critical patent/CN111769180B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0133Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
    • H10H20/01335Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
    • H10H20/8162Current-blocking structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
    • H10H20/8252Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN characterised by the dopants

Landscapes

  • Led Devices (AREA)

Abstract

本申请公开了一种适用于小间距显示屏的LED外延生长方法,依次包括:处理衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、生长多量子阱层、生长AlGaN电子阻挡层和生长掺杂Mg的P型GaN层,降温冷却,其中生长多量子阱层依次包括生长InGaN阱层、生长H2气氛InGaN:Si层、生长N2气氛InGaN:Mg层、生长H2和N2混合气氛InGaN:Mg/Si层、生长InGaN保护层和生长GaN垒层的步骤。本发明方法解决现有LED外延生长中存在的LED发光波长蓝移量较大的问题,同时提高LED的发光效率,降低工作电压,增强抗静电能力。

Figure 202010662051

The present application discloses an LED epitaxial growth method suitable for a small-pitch display screen, which sequentially includes: processing a substrate, growing a low-temperature buffer layer GaN, growing an undoped GaN layer, growing a Si-doped N-type GaN layer, growing multiple Quantum well layer, growing AlGaN electron blocking layer and growing Mg-doped P-type GaN layer, cooling and cooling, wherein growing multiple quantum well layer sequentially includes growing InGaN well layer, growing H 2 atmosphere InGaN:Si layer, growing N 2 atmosphere InGaN : Steps of Mg layer, growing H2 and N2 mixed atmosphere InGaN: Mg/Si layer, growing InGaN protective layer and growing GaN barrier layer. The method of the invention solves the problem of large blue-shift of the LED light-emitting wavelength existing in the existing LED epitaxial growth, and at the same time improves the light-emitting efficiency of the LED, reduces the working voltage and enhances the antistatic ability.

Figure 202010662051

Description

适用于小间距显示屏的LED外延生长方法LED epitaxial growth method suitable for small-pitch display

技术领域technical field

本发明属于LED技术领域,具体涉及一种适用于小间距显示屏的LED外延生长方法。The invention belongs to the technical field of LEDs, and in particular relates to an LED epitaxial growth method suitable for small-pitch display screens.

背景技术Background technique

发光二极管(Light-Emitting Diode,LED)是一种将电能转化为光能的半导体电子器件。LED作为一种高效、环保、绿色新型固态照明光源,已经被广泛应用于交通信号灯、汽车灯、室内外照明、显示屏和小间距显示屏。Light-Emitting Diode (LED) is a semiconductor electronic device that converts electrical energy into light energy. As an efficient, environmentally friendly and green new solid-state lighting source, LED has been widely used in traffic lights, car lights, indoor and outdoor lighting, display screens and small-pitch displays.

小间距显示屏采用像素级的点控技术,实现对显示屏像素单位的亮度、色彩的还原性和统一性的状态管控。小间距显示屏要求在注入不同大小电流改变发光强度的过程中,发光波长的变化幅度较小。The small-pitch display adopts pixel-level point control technology to realize the state control of the brightness, color restoration and uniformity of the display pixel unit. The small-pitch display requires a small change in the luminous wavelength during the process of injecting currents of different sizes to change the luminous intensity.

目前传统的LED外延InGaN/GaN多量子阱层生长方法中,InGaN和GaN的晶格结构为纤锌矿结构,这种结构缺少变换对称性,在材料内部容易产生自发极化,同时InGaN阱层和GaN垒层的晶格常数不匹配产生的应力导致出现压电极化现象。自发极化和压电极化的共同作用致使量子阱内部存在很大的电场,导致量子阱的能带倾斜。随着注入电流的增大,量子阱的自由载流子增加,量子阱中基态升高,从而使LED的发光波长向短波方向移动,即发生蓝移。当小间距显示屏中注入不同大小电流改变发光强度时,LED发光波长的蓝移量会出现较大差别,无法满足小间距显示屏的应用需要。In the current traditional LED epitaxial InGaN/GaN multiple quantum well layer growth method, the lattice structure of InGaN and GaN is a wurtzite structure, which lacks transformation symmetry and is prone to spontaneous polarization inside the material. At the same time, the InGaN well layer The stress caused by the mismatch with the lattice constant of the GaN barrier layer results in piezoelectric polarization. The combined action of spontaneous polarization and piezoelectric polarization results in a large electric field inside the quantum well, which leads to the inclination of the energy band of the quantum well. With the increase of the injection current, the free carriers of the quantum well increase, and the ground state in the quantum well increases, so that the light-emitting wavelength of the LED moves to the short-wave direction, that is, a blue-shift occurs. When different sizes of currents are injected into the small-pitch display to change the luminous intensity, the blue-shift of the LED light-emitting wavelength will vary greatly, which cannot meet the application needs of the small-pitch display.

因此,提供一种适用于小间距显示屏的LED外延生长方法,解决现有LED外延生长中存在的LED发光波长蓝移量较大的问题,以满足小间距显示屏的应用需要,是本技术领域亟待解决的技术问题。Therefore, to provide an LED epitaxial growth method suitable for small-pitch display screens, to solve the problem of large blue-shift of the LED light-emitting wavelength in the existing LED epitaxial growth, and to meet the application needs of small-pitch display screens, which is the technology of the present invention. technical problems to be solved in the field.

发明内容SUMMARY OF THE INVENTION

本发明通过采用新的多量子阱层生长方法来解决现有LED外延生长中存在的LED发光波长蓝移量较大的问题,同时提高LED的发光效率,降低工作电压,增强抗静电能力。The present invention solves the problem of large blue-shift of LED light-emitting wavelength existing in the existing LED epitaxial growth by adopting a new multi-quantum well layer growth method, and simultaneously improves the light-emitting efficiency of the LED, reduces the working voltage and enhances the antistatic ability.

本发明的适用于小间距显示屏的LED外延生长方法,依次包括:处理衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、生长多量子阱层、生长AlGaN电子阻挡层和生长掺杂Mg的P型GaN层,降温冷却;所述生长多量子阱层依次包括:生长InGaN阱层、生长H2气氛InGaN:Si层、生长N2气氛InGaN:Mg层、生长H2和N2混合气氛InGaN:Mg/Si层、生长InGaN保护层和生长GaN垒层,具体为:The LED epitaxial growth method suitable for small-pitch display screens of the present invention sequentially includes: processing the substrate, growing a low-temperature buffer layer GaN, growing an undoped GaN layer, growing a Si-doped N-type GaN layer, and growing a multiple quantum well layer , growing an AlGaN electron blocking layer and growing a Mg-doped P-type GaN layer, cooling down and cooling; the growth of the multiple quantum well layer sequentially includes: growing an InGaN well layer, growing a H 2 atmosphere InGaN:Si layer, growing a N 2 atmosphere InGaN: Mg layer, growing H2 and N2 mixed atmosphere InGaN: Mg/Si layer, growing InGaN protective layer and growing GaN barrier layer, specifically:

A、将反应腔压力控制在280-350mbar,反应腔温度控制在700-750℃,通入流量为50000-70000sccm的NH3、20-40sccm的TMGa和10000-15000sccm的TMIn,生长厚度为3nm的InGaN阱层;A. The pressure of the reaction chamber is controlled at 280-350 mbar, the temperature of the reaction chamber is controlled at 700-750 ℃, and the flow rate is 50,000-70,000 sccm of NH 3 , 20-40 sccm of TMGa and 10,000-15,000 sccm of TMIn, and the growth thickness is 3nm. InGaN well layer;

B、保持反应腔压力不变,降低反应腔温度至600-650℃,通入流量为50000-70000sccm的NH3、160-180sccm的TMGa、8000-9000sccm的TMIn和200-240sccm的SiH4以及H2,以生长速率V1生长厚度为0.5-1nm的H2气氛InGaN:Si层;B. Keep the pressure of the reaction chamber unchanged, reduce the temperature of the reaction chamber to 600-650 ℃, and feed NH 3 with a flow rate of 50,000-70,000 sccm, TMGa with a flow rate of 160-180 sccm, TMIn with a flow rate of 8000-9000 sccm, and SiH 4 and H with a flow rate of 200-240 sccm. 2 , growing an H2 atmosphere InGaN:Si layer with a thickness of 0.5-1 nm at a growth rate V1;

C、保持反应腔压力不变及反应腔温度不变,通入流量为40000-45000sccm的NH3、120-140sccm的TMGa、6000-7000sccm的TMIn和180-200sccm的Cp2Mg以及N2,以生长速率V2生长厚度为1.2-1.5nm的N2气氛InGaN:Mg层;C. Keeping the pressure of the reaction chamber and the temperature of the reaction chamber unchanged, the flow rates of NH 3 of 40000-45000sccm, TMGa of 120-140sccm, TMIn of 6000-7000sccm, and Cp 2 Mg of 180-200sccm and N 2 are fed to Growth rate V2 to grow an N2 atmosphere InGaN:Mg layer with a thickness of 1.2-1.5 nm;

