CN111739937A - Fabrication of a SiC MOSFET Based on High-k Gate Dielectric and Low-Temperature Ohmic Contact Technology - Google Patents
Fabrication of a SiC MOSFET Based on High-k Gate Dielectric and Low-Temperature Ohmic Contact Technology Download PDFInfo
- Publication number
- CN111739937A CN111739937A CN202010553372.2A CN202010553372A CN111739937A CN 111739937 A CN111739937 A CN 111739937A CN 202010553372 A CN202010553372 A CN 202010553372A CN 111739937 A CN111739937 A CN 111739937A
- Authority
- CN
- China
- Prior art keywords
- layer
- ohmic contact
- metal
- sic
- gate dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title description 5
- 238000000034 method Methods 0.000 claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 238000005530 etching Methods 0.000 claims abstract description 17
- 230000008569 process Effects 0.000 claims abstract description 16
- 238000002161 passivation Methods 0.000 claims abstract description 11
- 238000002360 preparation method Methods 0.000 claims abstract description 9
- 238000004140 cleaning Methods 0.000 claims abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 238000000059 patterning Methods 0.000 claims abstract description 5
- 108010075750 P-Type Calcium Channels Proteins 0.000 claims abstract description 4
- 238000000151 deposition Methods 0.000 claims description 27
- 238000000137 annealing Methods 0.000 claims description 15
- 150000002500 ions Chemical class 0.000 claims description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 238000000231 atomic layer deposition Methods 0.000 claims description 7
- 238000005566 electron beam evaporation Methods 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 229910052681 coesite Inorganic materials 0.000 claims description 4
- 229910052906 cristobalite Inorganic materials 0.000 claims description 4
- 238000001020 plasma etching Methods 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229910052682 stishovite Inorganic materials 0.000 claims description 4
- 229910052905 tridymite Inorganic materials 0.000 claims description 4
- 238000001039 wet etching Methods 0.000 claims description 4
- 229910017109 AlON Inorganic materials 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 238000005468 ion implantation Methods 0.000 claims description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 2
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 claims 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 108091006146 Channels Proteins 0.000 abstract description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 37
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 36
- 229910004298 SiO 2 Inorganic materials 0.000 description 13
- 230000005684 electric field Effects 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- -1 Si 3 N 4 Inorganic materials 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000005669 field effect Effects 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 150000001721 carbon Chemical class 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VMWYVTOHEQQZHQ-UHFFFAOYSA-N methylidynenickel Chemical compound [Ni]#[C] VMWYVTOHEQQZHQ-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/691—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator comprising metallic compounds, e.g. metal oxides or metal silicates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
- H10D12/031—Manufacture or treatment of IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/832—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
- H10D62/8325—Silicon carbide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/681—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
- H10D64/685—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being perpendicular to the channel plane
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/693—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明涉及一种基于高k栅介质与低温欧姆接触工艺的SiC MOSFET的制备方法,包括:将外延N型轻掺SiC层的SiC衬底清洗;在SiC衬底的外延层使用离子注入和退火的方式形成N+源区、P型沟道区和P+终端区;在外延层沉积高k栅介质层,然后沉积栅金属,并通过刻蚀图形化;在外延层沉积钝化层介质,并通过刻蚀图形化;在外延层和重掺衬底沉积低温欧姆接触金属层,退火形成欧姆接触;在外延层和重掺衬底加厚金属。该方法降低了栅界面处的碳簇密度,提高了沟道迁移率。
The invention relates to a preparation method of a SiC MOSFET based on a high-k gate dielectric and a low-temperature ohmic contact process, comprising: cleaning a SiC substrate with an epitaxial N-type lightly doped SiC layer; form N+ source region, P-type channel region and P+ terminal region; deposit high-k gate dielectric layer on the epitaxial layer, then deposit gate metal, and pattern by etching; deposit passivation layer dielectric on the epitaxial layer, and pass Etch patterning; deposit low temperature ohmic contact metal layer on epitaxial layer and heavily doped substrate, anneal to form ohmic contact; thicken metal on epitaxial layer and heavily doped substrate. This method reduces the carbon cluster density at the gate interface and improves the channel mobility.
Description
技术领域technical field
本发明属于半导体功率器件领域,特别涉及一种基于高k栅介质与低温欧姆接触工艺的SiC MOSFET的制备方法。The invention belongs to the field of semiconductor power devices, and particularly relates to a preparation method of a SiC MOSFET based on a high-k gate dielectric and a low-temperature ohmic contact process.
