CN111756206A - An axial magnetic field hub motor - Google Patents
An axial magnetic field hub motor Download PDFInfo
- Publication number
- CN111756206A CN111756206A CN202010655843.0A CN202010655843A CN111756206A CN 111756206 A CN111756206 A CN 111756206A CN 202010655843 A CN202010655843 A CN 202010655843A CN 111756206 A CN111756206 A CN 111756206A
- Authority
- CN
- China
- Prior art keywords
- stator
- groove
- tongue
- iron core
- rotor assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910000976 Electrical steel Inorganic materials 0.000 claims abstract description 11
- 230000007246 mechanism Effects 0.000 claims abstract description 10
- 230000009467 reduction Effects 0.000 claims abstract description 10
- 238000005096 rolling process Methods 0.000 claims abstract description 6
- 238000003466 welding Methods 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 230000004323 axial length Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 238000003475 lamination Methods 0.000 claims description 3
- 239000000696 magnetic material Substances 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 7
- 238000004804 winding Methods 0.000 description 6
- 238000004080 punching Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/24—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/32—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/146—Stator cores with salient poles consisting of a generally annular yoke with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/16—Stator cores with slots for windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/18—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/32—Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/21—Devices for sensing speed or position, or actuated thereby
- H02K11/215—Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/02—Arrangements for cooling or ventilating by ambient air flowing through the machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/32—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
- F16H2001/327—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear with the orbital gear having internal gear teeth
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
本发明公开了一种轴向磁场轮毂电机,包括在轮毂空间内与主轴连接的电机和行星齿轮减速机构,电机为单气隙结构轴向磁场电机,电机转子组件通过包含有角接触球轴承的具有并列的滚动体的轴承单元与主轴转动连接,定子组件包括定子铁芯、线圈、定子轭盘和定子架,定子铁芯为不同宽度的硅钢材料的薄片沿径向方向叠合而成,定子铁芯与定子轭盘和定子架连接,或者定子铁芯通过定子轭盘与定子架连接,定子架与主轴固定连接,本发明轮毂电机能大幅提高电动自行车的续行里程,能在现有条件下实现轴向磁场轮毂电机高效低成本地批量生产。
The invention discloses an axial magnetic field hub motor, comprising a motor connected with a main shaft in a hub space and a planetary gear reduction mechanism, the motor is an axial magnetic field motor with a single air gap structure, and the motor rotor assembly passes through a motor including an angular contact ball bearing. The bearing unit with juxtaposed rolling elements is rotatably connected to the main shaft. The stator assembly includes a stator iron core, a coil, a stator yoke disk and a stator frame. The stator iron core is made of silicon steel sheets of different widths superimposed in the radial direction. The iron core is connected with the stator yoke disk and the stator frame, or the stator iron core is connected with the stator frame through the stator yoke disk, and the stator frame is fixedly connected with the main shaft. High-efficiency and low-cost mass production of axial magnetic field in-wheel motors.
Description
技术领域technical field
本发明涉及电动自行车的轮毂电机技术领域,特别涉及一种轴向磁场有齿轮毂电机定子。The invention relates to the technical field of in-wheel motors of electric bicycles, in particular to an axial magnetic field geared in-wheel motor stator.
背景技术Background technique
现有的电动自行车主要采用低速轮毂电机,也有采用行星齿轮减速机构的有齿轮毂电机,例如通轴结构外转子电机的中国专利CN03127256.8、CN201510104597.9,又如半轴结构内转子电机的美国专利US20050176542A1,上述轮毂电机均为径向磁场的直流永磁电机,这类电机效率不高,高效区间偏向高功率段,车辆在正常行驶时驱动电机通常运行在低效率区间,续行里程较短;有铁芯的轴向磁场电机,公开的技术是采用硅钢片卷带经连续冲片卷绕定子铁芯,定子的定子齿、绕线槽和定子轭为整体结构,制造过程中需不断地对槽距进行补偿修正,定子铁芯制造效率低成本高,线圈绕组目前还只能人工完成。Existing electric bicycles mainly use low-speed hub motors, and there are also geared hub motors that use planetary gear reduction mechanisms. In the US patent US20050176542A1, the above-mentioned in-wheel motors are all DC permanent magnet motors with radial magnetic field. Such motors are not efficient, and the high-efficiency range is biased towards the high-power range. When the vehicle is running normally, the drive motor usually runs in the low-efficiency range, and the continuation mileage is relatively long. Short; axial magnetic field motor with iron core, the disclosed technology is to use silicon steel sheet tape to wind the stator iron core through continuous punching. The slot pitch is compensated and corrected on the ground, the stator core is manufactured with high efficiency and low cost, and the coil winding can only be done manually at present.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种符合GB 17761-2018《电动自行车安全技术规范》要求的,在现有的生产技术条件下将性能优异的轴向磁场电机低成本地应用于电动自行车领域,满足人们对行驶里程增加的要求。The purpose of the present invention is to provide a low-cost axial magnetic field motor with excellent performance that meets the requirements of GB 17761-2018 "Technical Specifications for Electric Bicycle Safety" and is used in the field of electric bicycles at low cost under the existing production technology conditions. Requirements for increased mileage.