D、保持反应腔压力不变,升高反应腔温度至750-780℃,通入流量为36000-40000sccm的NH3、80-100sccm的TMGa、4000-5000sccm的TMIn、140-160sccm的Cp2Mg和120-140sccm的SiH4以及H2和N2的混合气体,以生长速率V3生长厚度为1.6-2nm的H2和N2混合气氛InGaN:Mg/Si层,其中,H2和N2的混合气体中H2比例为2.5%-8%;D. Keep the pressure of the reaction chamber unchanged, raise the temperature of the reaction chamber to 750-780 ℃, and feed NH 3 with a flow rate of 36000-40000 sccm, TMGa with a flow rate of 80-100 sccm, TMIn with a flow rate of 4000-5000 sccm, and Cp 2 Mg with a flow rate of 140-160 sccm and 120-140sccm of SiH4 and a mixed gas of H2 and N2 to grow an InGaN:Mg/Si layer with a thickness of 1.6-2 nm in a mixed atmosphere of H2 and N2 at a growth rate V3, in which the H2 and N2 The proportion of H2 in the mixed gas is 2.5%-8%;

E、保持反应腔压力和温度不变,通入流量为30000-32000sccm的NH3、60-70sccm的TMGa和3000-4000sccm的TMIn,以生长速率V4生长厚度为1nm的InGaN保护层,其中,V4<V3<V2<V1;E. Keeping the pressure and temperature of the reaction chamber unchanged, feed NH 3 with a flow rate of 30000-32000 sccm, TMGa with a flow rate of 60-70 sccm and TMIn with a flow rate of 3000-4000 sccm, and grow an InGaN protective layer with a thickness of 1 nm at a growth rate V4, wherein V4 <V3<V2<V1;

F、升高温度至800℃,保持反应腔压力300-400mbar,通入流量为30000-40000sccm的NH3、20-60sccm的TMGa及100-130L/min的N2,生长10nm的GaN垒层;F. Raise the temperature to 800°C, keep the pressure of the reaction chamber at 300-400mbar, feed NH 3 with a flow rate of 30,000-40,000 sccm, TMGa with a flow rate of 20-60 sccm and N 2 with a flow rate of 100-130 L/min, and grow a GaN barrier layer of 10 nm;

重复上述步骤A-F,周期性依次生长InGaN阱层、H2气氛InGaN:Si层、N2气氛InGaN:Mg层、H2和N2混合气氛InGaN:Mg/Si层、InGaN保护层和GaN垒层,生长周期数为2-10个。Repeat the above steps AF to periodically grow InGaN well layer, H2 atmosphere InGaN:Si layer, N2 atmosphere InGaN:Mg layer, H2 and N2 mixed atmosphere InGaN:Mg/Si layer, InGaN protective layer and GaN barrier layer , the number of growth cycles is 2-10.

优选地,所述处理衬底的具体过程为:Preferably, the specific process of processing the substrate is:

在1000-1100℃的温度下,通入100-130L/min的H2,保持反应腔压力100-300mbar,处理蓝宝石衬底5-10min。At a temperature of 1000-1100° C., 100-130 L/min of H 2 was introduced, and the pressure of the reaction chamber was maintained at 100-300 mbar, and the sapphire substrate was treated for 5-10 minutes.

优选地,所述生长低温缓冲层GaN的具体过程为:Preferably, the specific process of growing the low temperature buffer layer GaN is:

降温至500-600℃,保持反应腔压力300-600mbar,通入流量为10000-20000sccm的NH3、50-100sccm的TMGa及100-130L/min的H2,在蓝宝石衬底上生长厚度为20-40nm的低温缓冲层GaN;Cool down to 500-600 ℃, keep the pressure of the reaction chamber at 300-600 mbar, pass in NH 3 with a flow rate of 10000-20000 sccm, TMGa with a flow rate of 50-100 sccm and H 2 with a thickness of 100-130 L/min, and grow on a sapphire substrate with a thickness of 20 -40nm low temperature buffer layer GaN;

升高温度到1000-1100℃,保持反应腔压力300-600mbar,通入流量为30000-40000sccm的NH3、100-130L/min的H2,保温300-500s,将低温缓冲层GaN腐蚀成不规则岛形。Raise the temperature to 1000-1100°C, keep the pressure of the reaction chamber at 300-600mbar, pass in NH 3 with a flow rate of 30,000-40,000sccm, and H 2 with a flow rate of 100-130L/min, keep the temperature for 300-500s, and etch the low-temperature buffer layer GaN into a solid state. Regular island shape.

优选地,所述生长不掺杂GaN层的具体过程为:Preferably, the specific process of growing the undoped GaN layer is:

升高温度到1000-1200℃,保持反应腔压力300-600mbar,通入流量为30000-40000sccm的NH3、200-400sccm的TMGa及100-130L/min的H2,持续生长2-4μm的不掺杂GaN层。Raise the temperature to 1000-1200 ℃, keep the pressure of the reaction chamber at 300-600 mbar, pass in NH 3 with a flow rate of 30,000-40,000 sccm, TMGa with a flow rate of 200-400 sccm and H 2 with a flow rate of 100-130 L/min, and continue to grow 2-4 μm of non-ferrous material. Doped GaN layer.

优选地,所述生长掺杂GaN层的具体过程为:Preferably, the specific process of growing the doped GaN layer is:

保持反应腔压力300-600mbar,保持温度1000-1200℃,通入流量为30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min的H2及20-50sccm的SiH4,持续生长3-4μm掺杂Si的N型GaN,其中,Si掺杂浓度5E18-1E19atoms/cm3Keep the pressure of the reaction chamber at 300-600mbar, keep the temperature at 1000-1200°C, and feed NH 3 with a flow rate of 30,000-60,000 sccm, TMGa with a flow rate of 200-400 sccm, H 2 with a flow rate of 100-130 L/min and SiH 4 with a flow rate of 20-50 sccm, and continue to grow 3-4 μm Si-doped N-type GaN, wherein the Si doping concentration is 5E18-1E19 atoms/cm 3 .

优选地,所述生长AlGaN电子阻挡层的具体过程为:Preferably, the specific process of growing the AlGaN electron blocking layer is:

在温度为900-950℃,反应腔压力为200-400mbar,通入50000-70000sccm的NH3、30-60sccm的TMGa、100-130L/min的H2、100-130sccm的TMAl和1000-1300sccm的Cp2Mg的条件下,生长所述AlGaN电子阻挡层,所述AlGaN层的厚度为40-60nm,其中,Mg掺杂的浓度为1E19-1E20atoms/cm3At the temperature of 900-950℃, the pressure of the reaction chamber is 200-400mbar, 50000-70000sccm of NH3 , 30-60sccm of TMGa, 100-130L/min of H2 , 100-130sccm of TMAl and 1000-1300sccm of The AlGaN electron blocking layer is grown under the condition of Cp 2 Mg, the thickness of the AlGaN layer is 40-60 nm, and the concentration of Mg doping is 1E19-1E20 atoms/cm 3 .

优选地,所述生长掺Mg的P型GaN层的具体过程为:Preferably, the specific process of growing the Mg-doped P-type GaN layer is:

保持反应腔压力400-900mbar、温度950-1000℃,通入流量为50000-70000sccm的NH3、20-100sccm的TMGa、100-130L/min的H2及1000-3000sccm的Cp2Mg,持续生长50-200nm的掺Mg的P型GaN层,其中,Mg掺杂浓度1E19-1E20atoms/cm3Keep the pressure of the reaction chamber at 400-900 mbar, the temperature at 950-1000 °C, and the flow rate of 50000-70000 sccm of NH 3 , 20-100 sccm of TMGa, 100-130 L/min of H 2 and 1000-3000 sccm of Cp 2 Mg, continuous growth 50-200 nm Mg-doped P-type GaN layer, wherein the Mg doping concentration is 1E19-1E20 atoms/cm 3 .

优选地,所述降温冷却的具体过程为:Preferably, the specific process of cooling down is:

降温至650-680℃,保温20-30min,关闭加热系统、关闭给气系统,随炉冷却。Cool down to 650-680℃, keep the temperature for 20-30min, turn off the heating system, turn off the gas supply system, and cool with the furnace.

相比于传统的生长方法,本发明中的适用于小间距显示屏的LED外延生长方法达到了如下效果:Compared with the traditional growth method, the LED epitaxial growth method suitable for the small-pitch display screen in the present invention achieves the following effects:

本发明的多量子阱层生长方法中通过在InGaN阱层和GaN垒层插入H2气氛InGaN:Si层、N2气氛InGaN:Mg层、H2和N2混合气氛InGaN:Mg/Si层和InGaN保护层,插入层的晶格常数可以与InGaN阱层形成良好的匹配,可以有效缓解InGaN阱层和GaN垒层之间的晶格失配,减少由于晶格失配而产生的压力,避免在压力作用下出现压电极化,减少内部电场,减少量子阱中的能带倾斜,从而减少LED发光波长的蓝移量,满足小间距显示屏的应用需要。In the multi-quantum well layer growth method of the present invention, the InGaN well layer and the GaN barrier layer are inserted into the H2 atmosphere InGaN:Si layer, the N2 atmosphere InGaN:Mg layer, the H2 and N2 mixed atmosphere InGaN:Mg/Si layer and The lattice constant of the InGaN protective layer and the insertion layer can form a good match with the InGaN well layer, which can effectively alleviate the lattice mismatch between the InGaN well layer and the GaN barrier layer, reduce the stress caused by the lattice mismatch, and avoid Piezoelectric polarization occurs under the action of pressure, which reduces the internal electric field and the energy band tilt in the quantum well, thereby reducing the blue shift of the LED light-emitting wavelength and meeting the application needs of small-pitch display screens.