背景技术Background technique
碳化硅材料具有较大的禁带宽度,较高的击穿电场,较大的热导率以及稳定的物理特性,是一种优秀的高功率,高电压,高温功率半导体器件的制造材料。由于碳化硅具有通过掺杂实现N和P型,以及自然氧化生成SiO2的特性,所以其制备工艺与传统硅功率器件工艺具有高度的兼容性和相似性,已在此基础上发展出了较为成熟的工艺。Silicon carbide material has large forbidden band width, high breakdown electric field, large thermal conductivity and stable physical properties, and is an excellent manufacturing material for high-power, high-voltage, high-temperature power semiconductor devices. Since silicon carbide has the characteristics of realizing N and P types through doping, and generating SiO 2 by natural oxidation, its preparation process has a high degree of compatibility and similarity with the traditional silicon power device process. Mature craftsmanship.
金属氧化物半导体场效应晶体管(MOSFET)是一种被广泛使用的电子器件。它是一种多数载流子器件,避免了双极型晶体管工作时少数载流子注入,因而它具有更快的响应速度。同时,碳化硅功率MOSFET能够提供非常大的安全工作区,并且多个单元结构能够并行使用,具有高的功率密度优势。Metal-oxide-semiconductor field-effect transistors (MOSFETs) are widely used electronic devices. It is a majority carrier device, which avoids minority carrier injection during bipolar transistor operation, so it has a faster response speed. At the same time, silicon carbide power MOSFETs can provide a very large safe operating area, and multiple cell structures can be used in parallel, with high power density advantages.
但是热氧化工艺制备的碳化硅MOSFET仍存在一些问题:通过热氧化碳化硅生成的氧化硅,在界面处会存在悬挂键和碳簇形式的碳残余,这样会导致SiC/SiO2界面存在较高的界面态,器件迁移率降低,导电特性变差。同时SiO2的相对介电常数为3.9,而SiC为9.7左右,这样会使得器件工作时SiC/SiO2交界处的SiO2一侧具有高的电场强度,对器件的可靠性产生限制。例如:《Advanced processing for mobility improvement in 4H-SiCMOSFETs:A review》,C.Maria等人所著,Mat.Sci.Semicon.Proc.,2018;《Improvedinversion channel mobility for 4H-SiC MOSFETs following high temperatureanneals in nitric oxide》,G.Y.Chung等人著,IEEE Electron Device Letter,2001;《Silicon carbide:A unique platform for metal-oxide-semiconductor physics》,G.Liu等著,Applied Physics Reviews,2015。However, there are still some problems in the silicon carbide MOSFET prepared by thermal oxidation process: the silicon oxide generated by thermal oxidation of silicon carbide will have carbon residues in the form of dangling bonds and carbon clusters at the interface, which will lead to a higher SiC/SiO2 interface. interface state, the mobility of the device decreases, and the electrical conductivity deteriorates. At the same time, the relative permittivity of SiO 2 is 3.9, while that of SiC is about 9.7, which will make the SiO 2 side of the SiC/SiO 2 interface have a high electric field strength when the device is working, which will limit the reliability of the device. For example: "Advanced processing for mobility improvement in 4H-SiCMOSFETs: A review", by C.Maria et al., Mat.Sci.Semicon.Proc., 2018; "Improvedinversion channel mobility for 4H-SiC MOSFETs following high temperatureanneals in nitric oxide", GY Chung et al., IEEE Electron Device Letter, 2001; "Silicon carbide: A unique platform for metal-oxide-semiconductor physics", G. Liu et al., Applied Physics Reviews, 2015.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是提供一种基于高k栅介质与低温欧姆接触工艺的SiC MOSFET的制备方法,以克服传统SiC MOSFET低迁移率的缺陷。The technical problem to be solved by the present invention is to provide a preparation method of SiC MOSFET based on high-k gate dielectric and low-temperature ohmic contact process, so as to overcome the defect of low mobility of traditional SiC MOSFET.
本发明提供一种基于高k栅介质与低温欧姆接触工艺的SiC MOSFET的制备方法,包括:The present invention provides a preparation method of a SiC MOSFET based on a high-k gate dielectric and a low-temperature ohmic contact process, comprising:
(1)将外延N型轻掺SiC层的SiC衬底清洗;(1) cleaning the SiC substrate of the epitaxial N-type lightly doped SiC layer;
(2)在SiC衬底的外延层使用离子注入和退火的方式形成N+源区、P型沟道区和P+终端区;(2) The N+ source region, the P-type channel region and the P+ terminal region are formed by ion implantation and annealing in the epitaxial layer of the SiC substrate;
(3)在外延层沉积高k栅介质层;(3) depositing a high-k gate dielectric layer on the epitaxial layer;
(4)在高k栅介质层表面沉积栅金属,并通过刻蚀对栅金属和介质进行图形化;(4) depositing gate metal on the surface of the high-k gate dielectric layer, and patterning the gate metal and the dielectric by etching;
(5)在外延层沉积沉积钝化层介质,并通过刻蚀图形化;(5) depositing a passivation layer medium on the epitaxial layer, and patterning it by etching;
(6)在外延层和重掺衬底沉积低温欧姆接触金属层,退火形成欧姆接触;(6) depositing a low-temperature ohmic contact metal layer on the epitaxial layer and the heavily doped substrate, and annealing to form an ohmic contact;
(7)在外延层和重掺衬底加厚金属。(7) Thicken the metal in the epitaxial layer and the heavily doped substrate.