其技术思路是:单气隙结构轴向磁场电机,定子组件与主轴固定连接,有齿轮毂电机为通轴结构,实现最优的空间利用和最低的制造成本,结合现有生产技术条件,以“独立模块的定子铁芯+定子轭盘+集中线圈绕组”的技术方案,实现定子组件的高效低成本批量生产,轮毂电机的初期成本与现有技术轮毂电机持平。The technical idea is: single air-gap structure axial magnetic field motor, the stator assembly is fixedly connected to the main shaft, and the gear hub motor is the through-shaft structure to achieve the optimal space utilization and the lowest manufacturing cost, combined with the existing production technical conditions, to The technical solution of "independent module stator core + stator yoke disk + concentrated coil winding" realizes high-efficiency and low-cost mass production of stator components, and the initial cost of the in-wheel motor is the same as that of the existing technology in-wheel motor.
为此,本发明提供了如下方案:For this reason, the present invention provides the following scheme:
本发明公开了一种轴向磁场轮毂电机,包括在轮毂空间内与主轴连接的电机和行星齿轮减速机构,所述电机通过所述行星齿轮减速机构带动轮毂转动,所述电机为单气隙结构轴向磁场电机,包括一转子组件和一定子组件,所述转子组件通过包含有角接触球轴承的具有并列的滚动体的轴承单元与所述主轴转动连接,所述定子组件包括多个定子铁芯、多个线圈、一个定子轭盘和一个定子架,所述定子铁芯为多个不同宽度的硅钢材料的薄片沿径向方向叠合并连接为一整体,所述线圈的轴向高度小于所述定子铁芯的轴向长度,所述线圈套设在所述定子铁芯接近所述转子组件的一端,所述定子轭盘设有多个周向阵列的第一榫槽,所述定子架设有径向托盘,插入所述第一榫槽的未套接所述线圈的所述定子铁芯的一端超出所述定子轭盘并与所述径向托盘连接,或者所述定子轭盘与插入所述第一榫槽的所述定子铁芯连接并与所述径向托盘连接,所述定子架与所述主轴固定连接。The invention discloses an axial magnetic field wheel hub motor, comprising a motor connected to a main shaft in a hub space and a planetary gear reduction mechanism, the motor drives the wheel hub to rotate through the planetary gear reduction mechanism, and the motor is a single air gap structure Axial field motor, comprising a rotor assembly and a stator assembly, the rotor assembly being rotatably connected to the main shaft through a bearing unit including angular contact ball bearings with parallel rolling elements, the stator assembly including a plurality of stator irons A core, a plurality of coils, a stator yoke disk and a stator frame, the stator iron core is a plurality of sheets of silicon steel material of different widths superimposed and connected as a whole in the radial direction, and the axial height of the coil is smaller than all the The axial length of the stator core, the coil is sleeved on the end of the stator core close to the rotor assembly, the stator yoke is provided with a plurality of first tongue grooves in a circumferential array, the stator is erected There is a radial tray, and one end of the stator core that is inserted into the first tongue and groove and not sleeved with the coil extends beyond the stator yoke disk and is connected with the radial tray, or the stator yoke disk is inserted into the The stator core of the first tongue and groove is connected and connected with the radial tray, and the stator frame is fixedly connected with the main shaft.
优选地,所述轴承单元为双列角接触球轴承,或深沟球轴承与单列角接触球轴承的串联组合,或两个单列角接触球轴承的串联组合。Preferably, the bearing unit is a double row angular contact ball bearing, or a series combination of a deep groove ball bearing and a single row angular contact ball bearing, or a series combination of two single row angular contact ball bearings.
优选地,所述定子轭盘为高导磁率材料,由多个硅钢材料的圆盘薄片沿轴向方向叠合而成,或由SMC复合软磁材料经模压烧结制成。Preferably, the stator yoke disc is made of high magnetic permeability material, which is formed by stacking a plurality of disc sheets of silicon steel material in the axial direction, or is made of SMC composite soft magnetic material by molding and sintering.
优选地,所述定子铁芯通过叠压焊接工艺形成整体结构,其焊接面至少包括其远离所述转子组件一端的端面,所述定子铁芯与所述定子轭盘或者与所述定子轭盘和所述定子架以榫卯结构方式连接。Preferably, the stator iron core is formed into an integral structure through a lamination welding process, and its welding surface at least includes its end face away from one end of the rotor assembly. The stator iron core is connected to the stator yoke disk or to the stator yoke disk. It is connected with the stator frame in a tenon-and-mortise structure.
优选地,所述线圈的轴向高度小于所述定子铁芯的轴向长度,所述线圈和所述定子铁芯之间通过绝缘的线圈骨架或在所述定子铁芯上涂敷绝缘材料进行绝缘阻隔。Preferably, the axial height of the coil is smaller than the axial length of the stator iron core, and the coil and the stator iron core are connected by an insulated coil bobbin or by coating an insulating material on the stator iron core. Insulation barrier.
优选地,所述定子铁芯在远离所述转子组件的一侧与所述转子组件旋转面相垂直的两径向叠合面上至少设有一个第二榫槽,所述第二榫槽为“U”形槽,所述定子架的所述径向托盘设置在远离所述转子组件的一侧,所述径向托盘上设有与所述第一榫槽对应的第三榫槽,所述第一榫槽和所述第三榫槽为开口槽,所述定子铁芯位于所述第二榫槽区间的实体部分径向插入所述第一榫槽和第三榫槽,所述第二榫槽内夹持有所述第一榫槽和所述第三榫槽的槽边,从而使所述定子铁芯与所述定子轭盘和所述定子架形成榫卯结构连接。Preferably, the stator core is provided with at least one second tongue groove on two radially superimposed surfaces perpendicular to the rotating surface of the rotor assembly on the side away from the rotor assembly, and the second tongue groove is " U"-shaped groove, the radial tray of the stator frame is disposed on the side away from the rotor assembly, the radial tray is provided with a third tongue groove corresponding to the first tongue groove, the The first tongue groove and the third tongue groove are open grooves, and the solid part of the stator core located in the second tongue groove is radially inserted into the first tongue groove and the third tongue groove, and the second tongue groove is inserted into the second tongue groove. The groove edges of the first tongue groove and the third tongue groove are clamped in the tongue groove, so that the stator iron core is connected with the stator yoke plate and the stator frame in a tongue and groove structure.