在插入层里增加n型掺杂剂Si和p型掺杂剂Mg,一方面可以适当的激活Mg的电离,可以提高空穴的迁移率,降低驱动电压,另一方面可以增加空穴浓度,提高空穴对发光层的注入,增加器件的发光效率,使得器件的总体光效提到提升。Adding n-type dopant Si and p-type dopant Mg in the insertion layer can properly activate the ionization of Mg, improve hole mobility, reduce driving voltage, and increase hole concentration on the other hand. The injection of holes into the light-emitting layer is improved, the light-emitting efficiency of the device is increased, and the overall light-efficiency of the device is improved.

在插入层的生长过程中采用H2和N2气氛处理,可使量子阱阱垒界面光滑,有利于提升量子阱有源区的光子性能,有利于提高LED的发光效率。在生长垒层之前先生长一层1nm的InGaN保护层可以很好地保护发光量子阱,使其避免遭受H2刻蚀,从而提高量子阱的整体晶体质量,提升器件的抗静电能力。In the growth process of the intercalation layer, the H2 and N2 atmospheres are used to make the quantum well and well barrier interface smooth, which is beneficial to improve the photon performance of the quantum well active region, and is beneficial to improve the luminous efficiency of the LED. Before growing the barrier layer, a 1nm InGaN protective layer can well protect the light-emitting quantum wells from being etched by H 2 , thereby improving the overall crystal quality of the quantum wells and improving the antistatic ability of the device.

插入层的生长速率依次降低,可以使整个量子阱层形成了梯度的电容结构,可以达到限流作用,极大程度地减少了大电流密度下的发光衰减效应;并可以阻碍电荷径向移动,使电荷向四周扩散,即加强电流横向扩展能力,从而提高LED发光效率,并且正向驱动电压更低,波长蓝移量更小。The growth rate of the insertion layer decreases sequentially, which can make the entire quantum well layer form a gradient capacitance structure, which can achieve current limiting effect and greatly reduce the luminescence decay effect under high current density; and can hinder the radial movement of charges, The charge is diffused around, that is, the ability to expand the current laterally is enhanced, thereby improving the luminous efficiency of the LED, and the forward driving voltage is lower and the wavelength blue shift is smaller.

附图说明Description of drawings

此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings described herein are used to provide a further understanding of the present invention and constitute a part of the present invention. The exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the attached image:

图1为本发明方法制备的LED外延的结构示意图;1 is a schematic structural diagram of the LED epitaxy prepared by the method of the present invention;

图2为现有传统方法制备的LED外延的结构示意图;2 is a schematic structural diagram of an LED epitaxy prepared by an existing traditional method;

其中,1、蓝宝石衬底,2、低温GaN缓冲层,3、非掺杂GaN层,4、n型GaN层,5、多量子阱发光层,6、AlGaN电子阻挡层,7、P型GaN,51、InGaN阱层,52、H2气氛InGaN:Si层,53、N2气氛InGaN:Mg层,54、H2和N2混合气氛InGaN:Mg/Si层,55、InGaN保护层,56、GaN垒层。Among them, 1, sapphire substrate, 2, low temperature GaN buffer layer, 3, undoped GaN layer, 4, n-type GaN layer, 5, multiple quantum well light-emitting layer, 6, AlGaN electron blocking layer, 7, P-type GaN layer , 51, InGaN well layer, 52, H2 atmosphere InGaN: Si layer, 53, N2 atmosphere InGaN: Mg layer, 54, H2 and N2 mixed atmosphere InGaN: Mg/Si layer, 55, InGaN protective layer, 56 , GaN barrier layer.

具体实施方式Detailed ways

如在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”为一开放式用语,故应解释成“包含但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。As used in the specification and claims, certain terms are used to refer to particular components. It should be understood by those skilled in the art that hardware manufacturers may refer to the same component by different nouns. The description and claims do not use the difference in name as a way to distinguish components, but use the difference in function of the components as a criterion for distinguishing. As mentioned in the entire specification and claims, "comprising" is an open-ended term, so it should be interpreted as "including but not limited to". "Approximately" means that within an acceptable error range, those skilled in the art can solve the technical problem within a certain error range, and basically achieve the technical effect. Subsequent descriptions in the specification are preferred embodiments for implementing the present application. However, the descriptions are for the purpose of illustrating the general principles of the present application and are not intended to limit the scope of the present application. The scope of protection of this application should be determined by the appended claims.

另外,本说明书并没有将权利要求书公开的构件和方法步骤限定于实施方式的构件和方法步骤。特别是,在实施方式中记载的结构部件的尺寸、材质、形状、其结构顺序和邻接顺序以及制造方法等只要没有具体的限定,就仅作为说明例,而不是将本发明的范围限定于此。附图中所示的结构部件的大小和位置关系是为了清楚地进行说明而放大示出。In addition, the present specification does not limit the components and method steps disclosed in the claims to the components and method steps of the embodiments. In particular, the dimensions, materials, shapes, structural order, adjoining order, and manufacturing methods of the components described in the embodiments are merely illustrative examples, and do not limit the scope of the present invention, unless otherwise specified. . The size and positional relationship of the structural components shown in the drawings are exaggerated for clarity of explanation.

以下结合附图对本申请作进一步详细说明,但不作为对本申请的限定。The present application will be described in further detail below with reference to the accompanying drawings, but it is not intended to limit the present application.

实施例1Example 1

本实施例采用本发明提供的适用于小间距显示屏的LED外延生长方法,采用MOCVD来生长GaN基LED外延片,采用高纯H2或高纯N2或高纯H2和高纯N2的混合气体作为载气,高纯NH3作为N源,金属有机源三甲基镓(TMGa)作为镓源,三甲基铟(TMIn)作为铟源,N型掺杂剂为硅烷(SiH4),三甲基铝(TMAl)作为铝源,P型掺杂剂为二茂镁(CP2Mg),反应压力在70mbar到900mbar之间。具体生长方式如下(外延结构请参考图1):This embodiment adopts the LED epitaxial growth method provided by the present invention suitable for small-pitch display screens, adopts MOCVD to grow GaN-based LED epitaxial wafers, adopts high-purity H 2 or high-purity N 2 or high-purity H 2 and high-purity N 2 The mixed gas is used as the carrier gas, the high-purity NH3 is used as the N source, the metal organic source trimethylgallium (TMGa) is used as the gallium source, the trimethylindium (TMIn) is used as the indium source, and the N-type dopant is silane ( SiH4) ), trimethylaluminum (TMAl) was used as the aluminum source, the P-type dopant was magnesium dimethylocene (CP 2 Mg), and the reaction pressure was between 70 mbar and 900 mbar. The specific growth method is as follows (for the epitaxial structure, please refer to Figure 1):

一种提升发光效率的LED多量子阱层生长方法,依次包括:处理蓝宝石衬底1、生长低温缓冲层GaN层2、生长不掺杂GaN层3、生长掺杂Si的N型GaN层4、生长多量子阱发光层5、生长AlGaN电子阻挡层6、生长掺杂Mg的P型GaN层7,降温冷却;其中,A method for growing an LED multi-quantum well layer for improving luminous efficiency, which sequentially includes: processing a sapphire substrate 1, growing a low-temperature buffer layer GaN layer 2, growing an undoped GaN layer 3, growing a Si-doped N-type GaN layer 4, The multi-quantum well light-emitting layer 5 is grown, the AlGaN electron blocking layer 6 is grown, the Mg-doped P-type GaN layer 7 is grown, and the temperature is lowered and cooled; wherein,

步骤1:处理蓝宝石衬底1。Step 1: Processing the sapphire substrate 1 .

具体地,所述步骤1,进一步为:Specifically, the step 1 is further:

在温度为1000-1100℃,反应腔压力为100-300mbar,通入100-130L/min的H2的条件下,处理蓝宝石衬底5-10分钟。The sapphire substrate is treated for 5-10 minutes under the conditions that the temperature is 1000-1100° C., the pressure of the reaction chamber is 100-300 mbar, and 100-130 L/min of H 2 is introduced.

步骤2:生长低温GaN缓冲层2,并在所述低温GaN缓冲层2形成不规则小岛。Step 2: growing a low temperature GaN buffer layer 2, and forming irregular islands in the low temperature GaN buffer layer 2.