所述步骤(1)中SiC衬底厚度为200-400μm,掺杂浓度为1×1016-1×1021cm-3。In the step (1), the thickness of the SiC substrate is 200-400 μm, and the doping concentration is 1×10 16 -1×10 21 cm -3 .
所述步骤(1)中外延N型轻掺SiC层厚度为5-30μm,掺杂浓度为1×1014-1×1017cm-3。In the step (1), the thickness of the epitaxial N-type lightly doped SiC layer is 5-30 μm, and the doping concentration is 1×10 14 -1×10 17 cm -3 .
所述步骤(1)中清洗工艺包括:标准RCA清洗;对碳化硅外延片进行高温氧化,形成牺牲氧化层,之后对牺牲氧化层进行腐蚀,直至完全去除表面氧化层。The cleaning process in the step (1) includes: standard RCA cleaning; high-temperature oxidation of the silicon carbide epitaxial wafer to form a sacrificial oxide layer, and then etching the sacrificial oxide layer until the surface oxide layer is completely removed.
所述步骤(2)中离子注入的离子为N离子,P离子或Al离子。离子注入1015-1018cm-3掺杂浓度的P型离子,离子注入1015-1019cm-3掺杂浓度的N型离子。The ions implanted in the step (2) are N ions, P ions or Al ions. P-type ions with a doping concentration of 10 15 -10 18 cm -3 are ion implanted, and N-type ions with a doping concentration of 10 15 -10 19 cm -3 are ion implanted.
所述步骤(3)中高k栅介质为Al2O3、SiO2、Si3N4、HfO2、AlN、La2O5、AlON中的任意一种或其叠层结构;高k栅介质层厚度为5-80nm。In the step (3), the high-k gate dielectric is any one of Al 2 O 3 , SiO 2 , Si 3 N 4 , HfO 2 , AlN, La 2 O 5 , and AlON or a stacked structure thereof; the high-k gate dielectric The layer thickness is 5-80 nm.
所述步骤(3)中沉积方法包括MOCVD,PECVD,ALD,MBE,电子束蒸发或者射频溅射。The deposition method in the step (3) includes MOCVD, PECVD, ALD, MBE, electron beam evaporation or radio frequency sputtering.
所述步骤(3)和(5)中刻蚀的方法包括括氟基RIE刻蚀,ICP刻蚀或者DHF湿法腐蚀。The etching methods in the steps (3) and (5) include fluorine-based RIE etching, ICP etching or DHF wet etching.
所述步骤(4)中栅金属为TiN,Ni,Al中的至少一种。In the step (4), the gate metal is at least one of TiN, Ni, and Al.
所述步骤(4)中沉积方法包括电子束蒸发或磁控溅射;刻蚀方法包括反应离子刻蚀或者H2SO4湿法腐蚀。In the step (4), the deposition method includes electron beam evaporation or magnetron sputtering; the etching method includes reactive ion etching or H 2 SO 4 wet etching.
所述步骤(5)中钝化层介质为SiO2或者Si3N4;沉积方法包括LPCVD或者PECVD。In the step (5), the passivation layer medium is SiO 2 or Si 3 N 4 ; the deposition method includes LPCVD or PECVD.
所述步骤(5)中钝化层厚度为100-2000nm。In the step (5), the thickness of the passivation layer is 100-2000 nm.
所述步骤(6)中在外延层和重掺衬底沉积低温欧姆接触金属层,退火形成欧姆接触为:依次沉积碳层1-50nm,镍层10-500nm,通过退火实现欧姆接触,其中沉积方法包括化学气相沉积、磁控溅射或者电子束蒸镀,退火温度为700-950℃。In the step (6), a low-temperature ohmic contact metal layer is deposited on the epitaxial layer and the heavily doped substrate, and annealing to form an ohmic contact is as follows: sequentially depositing a carbon layer of 1-50 nm and a nickel layer of 10-500 nm, and realizing ohmic contact by annealing, wherein the deposition The method includes chemical vapor deposition, magnetron sputtering or electron beam evaporation, and the annealing temperature is 700-950°C.