优选地,所述定子铁芯在远离所述转子组件的一侧与所述转子组件旋转面相垂直的两径向叠合面上至少设有一个第二榫槽,所述第二榫槽为“U”形槽,所述定子轭盘的所述第一榫槽为开口槽,其近轴侧还设有若干个第一连接孔,所述定子架的所述径向托盘设置在接近所述转子组件的一侧,所述径向托盘上设有与所述第一连接孔对应的第二连接孔,所述定子轭盘和所述定子架通过所述第一连接孔和所述第二连接孔铆接或栓接,所述定子铁芯位于所述第二榫槽区间的实体部分径向插入所述第一榫槽,所述第二榫槽内夹持有所述第一榫槽的槽边,从而使所述定子铁芯与所述定子轭盘形成榫卯结构连接。Preferably, the stator core is provided with at least one second tongue groove on two radially superimposed surfaces perpendicular to the rotating surface of the rotor assembly on the side away from the rotor assembly, and the second tongue groove is " U"-shaped groove, the first tongue groove of the stator yoke plate is an open groove, and a plurality of first connecting holes are also provided on the proximal side thereof, and the radial tray of the stator frame is arranged close to the On one side of the rotor assembly, the radial tray is provided with a second connection hole corresponding to the first connection hole, and the stator yoke plate and the stator frame pass through the first connection hole and the second connection hole The connection hole is riveted or bolted, the solid part of the stator core located in the second tongue-and-groove section is radially inserted into the first tongue-and-groove, and the first tongue-and-groove is clamped in the second tongue-groove. groove edge, so that the stator iron core and the stator yoke are connected in a tenon-and-mortise structure.
优选地,所述定子铁芯在远离所述转子组件的一侧与所述转子组件旋转面相垂直的两径向叠合面上至少设有一个第二榫槽,所述第二榫槽为“L”形槽,所述定子轭盘的近轴侧还设有若干个第一连接孔,所述定子架的所述径向托盘设置在接近所述转子组件的一侧,所述径向托盘上设有与所述第一连接孔对应的第二连接孔,所述定子轭盘和所述定子架通过所述第一连接孔和所述第二连接孔铆接或栓接,所述定子铁芯位于所述第二榫槽区间的实体部分插入所述第一榫槽,从而使所述定子铁芯与所述定子轭盘形成榫卯结构连接,再通过焊接或铆接方式实现所述定子铁芯与所述定子轭盘的固定连接。Preferably, the stator core is provided with at least one second tongue groove on two radially superimposed surfaces perpendicular to the rotating surface of the rotor assembly on the side away from the rotor assembly, and the second tongue groove is " L"-shaped slot, the proximal side of the stator yoke is also provided with a number of first connecting holes, the radial tray of the stator frame is arranged on the side close to the rotor assembly, the radial tray There is a second connection hole corresponding to the first connection hole, the stator yoke plate and the stator frame are riveted or bolted through the first connection hole and the second connection hole, and the stator iron The solid part of the core located in the second tongue-and-groove section is inserted into the first tongue-and-groove, so that the stator iron core and the stator yoke are connected in a tenon-and-mortise structure, and then the stator iron is realized by welding or riveting. The fixed connection of the core to the stator yoke disk.
优选地,所述定子轭盘的近轴侧设有若干个第一连接孔,所述定子架的所述径向托盘设置在接近所述转子组件的一侧,所述径向托盘上设有与所述第一连接孔对应的第二连接孔,所述定子轭盘和所述定子架通过所述第一连接孔和所述第二连接孔铆接或栓接,所述定子铁芯未套接所述线圈的一端插入所述第一榫槽,从而使所述定子铁芯与所述定子轭盘形成榫卯结构连接,再通过焊接或铆接方式实现所述定子铁芯与所述定子轭盘的固定连接。Preferably, a plurality of first connecting holes are provided on the proximal side of the stator yoke, the radial tray of the stator frame is provided on the side close to the rotor assembly, and the radial tray is provided with a second connection hole corresponding to the first connection hole, the stator yoke disk and the stator frame are riveted or bolted through the first connection hole and the second connection hole, and the stator iron core is not covered The end connected to the coil is inserted into the first tenon and groove, so that the stator iron core and the stator yoke plate form a tenon and tenon structure connection, and then the stator iron core and the stator yoke are realized by welding or riveting. Fixed connection of the disc.