具体地,所述步骤2,进一步为:Specifically, the step 2 is further:

在温度为500-600℃,反应腔压力为300-600mbar,通入10000-20000sccm的NH3、50-100sccm的TMGa和100-130L/min的H2的条件下,在所述蓝宝石衬底上生长所述低温GaN缓冲层2,所述低温GaN缓冲层2的厚度为20-40nm;On the sapphire substrate, the temperature is 500-600 ℃, the pressure of the reaction chamber is 300-600 mbar, and 10000-20000 sccm of NH 3 , 50-100 sccm of TMGa and 100-130 L/min of H 2 are introduced. growing the low temperature GaN buffer layer 2, the thickness of the low temperature GaN buffer layer 2 is 20-40nm;

在温度为1000-1100℃、反应腔压力为300-600mbar,通入30000-40000sccm的NH3和100-130L/min的H2的条件下,在所述低温GaN缓冲层2上形成所述不规则小岛。Under the conditions of a temperature of 1000-1100° C., a reaction chamber pressure of 300-600 mbar, NH 3 of 30,000-40,000 sccm and H 2 of 100-130 L/min, the low-temperature GaN buffer layer 2 is formed on the low-temperature GaN buffer layer 2. Isle of rules.

步骤3:生长非掺杂GaN层3。Step 3: Growing the undoped GaN layer 3 .

具体地,所述步骤3,进一步为:Specifically, the step 3 is further:

在温度为1000-1200℃,反应腔压力为300-600mbar,通入30000-40000sccm的NH3、200-400sccm的TMGa和100-130L/min的H2的条件下,生长的所述非掺杂GaN层3;所述非掺杂GaN层3的厚度为2-4μm。Under the conditions of a temperature of 1000-1200 ℃, a reaction chamber pressure of 300-600 mbar, NH 3 of 30,000-40,000 sccm, TMGa of 200-400 sccm and H 2 of 100-130 L/min, the undoped undoped GaN layer 3; the thickness of the undoped GaN layer 3 is 2-4 μm.

步骤4:生长Si掺杂的N型GaN层4。Step 4: Growth of Si-doped N-type GaN layer 4 .

具体地,所述步骤4,进一步为:Specifically, the step 4 is further:

保持反应腔压力300-600mbar,保持温度1000-1200℃,通入流量为30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min的H2及20-50sccm的SiH4,持续生长3-4μm掺杂Si的N型GaN层4,其中,Si掺杂浓度5E18-1E19atoms/cm3Keep the pressure of the reaction chamber at 300-600mbar, keep the temperature at 1000-1200°C, and feed NH 3 with a flow rate of 30,000-60,000 sccm, TMGa with a flow rate of 200-400 sccm, H 2 with a flow rate of 100-130 L/min and SiH 4 with a flow rate of 20-50 sccm, and continue to grow 3-4 μm Si-doped N-type GaN layer 4, wherein the Si doping concentration is 5E18-1E19 atoms/cm 3 .

步骤5:生长多量子阱发光层5。Step 5: growing the multiple quantum well light-emitting layer 5 .

所述生长多量子阱发光层5,进一步为:The growth of the multiple quantum well light-emitting layer 5 is further:

A、将反应腔压力控制在280-350mbar,反应腔温度控制在700-750℃,通入流量为50000-70000sccm的NH3、20-40sccm的TMGa和10000-15000sccm的TMIn,生长厚度为3nm的InGaN阱层51;A. The pressure of the reaction chamber is controlled at 280-350 mbar, the temperature of the reaction chamber is controlled at 700-750 ℃, and the flow rate is 50000-70000 sccm NH 3 , 20-40 sccm TMGa and 10000-15000 sccm TMIn, and the growth thickness is 3nm. InGaN well layer 51;

B、保持反应腔压力不变,降低反应腔温度至600-650℃,通入流量为50000-70000sccm的NH3、160-180sccm的TMGa、8000-9000sccm的TMIn和200-240sccm的SiH4以及H2,以生长速率V1生长厚度为0.5-1nm的H2气氛InGaN:Si层52;B. Keep the pressure of the reaction chamber unchanged, reduce the temperature of the reaction chamber to 600-650 ℃, and feed NH 3 with a flow rate of 50,000-70,000 sccm, TMGa with a flow rate of 160-180 sccm, TMIn with a flow rate of 8000-9000 sccm, and SiH 4 and H with a flow rate of 200-240 sccm. 2 , growing an H 2 atmosphere InGaN:Si layer 52 with a thickness of 0.5-1 nm at a growth rate V1;

C、保持反应腔压力不变及反应腔温度不变,通入流量为40000-45000sccm的NH3、120-140sccm的TMGa、6000-7000sccm的TMIn和180-200sccm的Cp2Mg以及N2,以生长速率V2生长厚度为1.2-1.5nm的N2气氛InGaN:Mg层53;C. Keeping the pressure of the reaction chamber and the temperature of the reaction chamber unchanged, the flow rates of NH 3 of 40000-45000sccm, TMGa of 120-140sccm, TMIn of 6000-7000sccm, and Cp 2 Mg of 180-200sccm and N 2 are fed to Growth rate V2 to grow an N2 atmosphere InGaN:Mg layer 53 with a thickness of 1.2-1.5 nm;

D、保持反应腔压力不变,升高反应腔温度至750-780℃,通入流量为36000-40000sccm的NH3、80-100sccm的TMGa、4000-5000sccm的TMIn、140-160sccm的Cp2Mg和120-140sccm的SiH4以及H2和N2的混合气体,以生长速率V3生长厚度为1.6-2nm的H2和N2混合气氛InGaN:Mg/Si层54,其中,H2和N2的混合气体中H2比例为2.5%-8%;D. Keep the pressure of the reaction chamber unchanged, raise the temperature of the reaction chamber to 750-780 ℃, and feed NH 3 with a flow rate of 36000-40000 sccm, TMGa with a flow rate of 80-100 sccm, TMIn with a flow rate of 4000-5000 sccm, and Cp 2 Mg with a flow rate of 140-160 sccm and 120-140 sccm of SiH4 and a mixed gas of H2 and N2 , a mixed atmosphere of H2 and N2 with a thickness of 1.6-2 nm was grown at a growth rate V3 InGaN:Mg/Si layer 54 in which H2 and N2 The proportion of H 2 in the mixed gas is 2.5%-8%;

E、保持反应腔压力和温度不变,通入流量为30000-32000sccm的NH3、60-70sccm的TMGa、3000-4000sccm的TMIn,以生长速率V4生长厚度为1nm的InGaN保护层55,其中,V4<V3<V2<V1;E. Keeping the pressure and temperature of the reaction chamber unchanged, feed NH 3 with a flow rate of 30000-32000 sccm, TMGa with a flow rate of 60-70 sccm, and TMIn with a flow rate of 3000-4000 sccm, and grow an InGaN protective layer 55 with a thickness of 1 nm at a growth rate V4, wherein, V4<V3<V2<V1;

F、升高温度至800℃,保持反应腔压力300-400mbar,通入流量为30000-40000sccm的NH3、20-60sccm的TMGa及100-130L/min的N2,生长10nm的GaN垒层56;F. Raise the temperature to 800°C, keep the pressure of the reaction chamber at 300-400mbar, feed NH 3 with a flow rate of 30,000-40,000 sccm, TMGa with a flow rate of 20-60 sccm and N 2 with a flow rate of 100-130 L/min, and grow a 10 nm GaN barrier layer 56 ;

重复上述步骤A-F,周期性依次生长InGaN阱层51、H2气氛InGaN:Si层52、N2气氛InGaN:Mg层53、H2和N2混合气氛InGaN:Mg/Si层54、InGaN保护层55和GaN垒层56,生长周期数为2-10个。Repeat the above steps AF to periodically grow InGaN well layer 51, H2 atmosphere InGaN:Si layer 52, N2 atmosphere InGaN:Mg layer 53, H2 and N2 mixed atmosphere InGaN:Mg/Si layer 54, InGaN protective layer 55 and GaN barrier layer 56, the number of growth cycles is 2-10.

具体地,所述步骤6,进一步为:Specifically, the step 6 is further:

在温度为900-950℃,反应腔压力为200-400mbar,通入50000-70000sccm的NH3、30-60sccm的TMGa、100-130L/min的H2、100-130sccm的TMAl和1000-1300sccm的Cp2Mg的条件下,生长所述AlGaN电子阻挡层6,所述AlGaN层6的厚度为40-60nm,其中,Mg掺杂的浓度为1E19-1E20atoms/cm3At the temperature of 900-950℃, the pressure of the reaction chamber is 200-400mbar, 50000-70000sccm of NH3 , 30-60sccm of TMGa, 100-130L/min of H2 , 100-130sccm of TMAl and 1000-1300sccm of The AlGaN electron blocking layer 6 is grown under the condition of Cp 2 Mg, the thickness of the AlGaN layer 6 is 40-60 nm, and the concentration of Mg doping is 1E19-1E20 atoms/cm 3 .