所述步骤(7)中加厚金属为Ti、Al、Ni中的任意一种或其叠层金属,加厚金属厚度为1-10μm。In the step (7), the thickening metal is any one of Ti, Al, Ni or a laminated metal thereof, and the thickness of the thickening metal is 1-10 μm.
本发明还提供一种上述方法制备得到的SiC MOSFET。The present invention also provides a SiC MOSFET prepared by the above method.
本发明还提供一种上述方法制备得到的SiC MOSFET的应用。The present invention also provides an application of the SiC MOSFET prepared by the above method.
本发明涉及高k栅介质层的制造方法,使用物理或化学气相沉积方法在清洗后的洁净碳化硅外延片表面沉积了高k栅介质层。这些生长是低温薄膜生长方式(150-500℃),避免了热氧化中的高温过程,所以有助于减少介质层中的杂质含量,同时降低了SiC/SiO2界面处由碳簇、杂质所引起的界面态。以Al2O3为例,其k值为9-10,禁带宽度为8.7-8.8eV,由于高的k值和禁带宽度,其在器件应用中会承受更低的电场强度,从而避免了栅介质的提前击穿。本发明涉及低温欧姆接触的制造方法,在重掺杂的碳化硅表面沉积碳/镍叠层结构,进行多次退火可以实现欧姆接触。在传统的碳化硅欧姆接触制造工艺中,需要对SiC/Ni结构进行高温的快速退火(~1000℃),而这样高的温度会导致高k栅介质发生结晶,造成漏电电流大等问题。本发明通过在镍基欧姆接触中引入碳,降低了金属半导体间的肖特基势垒高度,在相对低温的退火条件下实现了欧姆接触的制备。The invention relates to a method for manufacturing a high-k gate dielectric layer. The high-k gate dielectric layer is deposited on the surface of a clean silicon carbide epitaxial wafer after cleaning by using a physical or chemical vapor deposition method. These growths are low-temperature thin film growth methods (150-500°C), which avoid the high-temperature process in thermal oxidation, so help to reduce the impurity content in the dielectric layer, and at the same time reduce the SiC/SiO 2 interface by carbon clusters, impurities caused by the interface state. Taking Al 2 O 3 as an example, its k value is 9-10 and its forbidden band width is 8.7-8.8 eV. Due to its high k value and forbidden band width, it will withstand lower electric field strength in device applications, thus avoiding premature breakdown of the gate dielectric. The invention relates to a manufacturing method of low-temperature ohmic contact. A carbon/nickel stack structure is deposited on the surface of heavily doped silicon carbide, and ohmic contact can be achieved by performing multiple annealing. In the traditional SiC ohmic contact manufacturing process, the SiC/Ni structure needs to be rapidly annealed at high temperature (~1000°C), and such a high temperature will cause the crystallization of the high-k gate dielectric, resulting in problems such as large leakage current. By introducing carbon into the nickel-based ohmic contact, the invention reduces the Schottky barrier height between the metal semiconductors and realizes the preparation of the ohmic contact under relatively low temperature annealing conditions.
有益效果beneficial effect
本发明基于高k栅介质和低温欧姆接触工艺制备碳化硅MOSFET,其相比于传统SiC功率MOSFET的优势在于使用高k介质作为栅介质,降低了界面处的碳簇密度,提高了沟道迁移率。实验数据表明,使用ALD沉积生长的Al基高k栅介质,它的界面态密度可达到1011-1012cm-2eV-1,低于热氧化制备的SiO2的界面态密度(4×1012-1013cm-2eV-1)。迁移率也可以从25-30cm2/Vs提高至30-50cm2/Vs。The present invention prepares silicon carbide MOSFET based on high-k gate dielectric and low-temperature ohmic contact process. Compared with traditional SiC power MOSFET, the present invention has the advantage of using high-k dielectric as gate dielectric, which reduces the density of carbon clusters at the interface and improves channel migration. Rate. The experimental data show that the interface state density of Al-based high-k gate dielectric grown by ALD deposition can reach 10 11 -10 12 cm -2 eV -1 , which is lower than that of SiO 2 prepared by thermal oxidation (4× 10 12 -10 13 cm -2 eV -1 ). The mobility can also be increased from 25-30 cm 2 /Vs to 30-50 cm 2 /Vs.