本发明相对于现有技术取得了以下技术效果:The present invention has achieved the following technical effects with respect to the prior art:
采用本发明轴向磁场轮毂电机,在轮径、轮胎宽、车型车重、实心轮胎、充气轮胎等不同类型的电动自行车上进行对比测试,续行里程较现有技术电动自行车提高25~50%;其定子铁芯可通过高速连续模冲片工艺加工,其制造成本仅为连续冲槽卷绕工艺制造的整体结构的定子铁芯的35%,得益于定子铁芯冲片的分拣叠压焊接工艺的自动化设备的同步研发,集中式线圈绕组采用现有自动化绕线工艺生产,电机的三大主材“永磁体、硅钢片、漆包铜线”的消耗均有不同程度的减少,初期成本已接近现有技术轮毂电机的成本;本发明有铁芯的单气隙结构轴向磁场电机,与行星齿轮减速机构和自行车轮毂的组合,创造性地实现了轴向磁场电机在轮毂电机领域的实际应用。The axial magnetic field hub motor of the present invention is used to carry out comparative tests on different types of electric bicycles such as wheel diameter, tire width, vehicle weight, solid tires, pneumatic tires, etc. The continuation mileage is increased by 25-50% compared with the prior art electric bicycles ; The stator core can be processed by high-speed continuous die punching process, and its manufacturing cost is only 35% of the stator core of the overall structure manufactured by the continuous punching and winding process, thanks to the sorting and stacking of the stator core punching Simultaneous research and development of automatic equipment for pressure welding process, centralized coil winding is produced by existing automatic winding process, and the consumption of the three main materials of the motor "permanent magnet, silicon steel sheet, enameled copper wire" has been reduced to varying degrees. The initial cost is close to the cost of the prior art wheel hub motor; the single air gap structure axial magnetic field motor with iron core of the present invention, combined with the planetary gear reduction mechanism and the bicycle wheel hub, creatively realizes the axial magnetic field motor in the field of wheel hub motors. practical application.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本实施例一种轴向磁场轮毂电机在轮毂空间内的轴向布置图;1 is an axial arrangement diagram of an axial magnetic field hub motor in the hub space of the present embodiment;
图2为本实施例一种轴向磁场轮毂电机定子组件结构示意图;FIG. 2 is a schematic structural diagram of a stator assembly of an axial magnetic field hub motor according to the present embodiment;
图3为一种轴承单元的结构示意图;Figure 3 is a schematic structural diagram of a bearing unit;
图4为另一种轴承单元的结构示意图;Figure 4 is a schematic structural diagram of another bearing unit;
图5为定子铁芯结构示意图;Figure 5 is a schematic diagram of the stator core structure;
图6为定子铁芯、一种定子轭盘和一种定子架的连接示意图;6 is a schematic diagram of the connection of a stator core, a stator yoke disk and a stator frame;
图7定子铁芯、另一种定子轭盘和另一种定子架的连接示意图为。FIG. 7 is a schematic diagram of the connection of the stator iron core, another kind of stator yoke disk and another kind of stator frame.
附图标记说明:1主轴;2轮毂;3行星齿轮减速机构;4转子组件;5定子组件;6滚动体;7定子铁芯;8线圈;9定子轭盘;10定子架;11焊接面;12第一榫槽;13径向托盘;14双列角接触球轴承;15深沟球轴承;16单列角接触球轴承;17极靴;18线圈骨架;19第二榫槽;20第三榫槽;21第一连接孔;22第二连接孔。Description of reference numerals: 1 main shaft; 2 hub; 3 planetary gear reduction mechanism; 4 rotor assembly; 5 stator assembly; 6 rolling body; 7 stator core; 8 coil; 9 stator yoke disk; 10 stator frame; 11 welding surface; 12 first tongue and groove; 13 radial tray; 14 double row angular contact ball bearing; 15 deep groove ball bearing; 16 single row angular contact ball bearing; 17 pole piece; 18 coil bobbin; 19 second tongue and groove; 20 third tenon slot; 21 the first connection hole; 22 the second connection hole.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案,进行清楚、完整地描述,并且结合本发明在电动自行车有齿轮毂电机的连接与安装方案进行适当描述,以帮助对本发明技术方案的理解。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention, and appropriate descriptions will be made in conjunction with the connection and installation solutions of the geared hub motor in the electric bicycle of the present invention, so as to help Understanding of the technical solutions of the present invention.
如图1~7所示,本实施例一种轴向磁场轮毂电机,包括在轮毂2的空间内与主轴1连接的电机和行星齿轮减速机构3,所述电机通过行星齿轮减速机构3带动轮毂2转动,所述电机为单气隙结构轴向磁场电机,包括一转子组件4和一定子组件5,转子组件4通过包含有角接触球轴承的具有并列的滚动体6的轴承单元与主轴1转动连接,定子组件5包括多个定子铁芯7、多个线圈8、一个定子轭盘9和一个定子架10,定子铁芯7为多个不同宽度的硅钢材料的薄片沿径向方向叠合并焊接为一整体,其焊接面11至少包括其远离转子组件4一端的端面,线圈8的轴向高度小于定子铁芯7的轴向长度,线圈8套设在定子铁芯7接近转子组件4的一端,定子轭盘9为高导磁率材料,由多个硅钢材料的圆盘薄片沿轴向方向叠合而成,或由SMC复合软磁材料经模压烧结制成,定子轭盘9设有多个周向阵列的第一榫槽12,定子架10设有径向托盘13,插入第一榫槽12的未套接线圈8的定子铁芯7的一端超出定子轭盘9并与径向托盘13连接,或者定子轭盘9与插入第一榫槽12的定子铁芯7连接并与径向托盘13连接,定子架10与主轴1固定连接。As shown in FIGS. 1 to 7 , an axial magnetic field hub motor in this embodiment includes a motor connected to the