步骤7:生长Mg掺杂的P型GaN层7。Step 7: Growth of Mg-doped P-type GaN layer 7 .

具体地,所述步骤7,进一步为:Specifically, the step 7 is further:

在温度为950-1000℃,反应腔压力为400-900mbar,通入50000-70000sccm的NH3、20-100sccm的TMGa、100-130L/min的H2和1000-3000sccm的Cp2Mg的条件下,生长厚度为50-200nm的Mg掺杂P型GaN层7,Mg掺杂浓度1E19-1E20atoms/cm3Under the condition that the temperature is 950-1000℃, the pressure of the reaction chamber is 400-900mbar, 50000-70000sccm NH 3 , 20-100 sccm TMGa, 100-130 L/min H 2 and 1000-3000 sccm Cp 2 Mg are introduced , a Mg-doped P-type GaN layer 7 with a thickness of 50-200 nm is grown, and the Mg-doped concentration is 1E19-1E20 atoms/cm 3 .

步骤8:在温度为650-680℃的条件下保温20-30min,接着关闭加热系统、关闭给气系统,随炉冷却。Step 8: Keep the temperature at 650-680°C for 20-30min, then turn off the heating system, turn off the gas supply system, and cool with the furnace.

实施例2Example 2

以下提供对比实施例,即现有传统LED外延的生长方法。The following provides comparative examples, ie, existing conventional LED epitaxy growth methods.

步骤1:在温度为1000-1100℃,反应腔压力为100-300mbar,通入100-130L/min的H2的条件下,处理蓝宝石衬底5-10分钟。Step 1: Treat the sapphire substrate for 5-10 minutes under the conditions that the temperature is 1000-1100° C., the pressure of the reaction chamber is 100-300 mbar, and 100-130 L/min of H 2 is introduced.

步骤2:生长低温GaN缓冲层2,并在所述低温GaN缓冲层2形成不规则小岛。Step 2: growing a low temperature GaN buffer layer 2, and forming irregular islands in the low temperature GaN buffer layer 2.

具体地,所述步骤2,进一步为:Specifically, the step 2 is further:

在温度为500-600℃,反应腔压力为300-600mbar,通入10000-20000sccm的NH3、50-100sccm的TMGa和100-130L/min的H2的条件下,在所述蓝宝石衬底上生长所述低温GaN缓冲层2,所述低温GaN缓冲层2的厚度为20-40nm;On the sapphire substrate, the temperature is 500-600 ℃, the pressure of the reaction chamber is 300-600 mbar, and 10000-20000 sccm of NH 3 , 50-100 sccm of TMGa and 100-130 L/min of H 2 are introduced. growing the low temperature GaN buffer layer 2, the thickness of the low temperature GaN buffer layer 2 is 20-40nm;

在温度为1000-1100℃、反应腔压力为300-600mbar,通入30000-40000sccm的NH3和100L/min-130L/min的H2的条件下,在所述低温GaN缓冲层2上形成所述不规则小岛。Under the conditions that the temperature is 1000-1100°C, the pressure of the reaction chamber is 300-600mbar, the NH 3 of 30,000-40,000 sccm and the H 2 of 100L/min-130L/min are fed into the low-temperature GaN buffer layer 2. Describe the irregular island.

步骤3:生长非掺杂GaN层3。Step 3: Growing the undoped GaN layer 3 .

具体地,所述步骤3,进一步为:Specifically, the step 3 is further:

在温度为1000-1200℃,反应腔压力为300-600mbar,通入30000-40000sccm的NH3、200-400sccm的TMGa、100-130L/min的H2的条件下,生长的所述非掺杂GaN层3;所述非掺杂GaN层3的厚度为2-4μm。Under the conditions of a temperature of 1000-1200 ℃, a reaction chamber pressure of 300-600 mbar, NH 3 of 30,000-40,000 sccm, TMGa of 200-400 sccm, and H 2 of 100-130 L/min, the undoped undoped GaN layer 3; the thickness of the undoped GaN layer 3 is 2-4 μm.

步骤4:生长Si掺杂的N型GaN层4。Step 4: Growth of Si-doped N-type GaN layer 4 .

具体地,所述步骤4,进一步为:Specifically, the step 4 is further:

在温度为1000-1200℃,反应腔压力为300-600mbar,通入30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min的H2和20-50sccm的SiH4的条件下,生长Si掺杂的N型GaN层4,所述N型GaN层4的厚度为3-4μm,Si掺杂的浓度为5E18-1E19atoms/cm3Under the conditions that the temperature is 1000-1200 ℃, the pressure of the reaction chamber is 300-600 mbar, NH 3 of 30,000-60,000 sccm, TMGa of 200-400 sccm, H 2 of 100-130 L/min and SiH 4 of 20-50 sccm are introduced, A Si-doped N-type GaN layer 4 is grown, the thickness of the N-type GaN layer 4 is 3-4 μm, and the concentration of Si doping is 5E18-1E19 atoms/cm 3 .

步骤5:生长InGaN/GaN多量子阱发光层5。Step 5: growing the InGaN/GaN multiple quantum well light-emitting layer 5 .

具体地,所述生长多量子阱发光层,进一步为:Specifically, the growth of the multiple quantum well light-emitting layer is further:

保持反应腔压力300-400mbar、保持温度720℃,通入流量为50000-70000sccm的NH3、20-40sccm的TMGa和10000-15000sccm的TMIn,生长掺杂In的厚度为3nm的InGaN阱层51;Keep the pressure of the reaction chamber at 300-400 mbar and the temperature at 720 °C, and feed NH 3 with a flow rate of 50,000-70,000 sccm, TMGa with a flow rate of 20-40 sccm and TMIn with a thickness of 10,000-15,000 sccm, and grow an InGaN well layer 51 doped with In with a thickness of 3 nm;

升高温度至800℃,保持反应腔压力300-400mbar,通入流量为50000-70000sccm的NH3、20-100sccm的TMGa及100-130L/min的N2,生长10nm的GaN垒层56;Raise the temperature to 800°C, keep the pressure of the reaction chamber at 300-400mbar, feed NH 3 with a flow rate of 50,000-70,000 sccm, TMGa with a flow rate of 20-100 sccm and N 2 with a flow rate of 100-130 L/min, and grow a 10 nm GaN barrier layer 56;

重复交替生长InGaN阱层51和GaN垒层56,得到InGaN/GaN多量子阱发光层,其中,InGaN阱层51和GaN垒层56的交替生长周期数为7-13个。The InGaN well layer 51 and the GaN barrier layer 56 are alternately grown repeatedly to obtain an InGaN/GaN multiple quantum well light-emitting layer, wherein the number of alternate growth cycles of the InGaN well layer 51 and the GaN barrier layer 56 is 7-13.

步骤6:生长AlGaN电子阻挡层6。Step 6: Growth of AlGaN electron blocking layer 6 .

具体地,所述步骤6,进一步为:Specifically, the step 6 is further:

在温度为900-950℃,反应腔压力为200-400mbar,通入50000-70000sccm的NH3、30-60sccm的TMGa、100-130L/min的H2、100-130sccm的TMAl和1000-1300sccm的Cp2Mg的条件下,生长所述AlGaN电子阻挡层6,所述AlGaN层6的厚度为40-60nm,其中,Mg掺杂的浓度为1E19-1E20atoms/cm3At the temperature of 900-950℃, the pressure of the reaction chamber is 200-400mbar, 50000-70000sccm of NH3 , 30-60sccm of TMGa, 100-130L/min of H2 , 100-130sccm of TMAl and 1000-1300sccm of The AlGaN electron blocking layer 6 is grown under the condition of Cp 2 Mg, the thickness of the AlGaN layer 6 is 40-60 nm, and the concentration of Mg doping is 1E19-1E20 atoms/cm 3 .

步骤7:生长Mg掺杂的P型GaN层7。Step 7: Growth of Mg-doped P-type GaN layer 7 .

具体地,所述步骤7,进一步为:Specifically, the step 7 is further:

在温度为950-1000℃,反应腔压力为400-900mbar,通入50000-70000sccm的NH3、20-100sccm的TMGa、100-130L/min的H2和1000-3000sccm的Cp2Mg的条件下,生长厚度为50-200nm的Mg掺杂P型GaN层7,Mg掺杂浓度1E19-1E20atoms/cm3Under the condition that the temperature is 950-1000℃, the pressure of the reaction chamber is 400-900mbar, 50000-70000sccm NH 3 , 20-100 sccm TMGa, 100-130 L/min H 2 and 1000-3000 sccm Cp 2 Mg are introduced , a Mg-doped P-type GaN layer 7 with a thickness of 50-200 nm is grown, and the Mg-doped concentration is 1E19-1E20 atoms/cm 3 .

步骤8:在温度为650-680℃的条件下保温20-30min,接着关闭加热系统、关闭给气系统,随炉冷却。Step 8: Keep the temperature at 650-680°C for 20-30min, then turn off the heating system, turn off the gas supply system, and cool with the furnace.