同时器件在反向耐压区工作时,由于高k介质具有高的介电常数,避免栅介质中的电场集中效应,从而防止栅介质的提早击穿。通常来讲,Al基高k介质对比于热氧化的SiO2,其介电常数将从3.9提高至7-10。根据高斯定律,当SiC达到临界击穿电场(3MV/cm)时,SiO2中的电场强度为8.3MV/cm,而高k介质中的电场强度仅为3-4MV/cm,显然高k介质作为栅电介质时更难以击穿,从而可以充分利用SiC的高临界击穿电场的特性。At the same time, when the device works in the reverse withstand voltage region, due to the high dielectric constant of the high-k dielectric, the electric field concentration effect in the gate dielectric is avoided, thereby preventing the early breakdown of the gate dielectric. In general, the dielectric constant of Al-based high-k dielectrics will increase from 3.9 to 7-10 compared to thermally oxidized SiO 2 . According to Gauss's law, when SiC reaches the critical breakdown electric field (3MV/cm), the electric field strength in SiO2 is 8.3MV/cm, while the electric field strength in high-k medium is only 3-4MV/cm, obviously the high-k medium When used as a gate dielectric, it is more difficult to break down, so that the high critical breakdown electric field of SiC can be fully utilized.
附图说明Description of drawings
图1为本发明SiC衬底的外延层形成N+源区、P型沟道区后的截面结构示意图。FIG. 1 is a schematic cross-sectional structure diagram of an epitaxial layer of a SiC substrate of the present invention after forming an N+ source region and a P-type channel region.
图2为本发明高k栅介质层沉积后器件的截面结构示意图。FIG. 2 is a schematic cross-sectional structure diagram of the device after the deposition of the high-k gate dielectric layer of the present invention.
图3为本发明栅金属层沉积并刻蚀后器件的截面结构示意图。FIG. 3 is a schematic cross-sectional structure diagram of the device after the gate metal layer is deposited and etched according to the present invention.
图4为本发明钝化层沉积后器件的截面结构示意图。FIG. 4 is a schematic cross-sectional structure diagram of the device after the passivation layer deposition of the present invention.
图5为本发明SiC高k栅介质MOSFET器件的元胞示意图。FIG. 5 is a schematic diagram of a cell of a SiC high-k gate dielectric MOSFET device of the present invention.
具体实施方式Detailed ways
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。The present invention will be further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the present invention and not to limit the scope of the present invention. In addition, it should be understood that after reading the content taught by the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
本发明将具体环境的实施例进行描述,即高k栅介质碳化硅金属氧化物半导体场效应晶体管(MOSFET)。然而本发明的实施例也可以应用于各种金属氧化物半导体场效应晶体管。The present invention will be described as an embodiment of a specific environment, namely a high-k gate dielectric silicon carbide metal oxide semiconductor field effect transistor (MOSFET). However, embodiments of the present invention can also be applied to various metal oxide semiconductor field effect transistors.
碳化硅衬底来源:东莞天域半导体科技有限公司。所有药品未进行二次提纯,均在合成过程和器件的制备过程中直接使用。Silicon carbide substrate source: Dongguan Tianyu Semiconductor Technology Co., Ltd. All medicines were used directly in the synthesis process and device preparation process without secondary purification.
实施例1Example 1
(1)将外延N型轻掺SiC层(厚度13μm,掺杂浓度6×1013cm-3)的SiC衬底清洗;清洗工艺包括:标准RCA清洗;对碳化硅外延片进行高温氧化,形成牺牲氧化层,之后对牺牲氧化层进行腐蚀,直至完全去除表面氧化层。(1) Clean the SiC substrate with the epitaxial N-type lightly doped SiC layer (thickness 13μm, doping concentration 6×10 13 cm -3 ); the cleaning process includes: standard RCA cleaning; high-temperature oxidation of the silicon carbide epitaxial wafer to form The sacrificial oxide layer is then etched until the surface oxide layer is completely removed.
(2)如图1所示,可在衬底中形成三种注入区。这三个注入区分别为P型注入区,N+型注入区,P+型注入区。具体的,N+型注入区被设置在P和P+型注入区之间。通过注入铝、磷离子来形成P型和P+型注入区。根据实施例,可注入1015-1018cm-3掺杂浓度的P型离子。类似的,通过注入氮离子来形成N+型注入区。根据实施例,可注入1015-1019cm-3掺杂浓度的N型离子。通过1700℃高温工艺对注入离子进行激活。(2) As shown in FIG. 1, three types of implantation regions can be formed in the substrate. The three implanted regions are respectively a P-type implanted region, an N+-type implanted region, and a P+-type implanted region. Specifically, the N+ type implantation region is disposed between the P and P+ type implantation regions. P-type and P+-type implanted regions are formed by implanting aluminum and phosphorus ions. According to an embodiment, P-type ions with a doping concentration of 10 15 -10 18 cm -3 may be implanted. Similarly, N+ type implantation regions are formed by implanting nitrogen ions. According to an embodiment, N-type ions at a doping concentration of 10 15 -10 19 cm -3 may be implanted. The implanted ions are activated by a high temperature process of 1700°C.
(3)栅极电介质层沉积于衬底上方,如图2所示。栅电介质可通过原子层沉积(ALD)沉积,本实施例中所选电介质类型为Al2O3。可选的,电介质层可以为SiO2、Si3N4、HfO2、AlN、La2O5、AlON。根据实施例,栅介质层可选厚度为50nm,其厚度选取主要取决于器件的性能参数,如工作电压、反向耐压等。(3) A gate dielectric layer is deposited over the substrate, as shown in FIG. 2 . The gate dielectric can be deposited by atomic layer deposition (ALD), the dielectric type chosen in this example is Al 2 O 3 . Optionally, the dielectric layer may be SiO 2 , Si 3 N 4 , HfO 2 , AlN, La 2 O 5 , or AlON. According to the embodiment, the optional thickness of the gate dielectric layer is 50 nm, and the thickness of the selected thickness mainly depends on the performance parameters of the device, such as operating voltage, reverse withstand voltage, and the like.
(4)在高k栅介质层表面沉积栅金属,并通过刻蚀对栅金属和介质图形化;图3示出了器件在沉积栅金属并进行图形化之后的截面图。根据实施例,栅金属可由TiN形成,可使用磁控溅射等适当的沉积技术进行制备,并通过刻蚀图形化。(4) Deposit gate metal on the surface of the high-k gate dielectric layer, and pattern the gate metal and the dielectric by etching; FIG. 3 shows a cross-sectional view of the device after the gate metal is deposited and patterned. According to an embodiment, the gate metal may be formed of TiN, prepared using a suitable deposition technique such as magnetron sputtering, and patterned by etching.
(5)在外延层沉积沉积钝化层介质,并通过刻蚀图形化;图4示出了钝化层沉积后的结构示意图。根据实例,钝化层可选用SiO2,沉积方法可选用PECVD。这一步的目的是隔离栅金属,为下一步沉积源极金属做准备。钝化层的厚度将影响器件的电容性质,本实施例中选用厚度为600nm。(5) A passivation layer dielectric is deposited on the epitaxial layer, and patterned by etching; FIG. 4 shows a schematic view of the structure after the passivation layer is deposited. According to an example, the passivation layer can be selected from SiO 2 , and the deposition method can be selected from PECVD. The purpose of this step is to isolate the gate metal in preparation for the next step of depositing the source metal. The thickness of the passivation layer will affect the capacitance properties of the device, and in this embodiment, the thickness is selected to be 600 nm.
(6)在外延层和重掺衬底沉积低温欧姆接触金属层,退火形成欧姆接触,并且加厚金属;图5示出了沉积源漏极金属以及加厚金属之后的器件截图。根据实施例,源漏极金属可由100nm的碳-镍叠层结构退火后实现,可选的沉积方法为磁控溅射或电子束蒸发,退火温度为800℃。加厚金属的可选类型为Ti、Al、Ni叠层金属,厚度为2.5μm。(6) Deposit a low-temperature ohmic contact metal layer on the epitaxial layer and the heavily doped substrate, anneal to form an ohmic contact, and thicken the metal; FIG. 5 shows a screenshot of the device after depositing the source-drain metal and the thickened metal. According to the embodiment, the source-drain metal can be realized by annealing a 100 nm carbon-nickel laminated structure, the optional deposition method is magnetron sputtering or electron beam evaporation, and the annealing temperature is 800°C. The optional type of thickening metal is Ti, Al, Ni laminated metal with a thickness of 2.5 μm.
实验数据表明,使用ALD沉积生长的Al2O3栅介质,它的界面态密度(通过电导法可计算出界面态密度,具体实施过程:对MOSCAP(MOS电容器)结构进行电容-频率测试可获得电容、电导随频率关系测试条件100k-1MHz。由公式The experimental data show that the interface state density of the Al 2 O 3 gate dielectric grown by ALD deposition (the interface state density can be calculated by the conductometric method. The specific implementation process: the capacitance-frequency test of the MOSCAP (MOS capacitor) structure can be obtained. The test condition of capacitance and conductance with frequency relationship is 100k-1MHz. By the formula
及and
计算可得界面态密度。其中Gm和Cm是测试电导、电容值,ω=2πf是角频率,Cox是氧化物单位电容,对Al2O3而言Cox=8.23×10-11F/m,q是电子电量,取值1.6×10-19C,τit是时间常数,Dit是界面态密度。)可达到1011-1012cm-2eV-1,迁移率(通过对横向MOSFET结构进行转移特性曲线测试推导得出,测试条件Vds=0.1V,Vg=-5to 20V。推导公式其中μFE是场效应迁移率,L和W是MOSFET的栅长度和宽度,分别取值500和80μm,Cox是氧化物单位电容,对Al2O3而言Cox=8.23×10-11F/m,Vds是测试条件中的源漏电压)也可以提高至40cm2/Vs,同时高k介质的临界击穿电场强度(通过MOSCAP结构进行漏电测试即可,测试限流100μA)也可达到8MV/cm。Calculate the interface density of states. where G m and C m are the test conductance and capacitance values, ω=2πf is the angular frequency, C ox is the oxide unit capacitance, for Al 2 O 3 C ox =8.23×10 -11 F/m, q is the electron The electric quantity is 1.6×10 -19 C, τ it is the time constant, and D it is the interface state density. ) can reach 10 11 -10 12 cm -2 eV -1 , the mobility (derived from the test of the transfer characteristic curve of the lateral MOSFET structure, the test conditions V ds =0.1V, V g =-5to 20V. The derivation formula where μFE is the field-effect mobility, L and W are the gate length and width of the MOSFET, which are 500 and 80 μm, respectively, C ox is the oxide unit capacitance, and for Al 2 O 3 C ox =8.23×10 -11 F/m, V ds is the source-drain voltage in the test conditions) can also be increased to 40cm 2 /Vs, and the critical breakdown electric field strength of high-k dielectrics (the leakage test can be performed through the MOSCAP structure, the test current limit is 100μA) is also Can reach 8MV/cm.
实施例2Example 2
实施例1中步骤(3)里的高k介质层可替换,本实施例中选用ALD方法生长La2O5(5nm)/Al2O3(45nm)介质层,其厚度可选为50nm。其他条件不改变,均与实施例1相同。The high-k dielectric layer in step (3) in Embodiment 1 can be replaced. In this embodiment, the ALD method is used to grow the La 2 O 5 (5nm)/Al 2 O 3 (45nm) dielectric layer, and its thickness can be selected as 50nm. Other conditions were not changed, and were the same as in Example 1.
计算过程与实施例1相同,对该叠层结构而言Cox=5.5×10-11F/m,其他实验数据不变。该实施例中界面态密度可达到7×1011-1012cm-2eV-1,迁移率为35cm2/Vs,临界击穿电场强度可达8.7MV/cm。The calculation process is the same as that of Example 1. For the laminated structure, C ox =5.5×10 −11 F/m, and other experimental data remain unchanged. In this embodiment, the interface state density can reach 7×10 11 -10 12 cm -2 eV -1 , the mobility is 35 cm 2 /Vs, and the critical breakdown electric field strength can reach 8.7MV/cm.
实施例3Example 3
实施例1中步骤(3)里的高k介质层可替换,本实施例中选用CVD方法生长的SiO2(5nm)/AlN(45nm)介质层,其厚度可选为50nm。其他条件不改变,均与实施例1相同。The high-k dielectric layer in step (3) in Embodiment 1 can be replaced. In this embodiment, the SiO 2 (5nm)/AlN (45nm) dielectric layer grown by the CVD method is selected to have a thickness of 50nm. Other conditions were not changed, and were the same as in Example 1.
计算过程与实施例1相同,对该叠层结构而言Cox=6.2×10-11F/m,其他实验数据不变。该实施例中界面态密度可达到7×1010-4×1012cm-2eV-1,迁移率为26cm2/Vs,临界击穿电场可达16.8MV/cm。The calculation process is the same as that of Example 1. For the laminated structure, C ox =6.2×10 -11 F/m, and other experimental data remain unchanged. In this embodiment, the interface state density can reach 7×10 10 -4×10 12 cm -2 eV -1 , the mobility is 26 cm 2 /Vs, and the critical breakdown electric field can reach 16.8MV/cm.
对比例1Comparative Example 1
根据参考文献《Advanced processing for mobility improvement in 4H-SiCMOSFETs:A review》,目前常规热氧化制备的SiO2的界面态密度为4×1012-1013cm-2eV-1,沟道迁移率为25-30cm2/Vs。较本发明的界面态密度、迁移率等数据均有一定差距。According to the reference "Advanced processing for mobility improvement in 4H-SiCMOSFETs: A review", the interface state density of SiO 2 prepared by conventional thermal oxidation is currently 4×10 12 -10 13 cm -2 eV -1 , and the channel mobility is 25-30cm 2 /Vs. Compared with the data of the interface state density and mobility of the present invention, there is a certain gap.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010553372.2A CN111739937A (en) | 2020-06-17 | 2020-06-17 | Fabrication of a SiC MOSFET Based on High-k Gate Dielectric and Low-Temperature Ohmic Contact Technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010553372.2A CN111739937A (en) | 2020-06-17 | 2020-06-17 | Fabrication of a SiC MOSFET Based on High-k Gate Dielectric and Low-Temperature Ohmic Contact Technology |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111739937A true CN111739937A (en) | 2020-10-02 |
Family
ID=72649500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010553372.2A Pending CN111739937A (en) | 2020-06-17 | 2020-06-17 | Fabrication of a SiC MOSFET Based on High-k Gate Dielectric and Low-Temperature Ohmic Contact Technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111739937A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102142369A (en) * | 2011-01-05 | 2011-08-03 | 复旦大学 | Method for improving performance of SiC (Semiconductor Integrated Circuit) device |
US9324807B1 (en) * | 2015-07-10 | 2016-04-26 | United Silicon Carbide, Inc. | Silicon carbide MOSFET with integrated MOS diode |
CN108257858A (en) * | 2016-12-28 | 2018-07-06 | 全球能源互联网研究院 | A kind of preparation method of high-k gate dielectric layer and silicon carbide mos power device |
CN108257855A (en) * | 2016-12-28 | 2018-07-06 | 全球能源互联网研究院 | The preparation method of high-k gate dielectric layer and silicon carbide mos power device |
CN109979813A (en) * | 2019-03-28 | 2019-07-05 | 厦门市三安集成电路有限公司 | A kind of preparation method and metal structure of cryogenic carbon SiClx Ohmic contact |
-
2020
- 2020-06-17 CN CN202010553372.2A patent/CN111739937A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102142369A (en) * | 2011-01-05 | 2011-08-03 | 复旦大学 | Method for improving performance of SiC (Semiconductor Integrated Circuit) device |
US9324807B1 (en) * | 2015-07-10 | 2016-04-26 | United Silicon Carbide, Inc. | Silicon carbide MOSFET with integrated MOS diode |
CN108257858A (en) * | 2016-12-28 | 2018-07-06 | 全球能源互联网研究院 | A kind of preparation method of high-k gate dielectric layer and silicon carbide mos power device |
CN108257855A (en) * | 2016-12-28 | 2018-07-06 | 全球能源互联网研究院 | The preparation method of high-k gate dielectric layer and silicon carbide mos power device |
CN109979813A (en) * | 2019-03-28 | 2019-07-05 | 厦门市三安集成电路有限公司 | A kind of preparation method and metal structure of cryogenic carbon SiClx Ohmic contact |
Non-Patent Citations (1)
Title |
---|
WEIJIE LU ET AL: "Ohmic contact properties of Ni/C film on 4H-SiC", 《SOLID-STATE ELECTRONICS》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103928344B (en) | One kind improves N-type DiMOSFET channel mobility method based on N-type nano thin-layer | |
CN106098539A (en) | Semiconductor device | |
CN107785258B (en) | A kind of preparation method of 4H-SiC P-type insulated gate bipolar transistor | |
CN107658215A (en) | Silicon carbide device and manufacturing method thereof | |
CN116013989A (en) | With SiO 2 Vertical structure Ga of barrier layer 2 O 3 Transistor and preparation method | |
CN108615769A (en) | The preparation method of gallium oxide MOSFET element | |
CN100448028C (en) | A kind of MOS transistor and its manufacturing method | |
CN115241051A (en) | Silicon carbide power device and preparation method thereof | |
CN110676172A (en) | Method for realizing low-on-resistance enhanced gallium nitride transistor | |
CN107871781A (en) | A kind of silicon carbide MOSFET and its manufacturing method | |
CN112349775B (en) | Ultra-steep subthreshold swing device and its preparation method | |
CN118366862A (en) | Technological method for improving carrier mobility and gate oxide reliability of 4H-SiC PMOS channel | |
CN218996726U (en) | VDMOS device and electricity utilization device | |
CN111739801A (en) | A kind of preparation method of SOI-based p-GaN enhancement mode GaN power switching device | |
CN115425075B (en) | A planar gate IGBT device and its manufacturing method | |
CN111739937A (en) | Fabrication of a SiC MOSFET Based on High-k Gate Dielectric and Low-Temperature Ohmic Contact Technology | |
WO2024051166A1 (en) | Semiconductor device and fabrication method therefor | |
CN210575962U (en) | A SiC MOSFET device | |
JP2017092398A (en) | Diamond electronic element | |
CN112614889A (en) | All-vertical field effect transistor based on longitudinal Schottky source tunneling junction and method | |
CN210156382U (en) | SiC-based MOS device | |
CN112038394A (en) | Preparation method of MOSFET (Metal-oxide-semiconductor field Effect transistor) capable of improving stability of threshold voltage | |
CN112614888A (en) | Quasi-vertical field effect transistor based on transverse Schottky source tunneling junction and method | |
CN112614890A (en) | All-vertical field effect transistor based on transverse Schottky source tunneling junction and method | |
CN111509037A (en) | Silicon carbide MOS device with groove type JFET and preparation process thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20201002 |