上述方案的本发明,轮毂内的空间利用紧凑合理,轮毂电机具有“通轴”特征的稳定的结构,圆盘式的转子组件4特有的“泵吸效应”,能在轮毂空间内的产生循环气流,有利于电机的降温。In the present invention of the above scheme, the space in the hub is used compactly and reasonably, the hub motor has a stable structure with the characteristics of "through shaft", and the unique "pumping effect" of the
本领域技术人员可根据实际需要对轴承单元的具体形式进行选择,只要轴承单元包含有能够承担轴向磁拉力的角接触球轴承,并且轴承单元具有承担倾覆力矩的并列的滚动体6即可。例如,轴承单元可以为双列角接触球轴承14,如图3所示,或深沟球轴承15与单列角接触球轴承16的串联组合,如图1、图4所示,或两个单列角接触球轴承16的同向排列的串联组合。Those skilled in the art can select the specific form of the bearing unit according to actual needs, as long as the bearing unit includes an angular contact ball bearing capable of bearing the axial magnetic pulling force, and the bearing unit has parallel
如图2、图5所示,为削弱单气隙结构轴向磁场电机的齿槽效应,定子铁芯7接近转子组件4的一端具有极靴17,线圈8为集中绕组形式,其轴向高度小于定子铁芯7的轴向长度,套设在极靴17和定子轭盘9之间,线圈8和定子铁芯7之间通过绝缘的线圈骨架18或在定子铁芯7上涂敷绝缘材料进行绝缘阻隔,多个定子铁芯7同轴周向排列,形成由多个定子铁芯磁极组成的环形电枢磁极平面。As shown in Figures 2 and 5, in order to weaken the cogging effect of the axial field motor with a single air gap structure, the end of the
影响轴向磁场电机磁拉力的因素较多,为此,需根据磁拉力和电磁转矩的大小,采取适当的结构形式保证定子结构的稳定性,定子铁芯7、定子轭盘8和定子架9三者的连接方式,本领域技术人员可根据本实施方案的以下四个基于榫卯结构连接的实施例,但不仅限于该四个实施例进行具体地应用。There are many factors affecting the magnetic pulling force of the axial magnetic field motor. Therefore, according to the magnitude of the magnetic pulling force and electromagnetic torque, an appropriate structural form should be adopted to ensure the stability of the stator structure. The
实施例一:Example 1:
定子铁芯7在远离转子组件4的一侧与转子组件4旋转面相垂直的两径向叠合面上至少设有一个第二榫槽19,如图5所示,第二榫槽19为“U”形槽;如图6所示,定子架10上的径向托盘13设置在远离转子组件4的一侧,径向托盘13上设有与第一榫槽12对应的第三榫槽20,第一榫槽12和第三榫槽20为开口槽,第一榫槽12和第三榫槽20的槽形与定子铁芯7的第二榫槽19区间的实体部分对应一致,第二榫槽19的槽宽与定子轭盘9和定子架10的轴向长度之和一致,套装有线圈8的定子铁芯7,其位于第二榫槽19区间的实体部分径向插入第一榫槽12和第三榫槽20,第二榫槽19内夹持有第一榫槽12和第三榫槽20的槽边,从而使定子铁芯7与定子轭盘9和定子架10形成榫卯结构连接。The
本实施例中,电机的磁拉力和电磁转矩,由定子铁芯7直接作用于定子架10上,定子轭盘9可采用最经济的轴向叠厚。In this embodiment, the magnetic pulling force and electromagnetic torque of the motor are directly acted on the
实施例二:Embodiment 2:
定子铁芯7在远离转子组件4的一侧与转子组件4旋转面相垂直的两径向叠合面上至少设有一个第二榫槽19,第二榫槽19为“U”形槽,定子轭盘9的第一榫槽12为开口槽,定子轭盘9的近轴侧还设有若干个第一连接孔21,定子架10的径向托盘13设置在接近转子组件4的一侧,径向托盘13上设有与第一连接孔21对应的第二连接孔22,定子轭盘9和定子架10通过第一连接孔21和第二连接孔22铆接或栓接,第二榫槽19的槽宽与定子轭盘9的轴向长度一致,定子铁芯7位于第二榫槽19区间的实体部分径向插入第一榫槽12内,第二榫槽19内夹持有第一榫槽12的槽边,从而使定子铁芯7与定子轭盘9形成榫卯结构连接。The
本实施例中,电机的磁拉力和电磁转矩由定子轭盘9传递给定子架10,为此可适当增加定子轭盘9叠片的数量以增加其强度。In this embodiment, the magnetic pull force and electromagnetic torque of the motor are transmitted to the
实施例三:Embodiment three:
定子铁芯7在远离转子组件4的一侧与转子组件4旋转面相垂直的两径向叠合面上至少设有一个第二榫槽19,第二榫槽19为“L”形槽,如图5所示;定子轭盘9的近轴侧还设有若干个第一连接孔21,定子架10的径向托盘13设置在接近转子组件4的一侧,径向托盘13上设有与第一连接21孔对应的第二连接孔22,定子轭盘9和定子架10通过第一连接孔21和第二连接孔22铆接或栓接,定子铁芯7位于第二榫槽19区间的实体部分插入第一榫槽12,从而使定子铁芯7与定子轭盘9形成榫卯结构连接,再通过焊接或铆接方式实现定子铁芯7与定子轭盘9的固定连接,本实施例的定子铁芯7的轴向长度小,硅钢片材料消耗少。The
实施例四:Embodiment 4:
定子轭盘9的近轴侧设有若干个第一连接孔21,定子架10的径向托盘13设置在接近转子组件4的一侧,径向托盘13上设有与第一连接孔21对应的第二连接孔22,定子轭盘9和定子架10通过第一连接孔21和第二连接孔22铆接或栓接,定子铁芯7未套接线圈8的一端不设榫槽,定子铁芯7与定子轭盘9的榫卯结构采用最简单的形式,定子铁芯7直接插入第一榫槽12,再通过焊接或铆接方式实现两者间的固定连接,本实施例的定子铁芯7的轴向长度小,硅钢片材料消耗少。The proximal side of the
本说明书中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。In this specification, specific examples are used to illustrate the principles and implementations of the present invention, and the descriptions of the above embodiments are only used to help understand the method and the core idea of the present invention; The idea of the invention will have changes in the specific implementation manner and application range. In conclusion, the contents of this specification should not be construed as limiting the present invention.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2019107572894 | 2019-08-16 | ||
CN201910757289.4A CN110350749A (en) | 2019-08-16 | 2019-08-16 | A kind of axial magnetic field hub motor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111756206A true CN111756206A (en) | 2020-10-09 |
Family
ID=68185266
Family Applications (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910757289.4A Pending CN110350749A (en) | 2019-08-16 | 2019-08-16 | A kind of axial magnetic field hub motor |