根据上述实施例1和实施例2分别制得样品1和样品2,样品1和样品2在相同的前工艺条件下镀ITO层约150nm,相同的条件下镀Cr/Pt/Au电极约1500nm,相同的条件下镀保护层SiO2约100nm,然后在相同的条件下将样品研磨切割成635μm*635μm(25mil*25mil)的芯片颗粒,之后将样品1和样品2在相同位置各自挑选100颗晶粒,在相同的封装工艺下,封装成白光LED。采用积分球在驱动电流350mA条件下测试样品1和样品2的光电性能。Samples 1 and 2 were prepared according to the above-mentioned Examples 1 and 2, respectively. Samples 1 and 2 were plated with an ITO layer of about 150 nm under the same pre-process conditions, and plated with a Cr/Pt/Au electrode of about 1500 nm under the same conditions. Under the same conditions, the protective layer of SiO 2 is about 100nm, and then the samples are ground and cut into 635μm*635μm (25mil*25mil) chip particles under the same conditions, and then sample 1 and sample 2 are selected in the same position. 100 crystals each The chips are packaged into white LEDs under the same packaging process. The photoelectric properties of sample 1 and sample 2 were tested by integrating sphere under the condition of driving current of 350mA.

表1样品1和样品2的电性参数比较结果Table 1 Comparison results of electrical parameters of sample 1 and sample 2

Figure BDA0002578953870000101
Figure BDA0002578953870000101

将积分球获得的数据进行分析对比,从表1中可以看出,本发明提供的LED外延生长方法制备的LED(样品1)波长蓝移量更小,并且发光效率得到明显提升,工作更低,抗静电能力更强,这是因为本技术方案在InGaN阱层和GaN垒层插入了H2气氛InGaN:Si层、N2气氛InGaN:Mg层、H2和N2混合气氛InGaN:Mg/Si层和InGaN保护层。The data obtained by the integrating sphere is analyzed and compared. It can be seen from Table 1 that the LED (sample 1) prepared by the LED epitaxial growth method provided by the present invention has a smaller wavelength blue shift, and the luminous efficiency is significantly improved, and the work is lower. , the antistatic ability is stronger, because this technical solution inserts H 2 atmosphere InGaN: Si layer, N 2 atmosphere InGaN: Mg layer, H 2 and N 2 mixed atmosphere InGaN: Mg/ Si layer and InGaN protective layer.

本发明中的适用于小间距显示屏的LED外延生长方法,跟传统的生长方法相比,达到了如下效果:Compared with the traditional growth method, the LED epitaxial growth method suitable for the small-pitch display screen of the present invention achieves the following effects:

本发明的多量子阱层生长方法中通过在InGaN阱层和GaN垒层插入H2气氛InGaN:Si层、N2气氛InGaN:Mg层、H2和N2混合气氛InGaN:Mg/Si层和InGaN保护层,插入层的晶格常数可以与InGaN阱层形成良好的匹配,可以有效缓解InGaN阱层和GaN垒层之间的晶格失配,减少由于晶格失配而产生的压力,避免在压力作用下出现压电极化,减少内部电场,减少量子阱中的能带倾斜,从而减少LED发光波长的蓝移量,满足小间距显示屏的应用需要。In the multi-quantum well layer growth method of the present invention, the InGaN well layer and the GaN barrier layer are inserted into the H2 atmosphere InGaN:Si layer, the N2 atmosphere InGaN:Mg layer, the H2 and N2 mixed atmosphere InGaN:Mg/Si layer and The lattice constant of the InGaN protective layer and the insertion layer can form a good match with the InGaN well layer, which can effectively alleviate the lattice mismatch between the InGaN well layer and the GaN barrier layer, reduce the stress caused by the lattice mismatch, and avoid Piezoelectric polarization occurs under the action of pressure, which reduces the internal electric field and the energy band tilt in the quantum well, thereby reducing the blue shift of the LED light-emitting wavelength and meeting the application needs of small-pitch display screens.

在插入层里增加n型掺杂剂Si和p型掺杂剂Mg,一方面可以适当的激活Mg的电离,可以提高空穴的迁移率,降低驱动电压,另一方面可以增加空穴浓度,提高空穴对发光层的注入,增加器件的发光效率,使得器件的总体光效提到提升。Adding n-type dopant Si and p-type dopant Mg in the insertion layer can properly activate the ionization of Mg, improve hole mobility, reduce driving voltage, and increase hole concentration on the other hand. The injection of holes into the light-emitting layer is improved, the light-emitting efficiency of the device is increased, and the overall light-efficiency of the device is improved.

在插入层的生长过程中采用H2和N2气氛处理,可使量子阱阱垒界面光滑,有利于提升量子阱有源区的光子性能,有利于提高LED的发光效率。在生长垒层之前先生长一层1nm的InGaN保护层可以很好地保护发光量子阱,使其避免遭受H2刻蚀,从而提高量子阱的整体晶体质量,提升器件的抗静电能力。In the growth process of the intercalation layer, the H2 and N2 atmospheres are used to make the quantum well and well barrier interface smooth, which is beneficial to improve the photon performance of the quantum well active region, and is beneficial to improve the luminous efficiency of the LED. Before growing the barrier layer, a 1nm InGaN protective layer can well protect the light-emitting quantum wells from being etched by H 2 , thereby improving the overall crystal quality of the quantum wells and improving the antistatic ability of the device.

插入层的生长速率依次降低,可以使整个量子阱层形成了梯度的电容结构,可以达到限流作用,极大程度地减少了大电流密度下的发光衰减效应;并可以阻碍电荷径向移动,使电荷向四周扩散,即加强电流横向扩展能力,从而提高LED发光效率,并且正向驱动电压更低,波长蓝移量更小。The growth rate of the insertion layer decreases sequentially, which can make the entire quantum well layer form a gradient capacitance structure, which can achieve current limiting effect and greatly reduce the luminescence decay effect under high current density; and can hinder the radial movement of charges, The charge is diffused around, that is, the ability to expand the current laterally is enhanced, thereby improving the luminous efficiency of the LED, and the forward driving voltage is lower and the wavelength blue shift is smaller.

由于方法部分已经对本申请实施例进行了详细描述,这里对实施例中涉及的结构与方法对应部分的展开描述省略,不再赘述。对于结构中具体内容的描述可参考方法实施例的内容,这里不再具体限定。Since the embodiments of the present application have been described in detail in the method part, the expanded description of the corresponding parts of the structures and methods involved in the embodiments is omitted here, and will not be repeated here. For the description of the specific content in the structure, reference may be made to the content of the method embodiment, which is not specifically limited here.

上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求的保护范围内。The above description shows and describes several preferred embodiments of the present application, but as mentioned above, it should be understood that the present application is not limited to the form disclosed herein, and should not be regarded as excluding other embodiments, but can be used in various various other combinations, modifications and environments, and can be modified within the scope of the concept of the application described herein, using the above teachings or skill or knowledge in the relevant field. However, modifications and changes made by those skilled in the art do not depart from the spirit and scope of the present application, and should all fall within the protection scope of the appended claims of the present application.

Claims (8)

1.一种适用于小间距显示屏的LED外延生长方法,其特征在于,依次包括:处理衬底、生长低温缓冲层GaN、生长不掺杂GaN层、生长掺杂Si的N型GaN层、生长多量子阱层、生长AlGaN电子阻挡层和生长掺杂Mg的P型GaN层,降温冷却;所述生长多量子阱层依次包括:生长InGaN阱层、生长H2气氛InGaN:Si层、生长N2气氛InGaN:Mg层、生长H2和N2混合气氛InGaN:Mg/Si层、生长InGaN保护层和生长GaN垒层,具体为:1. an LED epitaxial growth method applicable to a small-pitch display screen, is characterized in that, comprises successively: processing substrate, growing low-temperature buffer layer GaN, growing undoped GaN layer, growing Si-doped N-type GaN layer, growing a multi-quantum well layer, growing an AlGaN electron blocking layer and growing a Mg-doped P-type GaN layer, cooling down and cooling; the growing multi-quantum well layer sequentially includes: growing an InGaN well layer, growing an H 2 atmosphere InGaN:Si layer, growing N 2 atmosphere InGaN: Mg layer, growing H 2 and N 2 mixed atmosphere InGaN: Mg/Si layer, growing InGaN protective layer and growing GaN barrier layer, specifically: A、将反应腔压力控制在280-350mbar,反应腔温度控制在700-750℃,通入流量为50000-70000sccm的NH3、20-40sccm的TMGa和10000-15000sccm的TMIn,生长厚度为3nm的InGaN阱层;A. The pressure of the reaction chamber is controlled at 280-350 mbar, the temperature of the reaction chamber is controlled at 700-750 ℃, and the flow rate is 50,000-70,000 sccm of NH 3 , 20-40 sccm of TMGa and 10,000-15,000 sccm of TMIn, and the growth thickness is 3nm. InGaN well layer; B、保持反应腔压力不变,降低反应腔温度至600-650℃,通入流量为50000-70000sccm的NH3、160-180sccm的TMGa、8000-9000sccm的TMIn和200-240sccm的SiH4以及H2,以生长速率V1生长厚度为0.5-1nm的H2气氛InGaN:Si层;B. Keep the pressure of the reaction chamber unchanged, reduce the temperature of the reaction chamber to 600-650 ℃, and feed NH 3 with a flow rate of 50,000-70,000 sccm, TMGa with a flow rate of 160-180 sccm, TMIn with a flow rate of 8000-9000 sccm, and SiH 4 and H with a flow rate of 200-240 sccm. 2 , growing an H2 atmosphere InGaN:Si layer with a thickness of 0.5-1 nm at a growth rate V1; C、保持反应腔压力不变及反应腔温度不变,通入流量为40000-45000sccm的NH3、120-140sccm的TMGa、6000-7000sccm的TMIn和180-200sccm的Cp2Mg以及N2,以生长速率V2生长厚度为1.2-1.5nm的N2气氛InGaN:Mg层;C. Keeping the pressure of the reaction chamber and the temperature of the reaction chamber unchanged, the flow rates of NH 3 of 40000-45000sccm, TMGa of 120-140sccm, TMIn of 6000-7000sccm, and Cp 2 Mg of 180-200sccm and N 2 are fed to Growth rate V2 to grow an N2 atmosphere InGaN:Mg layer with a thickness of 1.2-1.5 nm; D、保持反应腔压力不变,升高反应腔温度至750-780℃,通入流量为36000-40000sccm的NH3、80-100sccm的TMGa、4000-5000sccm的TMIn、140-160sccm的Cp2Mg和120-140sccm的SiH4以及H2和N2的混合气体,以生长速率V3生长厚度为1.6-2nm的H2和N2混合气氛InGaN:Mg/Si层,其中,H2和N2的混合气体中H2比例为2.5%-8%;D. Keep the pressure of the reaction chamber unchanged, raise the temperature of the reaction chamber to 750-780 ℃, and feed NH 3 with a flow rate of 36000-40000 sccm, TMGa with a flow rate of 80-100 sccm, TMIn with a flow rate of 4000-5000 sccm, and Cp 2 Mg with a flow rate of 140-160 sccm and 120-140sccm of SiH4 and a mixed gas of H2 and N2 to grow an InGaN:Mg/Si layer with a thickness of 1.6-2 nm in a mixed atmosphere of H2 and N2 at a growth rate V3, in which the H2 and N2 The proportion of H2 in the mixed gas is 2.5%-8%; E、保持反应腔压力和温度不变,通入流量为30000-32000sccm的NH3、60-70sccm的TMGa和3000-4000sccm的TMIn,以生长速率V4生长厚度为1nm的InGaN保护层,其中,V4<V3<V2<V1;E. Keeping the pressure and temperature of the reaction chamber unchanged, feed NH 3 with a flow rate of 30000-32000 sccm, TMGa with a flow rate of 60-70 sccm and TMIn with a flow rate of 3000-4000 sccm, and grow an InGaN protective layer with a thickness of 1 nm at a growth rate V4, wherein V4 <V3<V2<V1; F、升高温度至800℃,保持反应腔压力300-400mbar,通入流量为30000-40000sccm的NH3、20-60sccm的TMGa及100-130L/min的N2,生长10nm的GaN垒层;F. Raise the temperature to 800°C, keep the pressure of the reaction chamber at 300-400mbar, feed NH 3 with a flow rate of 30,000-40,000 sccm, TMGa with a flow rate of 20-60 sccm and N 2 with a flow rate of 100-130 L/min, and grow a GaN barrier layer of 10 nm; 重复上述步骤A-F,周期性依次生长InGaN阱层、H2气氛InGaN:Si层、N2气氛InGaN:Mg层、H2和N2混合气氛InGaN:Mg/Si层、InGaN保护层和GaN垒层,生长周期数为2-10个。Repeat the above steps AF to periodically grow InGaN well layer, H2 atmosphere InGaN:Si layer, N2 atmosphere InGaN:Mg layer, H2 and N2 mixed atmosphere InGaN:Mg/Si layer, InGaN protective layer and GaN barrier layer , the number of growth cycles is 2-10. 2.根据权利要求1所述的适用于小间距显示屏的LED外延生长方法,其特征在于,在1000-1100℃的温度下,通入100-130L/min的H2,保持反应腔压力100-300mbar,处理蓝宝石衬底5-10min。2 . The LED epitaxial growth method suitable for small-pitch display screens according to claim 1 , wherein, at a temperature of 1000-1100° C., 100-130 L/min of H 2 is introduced to keep the reaction chamber pressure at 100° C. 3 . -300mbar, process sapphire substrate for 5-10min. 3.根据权利要求2所述的适用于小间距显示屏的LED外延生长方法,其特征在于,所述生长低温缓冲层GaN的具体过程为:3. The LED epitaxial growth method suitable for small-pitch display screens according to claim 2, wherein the specific process of growing the low-temperature buffer layer GaN is: 降温至500-600℃,保持反应腔压力300-600mbar,通入流量为10000-20000sccm的NH3、50-100sccm的TMGa及100-130L/min的H2,在蓝宝石衬底上生长厚度为20-40nm的低温缓冲层GaN;Cool down to 500-600 ℃, keep the pressure of the reaction chamber at 300-600 mbar, pass in NH 3 with a flow rate of 10000-20000 sccm, TMGa with a flow rate of 50-100 sccm and H 2 with a thickness of 100-130 L/min, and grow on a sapphire substrate with a thickness of 20 -40nm low temperature buffer layer GaN; 升高温度到1000-1100℃,保持反应腔压力300-600mbar,通入流量为30000-40000sccm的NH3和100-130L/min的H2,保温300-500s,将低温缓冲层GaN腐蚀成不规则岛形。Raise the temperature to 1000-1100°C, keep the pressure of the reaction chamber at 300-600mbar, pass in NH 3 with a flow rate of 30,000-40,000 sccm and H 2 with a flow rate of 100-130 L/min, keep the temperature for 300-500 s, and etch the low-temperature buffer layer GaN into a stable state. Regular island shape. 4.根据权利要求1所述的适用于小间距显示屏的LED外延生长方法,其特征在于,所述生长不掺杂GaN层的具体过程为:4. The LED epitaxial growth method suitable for a small-pitch display screen according to claim 1, wherein the specific process of growing the undoped GaN layer is: 升高温度到1000-1200℃,保持反应腔压力300-600mbar,通入流量为30000-40000sccm的NH3、200-400sccm的TMGa及100-130L/min的H2,持续生长2-4μm的不掺杂GaN层。Raise the temperature to 1000-1200 ℃, keep the pressure of the reaction chamber at 300-600 mbar, pass in NH 3 with a flow rate of 30,000-40,000 sccm, TMGa with a flow rate of 200-400 sccm and H 2 with a flow rate of 100-130 L/min, and continue to grow 2-4 μm of non-ferrous material. Doped GaN layer. 5.根据权利要求1所述的适用于小间距显示屏的LED外延生长方法,其特征在于,所述生长掺杂Si的N型GaN层的具体过程为:5. The LED epitaxial growth method suitable for small-pitch display screens according to claim 1, wherein the specific process of growing the Si-doped N-type GaN layer is: 保持反应腔压力300-600mbar,保持温度1000-1200℃,通入流量为30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min的H2及20-50sccm的SiH4,持续生长3-4μm掺杂Si的N型GaN,其中,Si掺杂浓度5E18-1E19atoms/cm3Keep the pressure of the reaction chamber at 300-600mbar, keep the temperature at 1000-1200°C, and feed NH 3 with a flow rate of 30,000-60,000 sccm, TMGa with a flow rate of 200-400 sccm, H 2 with a flow rate of 100-130 L/min and SiH 4 with a flow rate of 20-50 sccm, and continue to grow 3-4 μm Si-doped N-type GaN, wherein the Si doping concentration is 5E18-1E19 atoms/cm 3 . 6.根据权利要求1所述的适用于小间距显示屏的LED外延生长方法,其特征在于,所述生长AlGaN电子阻挡层的具体过程为:6. The LED epitaxial growth method suitable for small-pitch display screens according to claim 1, wherein the specific process of growing the AlGaN electron blocking layer is: 在温度为900-950℃,反应腔压力为200-400mbar,通入50000-70000sccm的NH3、30-60sccm的TMGa、100-130L/min的H2、100-130sccm的TMAl和1000-1300sccm的Cp2Mg的条件下,生长所述AlGaN电子阻挡层,所述AlGaN层的厚度为40-60nm,其中,Mg掺杂的浓度为1E19-1E20atoms/cm3At the temperature of 900-950℃, the pressure of the reaction chamber is 200-400mbar, 50000-70000sccm of NH3 , 30-60sccm of TMGa, 100-130L/min of H2 , 100-130sccm of TMAl and 1000-1300sccm of The AlGaN electron blocking layer is grown under the condition of Cp 2 Mg, the thickness of the AlGaN layer is 40-60 nm, and the concentration of Mg doping is 1E19-1E20 atoms/cm 3 . 7.根据权利要求1所述的适用于小间距显示屏的LED外延生长方法,其特征在于,所述生长掺Mg的P型GaN层的具体过程为:7. The LED epitaxial growth method suitable for small-pitch display screens according to claim 1, wherein the specific process of growing the Mg-doped P-type GaN layer is: 保持反应腔压力400-900mbar、温度950-1000℃,通入流量为50000-70000sccm的NH3、20-100sccm的TMGa、100-130L/min的H2及1000-3000sccm的Cp2Mg,持续生长50-200nm的掺Mg的P型GaN层,其中,Mg掺杂浓度1E19-1E20atoms/cm3Keep the pressure of the reaction chamber at 400-900 mbar, the temperature at 950-1000 °C, and the flow rate of 50000-70000 sccm of NH 3 , 20-100 sccm of TMGa, 100-130 L/min of H 2 and 1000-3000 sccm of Cp 2 Mg, continuous growth 50-200 nm Mg-doped P-type GaN layer, wherein the Mg doping concentration is 1E19-1E20 atoms/cm 3 . 8.根据权利要求1所述的适用于小间距显示屏的LED外延生长方法,其特征在于,所述降温冷却的具体过程为:8. The LED epitaxial growth method suitable for small-pitch display screens according to claim 1, wherein the specific process of cooling down is: 降温至650-680℃,保温20-30min,关闭加热系统、关闭给气系统,随炉冷却。Cool down to 650-680℃, keep the temperature for 20-30min, turn off the heating system, turn off the gas supply system, and cool with the furnace.
CN202010662051.6A 2020-07-10 2020-07-10 LED epitaxial growth method suitable for small-spacing display screen Active CN111769180B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010662051.6A CN111769180B (en) 2020-07-10 2020-07-10 LED epitaxial growth method suitable for small-spacing display screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010662051.6A CN111769180B (en) 2020-07-10 2020-07-10 LED epitaxial growth method suitable for small-spacing display screen