CN202010105355.2A Active CN111224527B (en) | 2019-08-16 | 2020-02-20 | An axial magnetic field hub motor |
CN202010656151.8A Pending CN111835172A (en) | 2019-08-16 | 2020-07-09 | An axial magnetic field hub motor with gear protection mechanism |
CN202021335043.2U Active CN212627616U (en) | 2019-08-16 | 2020-07-09 | Electric bicycle hub motor with gear protection mechanism |
CN202021335030.5U Active CN212627614U (en) | 2019-08-16 | 2020-07-09 | An axial magnetic field geared hub motor |
CN202021335580.7U Active CN212627617U (en) | 2019-08-16 | 2020-07-09 | An axial magnetic field hub motor |
CN202010656183.8A Pending CN111756207A (en) | 2019-08-16 | 2020-07-09 | An electric bicycle wheel hub motor with gear protection mechanism |
CN202021335039.6U Active CN212627615U (en) | 2019-08-16 | 2020-07-09 | Axial magnetic field hub motor with gear protection mechanism |
CN202010655843.0A Pending CN111756206A (en) | 2019-08-16 | 2020-07-09 | An axial magnetic field hub motor |
CN202010655839.4A Pending CN111756205A (en) | 2019-08-16 | 2020-07-09 | An axial magnetic field geared hub motor |
CN202010808187.3A Pending CN111769709A (en) | 2019-08-16 | 2020-08-12 | A unit module combined stator axial magnetic field geared hub motor |
CN202021673679.8U Active CN212627619U (en) | 2019-08-16 | 2020-08-12 | Unit module combined stator axial magnetic field geared hub motor |
Family Applications Before (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910757289.4A Pending CN110350749A (en) | 2019-08-16 | 2019-08-16 | A kind of axial magnetic field hub motor |
CN202010105355.2A Active CN111224527B (en) | 2019-08-16 | 2020-02-20 | An axial magnetic field hub motor |
CN202010656151.8A Pending CN111835172A (en) | 2019-08-16 | 2020-07-09 | An axial magnetic field hub motor with gear protection mechanism |
CN202021335043.2U Active CN212627616U (en) | 2019-08-16 | 2020-07-09 | Electric bicycle hub motor with gear protection mechanism |
CN202021335030.5U Active CN212627614U (en) | 2019-08-16 | 2020-07-09 | An axial magnetic field geared hub motor |
CN202021335580.7U Active CN212627617U (en) | 2019-08-16 | 2020-07-09 | An axial magnetic field hub motor |
CN202010656183.8A Pending CN111756207A (en) | 2019-08-16 | 2020-07-09 | An electric bicycle wheel hub motor with gear protection mechanism |
CN202021335039.6U Active CN212627615U (en) | 2019-08-16 | 2020-07-09 | Axial magnetic field hub motor with gear protection mechanism |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010655839.4A Pending CN111756205A (en) | 2019-08-16 | 2020-07-09 | An axial magnetic field geared hub motor |
CN202010808187.3A Pending CN111769709A (en) | 2019-08-16 | 2020-08-12 | A unit module combined stator axial magnetic field geared hub motor |
CN202021673679.8U Active CN212627619U (en) | 2019-08-16 | 2020-08-12 | Unit module combined stator axial magnetic field geared hub motor |
Country Status (2)
Country | Link |
---|---|
CN (12) | CN110350749A (en) |
WO (1) | WO2021031973A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112865350A (en) * | 2021-02-03 | 2021-05-28 | 深圳市万至达电机制造有限公司 | Torque motor applied to automatic driving of agricultural machinery |
CN114268182A (en) * | 2021-12-16 | 2022-04-01 | 广东威灵电机制造有限公司 | In-wheel motors and electric vehicles |
CN116094225A (en) * | 2022-09-08 | 2023-05-09 | 北京凯恩帝自动化科技有限公司 | Disc type motor |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021031696A1 (en) * | 2019-08-16 | 2021-02-25 | 眭华兴 | Geared hub motor for light electric bicycle |
CN110350749A (en) * | 2019-08-16 | 2019-10-18 | 眭华兴 | A kind of axial magnetic field hub motor |
CN111030332A (en) * | 2019-09-11 | 2020-04-17 | 眭华兴 | Axial magnetic field has geared hub motor |
CN112290768A (en) * | 2020-07-15 | 2021-01-29 | 眭华兴 | Light electric bicycle has geared hub motor |
TWI770780B (en) * | 2021-01-21 | 2022-07-11 | 新加坡商普拉希斯國際有限公司 | Inner rotor hub motor |
GB2599592B (en) * | 2021-01-29 | 2023-05-03 | Univ Jiangsu | Dual-rotor in-wheel motor based on axial magnetic field and control method therefor |
CN112721611A (en) * | 2021-01-29 | 2021-04-30 | 江苏大学 | Birotor hub motor based on axial magnetic field and control method thereof |
CN115118110A (en) * | 2021-03-17 | 2022-09-27 | 迈格钠磁动力股份有限公司 | Gearless ball mill direct drive motor |
DE102021131055B3 (en) * | 2021-11-26 | 2022-10-27 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Drive-brake assembly for one wheel and electric bicycle |
CN114221485A (en) * | 2021-12-16 | 2022-03-22 | 广东威灵电机制造有限公司 | In-wheel motors and electric bicycles |
CN114776775A (en) * | 2022-03-30 | 2022-07-22 | 浙江无懈电机有限公司 | PTO on battery car |
TWI813429B (en) * | 2022-08-26 | 2023-08-21 | 寰程科技股份有限公司 | Coaxial motor oil and electricity isolation device for electric bicycle |
CN117220463B (en) * | 2023-11-07 | 2024-03-01 | 天津九信科技有限公司 | Gimbal motor and stabilized gimbal |
CN119865021B (en) * | 2025-03-24 | 2025-06-06 | 安徽沃弗永磁科技有限公司 | Mechanical weak-magnetic speed-regulating permanent magnet motor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2042818U (en) * | 1988-12-07 | 1989-08-16 | 谈浩勤 | Internal driving device for axle |
JP2008228363A (en) * | 2007-03-08 | 2008-09-25 | Daikin Ind Ltd | Armature cores, armatures, rotating electrical machines, compressors |
CN201360199Y (en) * | 2008-12-30 | 2009-12-09 | 无锡华达电机有限公司 | Electric motor capable of bearing large axial tension |
CN103208881A (en) * | 2013-03-22 | 2013-07-17 | 浙江富迅科技有限公司 | Axial switch reluctance gearless traction machine |
CN212627617U (en) * | 2019-08-16 | 2021-02-26 | 眭华兴 | An axial magnetic field hub motor |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6703757B2 (en) * | 1995-09-13 | 2004-03-09 | Delta Electronics Inc. | Motor structure having low profile |
CN2322312Y (en) * | 1998-04-20 | 1999-06-02 | 吴一生 | Bicycle electric wheel hub |
CN2486362Y (en) * | 2001-07-19 | 2002-04-17 | 苏州小羚羊电动车有限公司 | Hub motor driven of electric bicycle |
US6765327B2 (en) * | 2002-03-27 | 2004-07-20 | The Timken Company | Integral driveline support and electric motor |
EP2043228A3 (en) * | 2002-08-16 | 2014-03-19 | Yamaha Hatsudoki Kabushiki Kaisha | Axial gap type motor generator |
CN2598773Y (en) * | 2002-12-25 | 2004-01-14 | 王和平 | Brushless iron-core-less electric hub |
CN2735640Y (en) * | 2004-09-29 | 2005-10-19 | 常州金岛机电有限公司 | Wheel-hub motor for electric vehicle |
JP2006271040A (en) * | 2005-03-22 | 2006-10-05 | Yamaha Motor Co Ltd | Saddling type hybrid vehicle |
JP4726564B2 (en) * | 2005-07-20 | 2011-07-20 | ヤマハ発動機株式会社 | Rotating electric machine and electric wheelchair |
JP2010035326A (en) * | 2008-07-29 | 2010-02-12 | Mitsuba Corp | Axial gap motor |
JP5027169B2 (en) * | 2009-01-30 | 2012-09-19 | 本田技研工業株式会社 | Axial gap type motor and rotor manufacturing method thereof |
JP2014075879A (en) * | 2012-10-03 | 2014-04-24 | Sim-Drive Co Ltd | Outer rotor in-wheel motor |
US10170959B2 (en) * | 2013-03-13 | 2019-01-01 | Regal Beloit America, Inc. | Electrical machines and methods of assembling the same |
US9856958B2 (en) * | 2015-12-08 | 2018-01-02 | GM Global Technology Operations LLC | Torsional vibration damper |
FR3046888B1 (en) * | 2016-01-14 | 2021-10-22 | Whylot | STATOR FOR ELECTROMAGNETIC AXIAL FLOW MACHINE WITH UNIT PORTIONS FORMING A STATOR CROWN |
CN205801412U (en) * | 2016-07-12 | 2016-12-14 | 扬州安弛机电有限公司 | The motor of electric bicycle |
CN106494561A (en) * | 2016-08-10 | 2017-03-15 | 赵红伟 | Hybrid power motorcycle driving structure of rear wheel |
CN106230217B (en) * | 2016-10-09 | 2019-04-19 | 常州工学院 | A hub motor driven by a disc-type ironless DC motor |
CN206164284U (en) * | 2016-10-11 | 2017-05-10 | 眭华兴 | Energy -saving electric bicycle in -wheel motor |
CN107425686A (en) * | 2017-09-26 | 2017-12-01 | 江苏雅迪科技发展有限公司宁波分公司 | Coreless disc type wheel hub motor |
CN109768680A (en) * | 2018-11-19 | 2019-05-17 | 眭华兴 | An electric bicycle has a gear hub motor |
CN109301985A (en) * | 2018-12-13 | 2019-02-01 | 上海盘毂动力科技股份有限公司 | A kind of motor in axial magnetic field |
CN109654173B (en) * | 2018-12-28 | 2024-11-15 | 中国电子科技集团公司第二十七研究所 | A kind of motion support arm torque balancing device |
-
2019
- 2019-08-16 CN CN201910757289.4A patent/CN110350749A/en active Pending
-
2020
- 2020-02-20 CN CN202010105355.2A patent/CN111224527B/en active Active
- 2020-07-09 CN CN202010656151.8A patent/CN111835172A/en active Pending
- 2020-07-09 CN CN202021335043.2U patent/CN212627616U/en active Active