Publications (2)

Publication Number Publication Date
CN111769180A CN111769180A (en) 2020-10-13
CN111769180B true CN111769180B (en) 2021-04-13

Family

ID=72726407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010662051.6A Active CN111769180B (en) 2020-07-10 2020-07-10 LED epitaxial growth method suitable for small-spacing display screen

Country Status (1)

Country Link
CN (1) CN111769180B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115224171B (en) * 2022-09-20 2022-11-29 江西兆驰半导体有限公司 High-light-efficiency light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212499A (en) * 2009-03-11 2010-09-24 Sony Corp Semiconductor laser device
CN103715322A (en) * 2013-12-30 2014-04-09 苏州矩阵光电有限公司 Novel GaN-based LED structure and manufacturing method thereof
JP2014120646A (en) * 2012-12-18 2014-06-30 Stanley Electric Co Ltd Semiconductor light-emitting element
CN103952684A (en) * 2014-04-23 2014-07-30 湘能华磊光电股份有限公司 LED (light-emitting diode) epitaxial layer growth method and LED epitaxial layer
CN104201261A (en) * 2014-09-10 2014-12-10 天津三安光电有限公司 Light-emitting diode
WO2015059296A1 (en) * 2013-10-25 2015-04-30 Commissariat à l'énergie atomique et aux énergies alternatives Light-emitting device
CN106684218A (en) * 2017-03-01 2017-05-17 湘能华磊光电股份有限公司 LED epitaxial growth method capable of improving light-emitting efficiency
CN106784184A (en) * 2016-12-21 2017-05-31 湘能华磊光电股份有限公司 LED epitaxial structure of recombination P-type GaN layer and preparation method thereof
CN107240627A (en) * 2017-05-16 2017-10-10 东南大学 A kind of UV LED with codope multi-quantum pit structure
WO2020067215A1 (en) * 2018-09-28 2020-04-02 Dowaエレクトロニクス株式会社 Iii nitride semiconductor light-emitting element, and method for producing same
CN110957403A (en) * 2019-12-24 2020-04-03 湘能华磊光电股份有限公司 A kind of LED epitaxial structure growth method
CN210379098U (en) * 2019-06-28 2020-04-21 厦门大学 Electronic control spin light-emitting diode device based on spin injection
CN111223764A (en) * 2020-03-18 2020-06-02 湘能华磊光电股份有限公司 A kind of LED epitaxial growth method to improve radiation recombination efficiency

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290771B2 (en) * 2016-04-20 2019-05-14 Dowa Electronics Materials Co., Ltd. Group III nitride semiconductor light emitting device and method for manufacture the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212499A (en) * 2009-03-11 2010-09-24 Sony Corp Semiconductor laser device
JP2014120646A (en) * 2012-12-18 2014-06-30 Stanley Electric Co Ltd Semiconductor light-emitting element
WO2015059296A1 (en) * 2013-10-25 2015-04-30 Commissariat à l'énergie atomique et aux énergies alternatives Light-emitting device
CN103715322A (en) * 2013-12-30 2014-04-09 苏州矩阵光电有限公司 Novel GaN-based LED structure and manufacturing method thereof
CN103952684A (en) * 2014-04-23 2014-07-30 湘能华磊光电股份有限公司 LED (light-emitting diode) epitaxial layer growth method and LED epitaxial layer
CN104201261A (en) * 2014-09-10 2014-12-10 天津三安光电有限公司 Light-emitting diode
CN106784184A (en) * 2016-12-21 2017-05-31 湘能华磊光电股份有限公司 LED epitaxial structure of recombination P-type GaN layer and preparation method thereof
CN106684218A (en) * 2017-03-01 2017-05-17 湘能华磊光电股份有限公司 LED epitaxial growth method capable of improving light-emitting efficiency
CN107240627A (en) * 2017-05-16 2017-10-10 东南大学 A kind of UV LED with codope multi-quantum pit structure
WO2020067215A1 (en) * 2018-09-28 2020-04-02 Dowaエレクトロニクス株式会社 Iii nitride semiconductor light-emitting element, and method for producing same
CN210379098U (en) * 2019-06-28 2020-04-21 厦门大学 Electronic control spin light-emitting diode device based on spin injection
CN110957403A (en) * 2019-12-24 2020-04-03 湘能华磊光电股份有限公司 A kind of LED epitaxial structure growth method
CN111223764A (en) * 2020-03-18 2020-06-02 湘能华磊光电股份有限公司 A kind of LED epitaxial growth method to improve radiation recombination efficiency

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Enhancement ofholeinjectionwithMg–Si-codoped barriers in InGaN-basedlight-emittingdiodes;YujueYang,YipingZeng;《OpticsCommunications》;20140404;第121–125页 *

Also Published As

Publication number Publication date
CN111769180A (en) 2020-10-13

Similar Documents

Publication Publication Date Title
CN104009136B (en) Improve LED outer layer growth method and the LED epitaxial layer of luminous efficiency
CN110629197B (en) A kind of LED epitaxial structure growth method
CN114284406B (en) A kind of preparation method of nitride light-emitting diode
CN108550665A (en) A kind of LED epitaxial structure growing method
CN112048710B (en) LED epitaxial growth method for reducing blue shift of LED luminous wavelength
CN113540296B (en) Manufacturing method of LED epitaxial wafer suitable for small-space display screen
CN109411573B (en) LED epitaxial structure growth method
CN110957403B (en) LED epitaxial structure growth method
CN111769181B (en) A LED epitaxial growth method suitable for small-pitch display screens
CN108281519B (en) A light-emitting diode epitaxial wafer and its manufacturing method
CN113328015B (en) Method for manufacturing light emitting diode chip with improved brightness
CN103746054A (en) Epitaxial growth method and structure for blocking electron leakage and defect extension
CN111769180B (en) LED epitaxial growth method suitable for small-spacing display screen
CN108574026A (en) A method for growing LED epitaxial electron blocking layer
CN112941490A (en) LED epitaxial quantum well growth method
CN111952418A (en) A method for growing LED multiple quantum well layers to improve luminous efficiency
CN111276579A (en) A kind of LED epitaxial growth method
CN111952420B (en) A LED epitaxial growth method suitable for making small-pitch display screens
CN113972304B (en) A kind of LED epitaxial wafer manufacturing method
CN111628056B (en) LED multi-quantum well layer growth method for improving crystal quality
CN112599647B (en) LED epitaxial multi-quantum well layer growth method
CN113421951A (en) Method for manufacturing light-emitting diode chip
CN112420884A (en) LED epitaxial multi-quantum well layer growth method
CN114122206B (en) Manufacturing method of light-emitting diode
CN114937723B (en) A method for manufacturing a light emitting diode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: LED epitaxial growth method suitable for small pitch display screens

Granted publication date: 20210413

Pledgee: Huaxia Bank Co.,Ltd. Chenzhou Branch

Pledgor: XIANGNENG HUALEI OPTOELECTRONIC Co.,Ltd.

Registration number: Y2024980045783