- 2020-07-09 CN CN202021335030.5U patent/CN212627614U/en active Active
- 2020-07-09 CN CN202021335580.7U patent/CN212627617U/en active Active
- 2020-07-09 CN CN202010656183.8A patent/CN111756207A/en active Pending
- 2020-07-09 CN CN202021335039.6U patent/CN212627615U/en active Active
- 2020-07-09 CN CN202010655843.0A patent/CN111756206A/en active Pending
- 2020-07-09 CN CN202010655839.4A patent/CN111756205A/en active Pending
- 2020-08-12 CN CN202010808187.3A patent/CN111769709A/en active Pending
- 2020-08-12 CN CN202021673679.8U patent/CN212627619U/en active Active
- 2020-08-13 WO PCT/CN2020/108896 patent/WO2021031973A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2042818U (en) * | 1988-12-07 | 1989-08-16 | 谈浩勤 | Internal driving device for axle |
JP2008228363A (en) * | 2007-03-08 | 2008-09-25 | Daikin Ind Ltd | Armature cores, armatures, rotating electrical machines, compressors |
CN201360199Y (en) * | 2008-12-30 | 2009-12-09 | 无锡华达电机有限公司 | Electric motor capable of bearing large axial tension |
CN103208881A (en) * | 2013-03-22 | 2013-07-17 | 浙江富迅科技有限公司 | Axial switch reluctance gearless traction machine |
CN212627617U (en) * | 2019-08-16 | 2021-02-26 | 眭华兴 | An axial magnetic field hub motor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112865350A (en) * | 2021-02-03 | 2021-05-28 | 深圳市万至达电机制造有限公司 | Torque motor applied to automatic driving of agricultural machinery |
CN114268182A (en) * | 2021-12-16 | 2022-04-01 | 广东威灵电机制造有限公司 | In-wheel motors and electric vehicles |
CN116094225A (en) * | 2022-09-08 | 2023-05-09 | 北京凯恩帝自动化科技有限公司 | Disc type motor |
Also Published As
Publication number | Publication date |
---|---|
CN212627617U (en) | 2021-02-26 |
CN212627619U (en) | 2021-02-26 |
WO2021031973A1 (en) | 2021-02-25 |
CN111835172A (en) | 2020-10-27 |
CN111756205A (en) | 2020-10-09 |
CN212627616U (en) | 2021-02-26 |
CN110350749A (en) | 2019-10-18 |
CN111224527A (en) | 2020-06-02 |
CN212627614U (en) | 2021-02-26 |
CN111769709A (en) | 2020-10-13 |
CN111756207A (en) | 2020-10-09 |
CN212627615U (en) | 2021-02-26 |
CN111224527B (en) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111756206A (en) | An axial magnetic field hub motor | |
CN204012963U (en) | High-power density external rotor DC brushless motor | |
CN110460175B (en) | An axial flux concentrated winding type hybrid excitation motor | |
WO2013026088A1 (en) | Interior permanent magnet machine | |
CN101860158A (en) | Switched Flux Permanent Magnet Synchronous Motor | |
CN113300515A (en) | Tangential magnet structure disc type axial magnetic field permanent magnet brushless motor structure and method thereof | |
CN106953488A (en) | A built-in wheel hub motor and an electric vehicle using the same | |
CN102364846B (en) | Permanent Magnet Brushless DC Motor | |
CN101908809A (en) | Outer rotor brushless DC motor with stator magnetic circuit constructed based on modularized mode | |
US7755229B2 (en) | Hybrid step motor | |
CN210724516U (en) | Double-stator single-rotor disc type permanent magnet motor | |
CN214045195U (en) | A motor structure with annular punch and multi-pole magnetic ring | |
CN103840586B (en) | Permanent-magnetic outer rotor wheel hub motor | |
CN212627618U (en) | Light electric bicycle has geared hub motor | |
CN202111543U (en) | Salient pole type rotor iron core of three-phase brushless alternating-current generator | |
CN202384864U (en) | Rotor used for automobile switch reluctance motors | |
CN108880161A (en) | A kind of non iron-core axial flux permanent magnet synchronous compound electric machine | |
CN101626182A (en) | 6-pole external rotor capacitor running asynchronous motor | |
CN210724520U (en) | Birotor disk type hub permanent magnet synchronous motor | |
CN201278473Y (en) | Permanent magnet wind power generator for combined stator structure | |
CN201041960Y (en) | Doubly Salient Permanent Magnet Hub Motor | |
CN201256312Y (en) | Brushless motor | |
WO2021031696A1 (en) | Geared hub motor for light electric bicycle | |
CN202364019U (en) | Stator coil of motor | |
CN112290768A (en) | Light electric bicycle has geared hub motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |