CN111726104B - Decision feedback equalizer - Google Patents
Decision feedback equalizer Download PDFInfo
- Publication number
- CN111726104B CN111726104B CN201910222504.0A CN201910222504A CN111726104B CN 111726104 B CN111726104 B CN 111726104B CN 201910222504 A CN201910222504 A CN 201910222504A CN 111726104 B CN111726104 B CN 111726104B
- Authority
- CN
- China
- Prior art keywords
- signal
- differential
- switch
- decision feedback
- feedback equalizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005070 sampling Methods 0.000 claims abstract description 69
- 238000010586 diagram Methods 0.000 description 12
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 8
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 8
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000003705 background correction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/28—Impedance matching networks
Landscapes
- Amplifiers (AREA)
Abstract
本发明公开了一种决策反馈均衡器,其具有第一路径以及第二路径。该第一路径包含了第一取样电路以及第一闩锁电路,其中该第一取样电路用以根据输入信号、第二设定信号以及第二重设信号以产生第一设定信号以及第一重设信号,且该第一闩锁电路用以根据该第一取样电路的输出以产生第一数字信号。该第二路径包含了第二取样电路以及第二闩锁电路,其中该第二取样电路用以根据该输入信号、该第一设定信号以及该第一重设信号以产生该第二设定信号以及该第二重设信号,且该第二闩锁电路用以根据该第二取样电路的输出以产生第二数字信号。
The present invention discloses a decision feedback equalizer, which has a first path and a second path. The first path includes a first sampling circuit and a first latch circuit, wherein the first sampling circuit is used to generate a first setting signal and a first reset signal according to an input signal, a second setting signal and a second reset signal, and the first latch circuit is used to generate a first digital signal according to the output of the first sampling circuit. The second path includes a second sampling circuit and a second latch circuit, wherein the second sampling circuit is used to generate the second setting signal and the second reset signal according to the input signal, the first setting signal and the first reset signal, and the second latch circuit is used to generate a second digital signal according to the output of the second sampling circuit.
Description
技术领域Technical Field
本发明涉及决策反馈均衡器。The present invention relates to a decision feedback equalizer.
背景技术Background Art
决策反馈均衡器(decision feedback equalizer,DFE)是在高速有线传输系统接收端常会使用的一种技术,用来补偿传输信号因为各种传输过程中受到的通道损失(channel loss)或是通道反射(channel reflection),其主要的运行原理是通过目前已接收到的数字信号并通过一组通过适应性演算法(adaptation)得到的接头参数(tapcoefficient),来消除已知会影响接下来信号的符码间干扰(Inter-symbolInterference,ISI)。在高速决策反馈均衡器的模拟电路中,最难以实现的部分是第一接头(first tap)的反馈,因为在原理上,反馈信号经过取样器(sampler)的延迟、反馈路径的传递延迟以及加总器(summer)延迟,必须在下一笔数据来之前准备完成,特别在越高速时,时序限制会越紧。The decision feedback equalizer (DFE) is a technology commonly used at the receiving end of high-speed wired transmission systems to compensate for channel loss or channel reflection caused by various transmission processes. Its main operating principle is to eliminate the inter-symbol interference (ISI) that is known to affect the next signal through the currently received digital signal and a set of tap coefficients obtained through an adaptive algorithm. In the analog circuit of a high-speed decision feedback equalizer, the most difficult part to implement is the feedback of the first tap, because in principle, the feedback signal must be prepared before the next data arrives after the delay of the sampler, the transmission delay of the feedback path, and the summer delay. Especially at higher speeds, the timing constraints will be tighter.
为了解决此一问题,一些专利技术(例如,美国专利US7869498以及US8477833)及论文提出了相关的决策反馈均衡电路架构,然而,这些技术在接头参数的设计上都有温度漂移的问题,因此必须仰赖背景校正(background calibration)来调整接头参数,因而增加了电路的不稳定性及复杂度。In order to solve this problem, some patent technologies (e.g., U.S. Patents US7869498 and US8477833) and papers have proposed related decision feedback equalization circuit architectures. However, these technologies have the problem of temperature drift in the design of connector parameters, so background calibration must be relied upon to adjust the connector parameters, thereby increasing the instability and complexity of the circuit.
发明内容Summary of the invention
因此,本发明的目的之一在于提出一种决策反馈均衡器,其具有高速度、低温度效应、低功耗、不需要背景校正来调整接头参数…等优点,以解决现有技术中的问题。Therefore, one of the objectives of the present invention is to propose a decision feedback equalizer, which has the advantages of high speed, low temperature effect, low power consumption, no need for background correction to adjust connector parameters, etc., so as to solve the problems in the prior art.
在本发明的一个实施例中,公开了一种决策反馈均衡器,其具有一第一路径以及第二路径。该第一路径包含了一第一取样电路以及一第一闩锁电路,其中该第一取样电路用以根据一输入信号、一第二设定信号以及一第二重设信号以产生一第一设定信号以及一第一重设信号,且该第一闩锁电路用以根据该第一设定信号以及该第一重设信号以产生一第一数字信号。该第二路径包含了一第二取样电路以及一第二闩锁电路,其中该第二取样电路用以根据该输入信号、该第一设定信号以及该第一重设信号以产生该第二设定信号以及该第二重设信号,且该第二闩锁电路用以根据该第二设定信号以及该第二重设信号以产生一第二数字信号。In one embodiment of the present invention, a decision feedback equalizer is disclosed, which has a first path and a second path. The first path includes a first sampling circuit and a first latch circuit, wherein the first sampling circuit is used to generate a first setting signal and a first reset signal according to an input signal, a second setting signal and a second reset signal, and the first latch circuit is used to generate a first digital signal according to the first setting signal and the first reset signal. The second path includes a second sampling circuit and a second latch circuit, wherein the second sampling circuit is used to generate the second setting signal and the second reset signal according to the input signal, the first setting signal and the first reset signal, and the second latch circuit is used to generate a second digital signal according to the second setting signal and the second reset signal.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为根据本发明一实施例的决策反馈均衡器的示意图。FIG. 1 is a schematic diagram of a decision feedback equalizer according to an embodiment of the present invention.
图2为决策反馈均衡器内多个信号的时序图。FIG. 2 is a timing diagram of multiple signals in a decision feedback equalizer.
图3为根据本发明一实施例的第一路径以及第二路径的电路架构图。FIG. 3 is a circuit structure diagram of a first path and a second path according to an embodiment of the present invention.
图4为根据本发明一第一实施例的取样电路的示意图。FIG. 4 is a schematic diagram of a sampling circuit according to a first embodiment of the present invention.
图5为图4的取样电路的多个信号的时序图。FIG. 5 is a timing diagram of multiple signals of the sampling circuit of FIG. 4 .
图6为根据本发明一第二实施例的取样电路的示意图。FIG. 6 is a schematic diagram of a sampling circuit according to a second embodiment of the present invention.
图7为图6的取样电路的多个信号的时序图。FIG. 7 is a timing diagram of multiple signals of the sampling circuit of FIG. 6 .
符号说明Explanation of symbols
100 决策反馈均衡器100 Decision Feedback Equalizer
102、112、122 加总电路102, 112, 122 summing circuit
108 多工器108 Multiplexer
110 第一路径110 First Path
114、124、314、324 取样电路114, 124, 314, 324 sampling circuit
120 第二路径120 Second Path
316、326 闩锁电路316, 326 Latch Circuit
410、610 感测放大器410, 610 Sense Amplifier
412、414、612、614 反相器412, 414, 612, 614 Inverters
420、620 调整电路420, 620 adjustment circuit
CK、CKB 时钟信号CK, CKB clock signals
D_odd 第一数字信号D_odd The first digital signal
D_even 第二数字信号D_even Second digital signal
Dout 输出数字信号Dout output digital signal
M1~M13 晶体管M1~M13 transistor
S_odd 第一设定信号S_odd First setting signal
S_even 第二设定信号S_even Second setting signal
R_odd 第一重设信号R_odd First reset signal
R_even 第二重设信号R_even Second reset signal
Vin 输入信号Vin Input Signal
Vin’、Vin’+、Vin’- 调整后输入信号Vin’, Vin’+, Vin’- Adjusted input signal
VFB1_even、VFB1_odd、VFB2 反馈信号VFB1_even, VFB1_odd, VFB2 feedback signals
Vh1 电压Vh1 voltage
VCM 共模电压VCM Common Mode Voltage
具体实施方式DETAILED DESCRIPTION
图1为根据本发明一实施例的决策反馈均衡器100的示意图。如图1所示,决策反馈均衡器100包含了一加总电路102、一第一路径110、一第二路径120以及一多工器108,其中第一路径110包含了一加总电路112以及一取样电路114,且第二路径120包含了一加总电路122以及一取样电路124。FIG1 is a schematic diagram of a decision feedback equalizer 100 according to an embodiment of the present invention. As shown in FIG1 , the decision feedback equalizer 100 includes a summing circuit 102, a first path 110, a second path 120, and a multiplexer 108, wherein the first path 110 includes a summing circuit 112 and a sampling circuit 114, and the second path 120 includes a summing circuit 122 and a sampling circuit 124.
图1所示的决策反馈均衡器100采用两个路径以及半速(half-rate)的多工切换来达到减少操作延迟的目的。具体来说,同时参考图2所示的时序图,在决策反馈均衡器100的操作中,加总电路102会将输入信号Vin减去一反馈信号VFB2来产生一调整后输入信号Vin’,接着,第一路径110中的加总电路112将调整后输入信号Vin’减去一反馈信号VFB1_even,并通过取样电路114使用一时钟信号CK进行取样后以产生一第一数字信号D_odd;以及第二路径120中的加总电路122将调整后输入信号Vin’减去一反馈信号VFB1_odd,并通过取样电路124使用一时钟信号CKB进行取样后以产生一第二数字信号D_even。之后,多工器108再通过时钟信号CKB的控制以交错地输出第一数字信号D_odd以及第二数字信号D_even,以作为决策反馈均衡器100的输出数字信号Dout。举例来说,假设输入信号Vin依序包含了位元A、B、C、D、E,时钟信号CK、CKB的频率分别为输入信号Vin的频率的一半,则取样电路114所产生的第一数字信号D_odd包含了A、C、E,且取样电路124所产生的第二数字信号D_even包含了B、D,亦即第一数字信号D_odd是作为输出数字信号Dout的奇数位元,以及第二数字信号D_even是作为输出数字信号Dout的偶数位元。The decision feedback equalizer 100 shown in FIG1 adopts two paths and half-rate multiplexing switching to achieve the purpose of reducing operation delay. Specifically, referring to the timing diagram shown in FIG2, in the operation of the decision feedback equalizer 100, the summing circuit 102 subtracts a feedback signal VFB2 from the input signal Vin to generate an adjusted input signal Vin', then the summing circuit 112 in the first path 110 subtracts a feedback signal VFB1_even from the adjusted input signal Vin', and samples it through the sampling circuit 114 using a clock signal CK to generate a first digital signal D_odd; and the summing circuit 122 in the second path 120 subtracts a feedback signal VFB1_odd from the adjusted input signal Vin', and samples it through the sampling circuit 124 using a clock signal CKB to generate a second digital signal D_even. Afterwards, the multiplexer 108 outputs the first digital signal D_odd and the second digital signal D_even in an alternating manner under the control of the clock signal CKB, so as to serve as the output digital signal Dout of the decision feedback equalizer 100. For example, assuming that the input signal Vin includes bits A, B, C, D, and E in sequence, and the frequencies of the clock signals CK and CKB are respectively half of the frequency of the input signal Vin, then the first digital signal D_odd generated by the sampling circuit 114 includes A, C, and E, and the second digital signal D_even generated by the sampling circuit 124 includes B and D, that is, the first digital signal D_odd is the odd bit of the output digital signal Dout, and the second digital signal D_even is the even bit of the output digital signal Dout.
在图1中,反馈信号VFB2是由输出数字信号Dout根据接头参数h2调整而产生,反馈信号VFB1_even是由第二数字信号D_even根据接头参数h1调整而产生,且反馈信号VFB1_odd是由第一数字信号D_odd根据接头参数h1调整而产生。如现有技术中所述,在高速的决策反馈均衡器中,最难以实现的部分是第一接头的反馈(亦即,反馈信号VFB1_even以及反馈信号VFB1_odd的相关操作),因此,为了降低反馈延迟,本发明是将反馈功能内嵌在取样电路中,其具体实施方式如下所述。In FIG1 , the feedback signal VFB2 is generated by adjusting the output digital signal Dout according to the connector parameter h2, the feedback signal VFB1_even is generated by adjusting the second digital signal D_even according to the connector parameter h1, and the feedback signal VFB1_odd is generated by adjusting the first digital signal D_odd according to the connector parameter h1. As described in the prior art, in a high-speed decision feedback equalizer, the most difficult part to implement is the feedback of the first connector (that is, the related operations of the feedback signal VFB1_even and the feedback signal VFB1_odd). Therefore, in order to reduce the feedback delay, the present invention embeds the feedback function in the sampling circuit, and its specific implementation is described as follows.
图3为根据本发明一实施例的第一路径110以及第二路径120的电路架构图。在图3中,第一路径110包含了取样电路314以及一闩锁电路(SR闩锁器)316,其中取样电路314为内嵌反馈功能的取样电路,亦即取样电路314包含了图1所示的加总电路112、接头参数h1以及取样电路114的部分功能;类似地,第二路径120包含了取样电路324以及一闩锁电路326,其中取样电路324为内嵌反馈功能的取样电路,亦即取样电路324包含了图1所示的加总电路122、接头参数h1以及取样电路124的部分功能。在图3所示的实施例中,取样电路314根据调整后输入信号Vin’、一第二设定信号S_even以及一第二重设信号R_even来产生一第一设定信号S_odd以及一第一重设信号R_odd,而闩锁电路316根据第一设定信号S_odd以及第一重设信号R_odd来产生第一数字信号D_odd;类似地,取样电路324根据调整后输入信号Vin’、第一设定信号S_odd以及第一重设信号R_odd来产生第二设定信号S_even以及第二重设信号R_even,而闩锁电路326根据第二设定信号S_even以及第二重设信号R_even来产生第二数字信号D_even。在图3中,第一设定信号S_odd以及第一重设信号R_odd可对应到图1所示的反馈信号VFB1_odd,而第二设定信号S_even以及第二重设信号R_even可对应到图1所示的反馈信号VFB1_even。FIG3 is a circuit diagram of the first path 110 and the second path 120 according to an embodiment of the present invention. In FIG3, the first path 110 includes a sampling circuit 314 and a latch circuit (SR latch) 316, wherein the sampling circuit 314 is a sampling circuit with built-in feedback function, that is, the sampling circuit 314 includes the summing circuit 112, the joint parameter h1, and part of the functions of the sampling circuit 114 shown in FIG1; similarly, the second path 120 includes a sampling circuit 324 and a latch circuit 326, wherein the sampling circuit 324 is a sampling circuit with built-in feedback function, that is, the sampling circuit 324 includes the summing circuit 122, the joint parameter h1, and part of the functions of the sampling circuit 124 shown in FIG1. In the embodiment shown in FIG3 , the sampling circuit 314 generates a first setting signal S_odd and a first reset signal R_odd according to the adjusted input signal Vin’, a second setting signal S_even and a second reset signal R_even, and the latch circuit 316 generates the first digital signal D_odd according to the first setting signal S_odd and the first reset signal R_odd; similarly, the sampling circuit 324 generates the second setting signal S_even and the second reset signal R_even according to the adjusted input signal Vin’, the first setting signal S_odd and the first reset signal R_odd, and the latch circuit 326 generates the second digital signal D_even according to the second setting signal S_even and the second reset signal R_even. In FIG3 , the first setting signal S_odd and the first reset signal R_odd may correspond to the feedback signal VFB1_odd shown in FIG1 , and the second setting signal S_even and the second reset signal R_even may correspond to the feedback signal VFB1_even shown in FIG1 .
图4为根据本发明一第一实施例的取样电路314的示意图。如图4所示,取样电路314包含了一感测放大器410以及一调整电路420,其中感测放大器410包含了用以接收调整后输入信号Vin’(包含差分信号Vin’+、Vin’-)的晶体管M1和M2、作为感测放大开关的晶体管M3、耦接于供应电压VDD的多个晶体管M4~M9、以及两个反相器412和414;调整电路420包含了作为一第一差分放大器的两个晶体管M10和M11、作为一第二差分放大器的两个晶体管M12和M13以及两个开关SW1和SW2。在本实施例中,晶体管M1、M2用来接收调整后输入信号Vin’以在端点N1、N2上产生放大后输入信号,且晶体管M4、M5的漏极用来输出信号S’、R’,其中信号S’、R’分别通过反相器412、414的操作以产生第一设定信号S_odd以及第一重设信号R_odd。该第一差分放大器的晶体管的漏极直接连接到该感测放大器的该端点,且该第二差分放大器的晶体管的漏极直接连接到该感测放大器的该端点。此外,在调整电路420中,第一差分放大器(即,晶体管M10、M11)通过开关SW1来连接到作为感测放大开关的晶体管M3,其中开关SW1由第二设定信号S_even来控制,亦即第一差分放大器根据第二设定信号S_even来选择性地致能,以根据一差分电压信号(VCM+Vh1、VCM-Vh1)来产生一第一调整信号至端点N1、N2以调整该放大后输入信号的电压准位(亦即,在端点N1、N2加上或减去电压Vh1所对应到的成分);另外,第二差分放大器(即,晶体管M12、M13)通过开关SW2来连接到作为感测放大开关的晶体管M3,其中开关SW2由第二重设信号R_even来控制,亦即第二差分放大器根据第二重设信号R_even来选择性地致能,以根据一差分电压信号(VCM+Vh1、VCM-Vh1)来产生一第二调整信号至端点N1、N2以调整该放大后输入信号的电压准位(亦即,在端点N1、N2加上或减去电压Vh1所对应到的成分)。该第一差分放大器的晶体管的源极通过一第一开关以连接到该感测放大开关,以及该第二差分放大器的晶体管的源极通过一第二开关以连接到该感测放大开关,其中该第一开关与该第二开关分别由该第二设定信号以及该第二重设信号所控制。FIG4 is a schematic diagram of a sampling circuit 314 according to a first embodiment of the present invention. As shown in FIG4 , the sampling circuit 314 includes a sense amplifier 410 and an adjustment circuit 420, wherein the sense amplifier 410 includes transistors M1 and M2 for receiving an adjusted input signal Vin’ (including differential signals Vin’+, Vin’-), a transistor M3 as a sense amplifier switch, a plurality of transistors M4-M9 coupled to a supply voltage VDD, and two inverters 412 and 414; the adjustment circuit 420 includes two transistors M10 and M11 as a first differential amplifier, two transistors M12 and M13 as a second differential amplifier, and two switches SW1 and SW2. In this embodiment, transistors M1 and M2 are used to receive the adjusted input signal Vin' to generate amplified input signals at terminals N1 and N2, and the drains of transistors M4 and M5 are used to output signals S' and R', wherein the signals S' and R' are respectively operated by inverters 412 and 414 to generate a first setting signal S_odd and a first reset signal R_odd. The drains of the transistors of the first differential amplifier are directly connected to the terminals of the sense amplifier, and the drains of the transistors of the second differential amplifier are directly connected to the terminals of the sense amplifier. In addition, in the adjustment circuit 420, the first differential amplifier (i.e., transistors M10 and M11) is connected to the transistor M3 as a sensing amplifier switch through the switch SW1, wherein the switch SW1 is controlled by the second setting signal S_even, that is, the first differential amplifier is selectively enabled according to the second setting signal S_even to generate a first adjustment signal to the terminals N1 and N2 according to a differential voltage signal (VCM+Vh1, VCM-Vh1) to adjust the voltage level of the amplified input signal (i.e., the voltage Vh1 is added or subtracted from the terminals N1 and N2 to the corresponding voltage level of the input signal). ); in addition, the second differential amplifier (i.e., transistors M12 and M13) is connected to transistor M3 as a sensing amplifier switch through switch SW2, wherein switch SW2 is controlled by a second reset signal R_even, i.e., the second differential amplifier is selectively enabled according to the second reset signal R_even to generate a second adjustment signal to terminals N1 and N2 according to a differential voltage signal (VCM+Vh1, VCM-Vh1) to adjust the voltage level of the amplified input signal (i.e., adding or subtracting the component corresponding to voltage Vh1 at terminals N1 and N2). The source of the transistor of the first differential amplifier is connected to the sensing amplifier switch through a first switch, and the source of the transistor of the second differential amplifier is connected to the sensing amplifier switch through a second switch, wherein the first switch and the second switch are controlled by the second setting signal and the second reset signal, respectively.
取样电路324的架构类似于图4所示的取样电路314,所差异仅在于取样电路324的输出需要由第一设定信号S_odd以及第一重设信号R_odd改为第二设定信号S_even以及第二重设信号R_even,以及开关SW1、SW2分别改为由第一设定信号S_odd以及第一重设信号R_odd所控制。由于本领域技术人员在阅读过以上实施例后应能了解如何实作取样电路324,故相关细节不再赘述。The architecture of the sampling circuit 324 is similar to the sampling circuit 314 shown in FIG. 4 , except that the output of the sampling circuit 324 needs to be changed from the first setting signal S_odd and the first reset signal R_odd to the second setting signal S_even and the second reset signal R_even, and the switches SW1 and SW2 are respectively changed to be controlled by the first setting signal S_odd and the first reset signal R_odd. Since those skilled in the art should be able to understand how to implement the sampling circuit 324 after reading the above embodiments, the relevant details are not repeated here.
如图3以及图4的电路架构所述,由于取样电路314所产生的第一设定信号S_odd以及第一重设信号R_odd可以立即被取样电路324所使用来快速地调整取样电路324的输出,且同样地取样电路324所产生的第二设定信号S_even以及第二重设信号R_even也可以立即被取样电路314所使用来快速地调整取样电路314的输出,再加上整体电路上的延迟几乎仅有感测放大器410的放大时间以及反相器412、414的延迟时间,故可以有效地降低传统架构中的反馈延迟问题。以图5所示的时序图来说明,在取样电路324产生第二设定信号S_even以及第二重设信号R_even以决定出位元B之后,第二设定信号S_even以及第二重设信号R_even可以迅速地被输入到图4的取样电路314中的调整电路420,以供取样电路314产生第一设定信号S_odd以及第一重设信号R_odd以决定出位元C使用。As described in the circuit architectures of FIG. 3 and FIG. 4 , since the first setting signal S_odd and the first reset signal R_odd generated by the sampling circuit 314 can be immediately used by the sampling circuit 324 to quickly adjust the output of the sampling circuit 324, and similarly, the second setting signal S_even and the second reset signal R_even generated by the sampling circuit 324 can also be immediately used by the sampling circuit 314 to quickly adjust the output of the sampling circuit 314, and the delay in the overall circuit is almost only the amplification time of the sense amplifier 410 and the delay time of the inverters 412 and 414, the feedback delay problem in the traditional architecture can be effectively reduced. 5 is used to illustrate that after the sampling circuit 324 generates the second setting signal S_even and the second reset signal R_even to determine the bit B, the second setting signal S_even and the second reset signal R_even can be quickly input to the adjustment circuit 420 in the sampling circuit 314 of FIG. 4 so that the sampling circuit 314 can generate the first setting signal S_odd and the first reset signal R_odd to determine the bit C.
在本实例中,调整电路420中的第一差分放大器(即,晶体管M10、M11)以及第二差分放大器(即,晶体管M12、M13)所接收的差分信号的共模电压VCM相同于调整后输入信号Vin’(包含差分信号Vin’+、Vin’-)的共模电压,因此,感测放大器410以及调整电路420在工艺、温度、电压(process、temperature、voltage)的异动下均会有相同/类似的变动,亦即调整电路420所产生的调整信号可以实际反映出电压Vh1而不会随着温度而有所变化。另一方面,由于电压Vh1而不会随着温度而有所变化,故接头参数h1的适应性演算法可以只需要在电子装置开机时启动而不需要背景执行,也间接降低了系统复杂度。In this example, the common mode voltage VCM of the differential signal received by the first differential amplifier (i.e., transistors M10, M11) and the second differential amplifier (i.e., transistors M12, M13) in the adjustment circuit 420 is the same as the common mode voltage of the adjusted input signal Vin' (including the differential signals Vin'+, Vin'-). Therefore, the sensing amplifier 410 and the adjustment circuit 420 will have the same/similar changes under the process, temperature, and voltage variations, that is, the adjustment signal generated by the adjustment circuit 420 can actually reflect the voltage Vh1 and will not change with the temperature. On the other hand, since the voltage Vh1 will not change with the temperature, the adaptive algorithm of the connector parameter h1 can only be started when the electronic device is turned on without the need for background execution, which indirectly reduces the system complexity.
图6为根据本发明一第二实施例的取样电路314的示意图。如图6所示,取样电路314包含了一感测放大器610以及一调整电路620,其中感测放大器610包含了用以接收调整后输入信号Vin’(包含差分信号Vin’+、Vin’-)的晶体管M1和M2、作为感测放大开关的晶体管M3、耦接于供应电压VDD的多个晶体管M4~M9、以及两个反相器612和614;调整电路620包含了作为一第一差分放大器的两个晶体管M10和M11、作为一第二差分放大器的两个晶体管M12和M13以及两个开关SW1和SW2。在本实施例中,晶体管M1、M2用来接收调整后输入信号Vin’以在端点N1、N2上产生放大后输入信号,且晶体管M4、M5的漏极用来输出信号S’、R’,其中信号S’、R’分别通过反相器612、614的操作以产生第一设定信号S_odd以及第一重设信号R_odd。此外,在调整电路620中,第一差分放大器(即,晶体管M10、M11)通过开关SW1来连接到接地电压,其中开关SW1由第二设定信号S_even以及时钟信号CK(例如,及闸(AND gate,与门)在接收第二设定信号S_even以及时钟信号CK后的输出)来控制,亦即第一差分放大器根据第二设定信号S_even以及时钟信号来选择性地致能,以根据一差分电压信号(VCM+Vh1、VCM-Vh1)来产生一第一调整信号至端点N1、N2以调整该放大后输入信号的电压准位(亦即,在端点N1、N2加上或减去电压Vh1所对应到的成分);另外,第二差分放大器(即,晶体管M12、M13)通过开关SW2来连接到接地电压,其中开关SW2由第二重设信号R_even以及时钟信号CK(例如,及闸(AND gate)在接收第二重设信号R_even以及时钟信号CK后的输出)来控制,亦即第二差分放大器根据第二重设信号R_even来选择性地致能,以根据一差分电压信号(VCM+Vh1、VCM-Vh1)来产生一第二调整信号至端点N1、N2以调整该放大后输入信号的电压准位(亦即,在端点N1、N2加上或减去电压Vh1所对应到的成分)。该第一差分放大器的晶体管的源极通过一第一开关以连接到一参考电压,以及该第二差分放大器的晶体管的源极通过一第二开关以连接到该参考电压,其中该第一开关同时由该第二设定信号以及该时钟信号来控制,且该第二开关同时由该第二重设信号以及该时钟信号来控制。FIG6 is a schematic diagram of a sampling circuit 314 according to a second embodiment of the present invention. As shown in FIG6 , the sampling circuit 314 includes a sense amplifier 610 and an adjustment circuit 620, wherein the sense amplifier 610 includes transistors M1 and M2 for receiving an adjusted input signal Vin’ (including differential signals Vin’+, Vin’-), a transistor M3 as a sense amplifier switch, a plurality of transistors M4-M9 coupled to a supply voltage VDD, and two inverters 612 and 614; the adjustment circuit 620 includes two transistors M10 and M11 as a first differential amplifier, two transistors M12 and M13 as a second differential amplifier, and two switches SW1 and SW2. In this embodiment, transistors M1 and M2 are used to receive the adjusted input signal Vin’ to generate amplified input signals at terminals N1 and N2, and the drains of transistors M4 and M5 are used to output signals S’ and R’, wherein the signals S’ and R’ are respectively operated by inverters 612 and 614 to generate a first setting signal S_odd and a first reset signal R_odd. In addition, in the adjustment circuit 620, the first differential amplifier (i.e., transistors M10 and M11) is connected to the ground voltage through the switch SW1, wherein the switch SW1 is controlled by the second setting signal S_even and the clock signal CK (e.g., the output of the AND gate after receiving the second setting signal S_even and the clock signal CK), that is, the first differential amplifier is selectively enabled according to the second setting signal S_even and the clock signal to generate a first adjustment signal to the terminals N1 and N2 according to a differential voltage signal (VCM+Vh1, VCM-Vh1) to adjust the voltage level of the amplified input signal (i.e., the component corresponding to the voltage Vh1 is added or subtracted from the terminals N1 and N2); in addition, the second differential amplifier (i.e., transistors M12 and M13) is connected to the ground voltage through the switch SW2, wherein the switch SW2 is controlled by the second reset signal R_even and the clock signal CK (e.g., the output of the AND gate after receiving the second setting signal S_even and the clock signal CK). The first differential amplifier is controlled by the output of the first differential amplifier gate after receiving the second reset signal R_even and the clock signal CK, that is, the second differential amplifier is selectively enabled according to the second reset signal R_even to generate a second adjustment signal to the terminals N1 and N2 according to a differential voltage signal (VCM+Vh1, VCM-Vh1) to adjust the voltage level of the amplified input signal (that is, the component corresponding to the voltage Vh1 is added or subtracted from the terminals N1 and N2). The source of the transistor of the first differential amplifier is connected to a reference voltage through a first switch, and the source of the transistor of the second differential amplifier is connected to the reference voltage through a second switch, wherein the first switch is controlled by the second setting signal and the clock signal at the same time, and the second switch is controlled by the second reset signal and the clock signal at the same time.
取样电路324的架构类似于图6所示的取样电路314,所差异仅在于取样电路324的输出需要由第一设定信号S_odd以及第一重设信号R_odd改为第二设定信号S_even以及第二重设信号R_even,以及开关SW1、SW2分别改为由第一设定信号S_odd以及第一重设信号R_odd所控制。由于本领域技术人员在阅读过以上实施例后应能了解如何实作取样电路324,故相关细节不再赘述。The architecture of the sampling circuit 324 is similar to the sampling circuit 314 shown in FIG. 6 , except that the output of the sampling circuit 324 needs to be changed from the first setting signal S_odd and the first reset signal R_odd to the second setting signal S_even and the second reset signal R_even, and the switches SW1 and SW2 are respectively changed to be controlled by the first setting signal S_odd and the first reset signal R_odd. Since those skilled in the art should be able to understand how to implement the sampling circuit 324 after reading the above embodiments, the relevant details are not repeated here.
如图3以及图6的电路架构所述,由于取样电路314所产生的第一设定信号S_odd以及第一重设信号R_odd可以立即被取样电路324所使用来快速地调整取样电路324的输出,且同样地取样电路324所产生的第二设定信号S_even以及第二重设信号R_even也可以立即被取样电路314所使用来快速地调整取样电路314的输出,再加上整体电路上的延迟几乎仅有感测放大器410的放大时间以及反相器412、414的延迟时间,故可以有效地降低传统架构中的反馈延迟问题。以图7所示的时序图来说明,在取样电路324产生第二设定信号S_even以及第二重设信号R_even以决定出位元B之后,第二设定信号S_even以及第二重设信号R_even可以迅速地被输入到图4的取样电路314中的调整电路420,以供取样电路314产生第一设定信号S_odd以及第一重设信号R_odd以决定出位元C使用。As described in the circuit architectures of FIG. 3 and FIG. 6 , since the first setting signal S_odd and the first reset signal R_odd generated by the sampling circuit 314 can be immediately used by the sampling circuit 324 to quickly adjust the output of the sampling circuit 324, and similarly, the second setting signal S_even and the second reset signal R_even generated by the sampling circuit 324 can also be immediately used by the sampling circuit 314 to quickly adjust the output of the sampling circuit 314, and the delay in the overall circuit is almost only the amplification time of the sense amplifier 410 and the delay time of the inverters 412 and 414, the feedback delay problem in the traditional architecture can be effectively reduced. 7 , after the sampling circuit 324 generates the second setting signal S_even and the second reset signal R_even to determine the bit B, the second setting signal S_even and the second reset signal R_even can be quickly input to the adjustment circuit 420 in the sampling circuit 314 of FIG. 4 , so that the sampling circuit 314 can generate the first setting signal S_odd and the first reset signal R_odd to determine the bit C.
在本实例中,调整电路620中的第一差分放大器(即,晶体管M10、M11)以及第二差分放大器(即,晶体管M12、M13)所接收的差分信号的共模电压VCM相同于调整后输入信号Vin’(包含差分信号Vin’+、Vin’-)的共模电压,因此,感测放大器610以及调整电路620在工艺、温度、电压的异动下均会有相同/类似的变动,亦即调整电路620所产生的调整信号可以实际反映出电压Vh1而不会随着温度而有所变化。另一方面,由于电压Vh1不会随着温度而有所变化,故接头参数h1的适应性演算法可以只需要在电子装置开机时启动而不需要背景执行,也间接降低了系统复杂度。In this example, the common mode voltage VCM of the differential signal received by the first differential amplifier (i.e., transistors M10, M11) and the second differential amplifier (i.e., transistors M12, M13) in the adjustment circuit 620 is the same as the common mode voltage of the adjusted input signal Vin' (including the differential signals Vin'+, Vin'-). Therefore, the sensing amplifier 610 and the adjustment circuit 620 will have the same/similar changes under the variation of process, temperature, and voltage, that is, the adjustment signal generated by the adjustment circuit 620 can actually reflect the voltage Vh1 and will not change with the temperature. On the other hand, since the voltage Vh1 will not change with the temperature, the adaptive algorithm of the connector parameter h1 can only be started when the electronic device is turned on without the need for background execution, which indirectly reduces the system complexity.
以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention. All equivalent changes and modifications made according to the claims of the present invention should fall within the scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910222504.0A CN111726104B (en) | 2019-03-22 | 2019-03-22 | Decision feedback equalizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910222504.0A CN111726104B (en) | 2019-03-22 | 2019-03-22 | Decision feedback equalizer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111726104A CN111726104A (en) | 2020-09-29 |
CN111726104B true CN111726104B (en) | 2024-08-27 |
Family
ID=72562178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910222504.0A Active CN111726104B (en) | 2019-03-22 | 2019-03-22 | Decision feedback equalizer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111726104B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103684281A (en) * | 2012-09-04 | 2014-03-26 | 南亚科技股份有限公司 | Decision feedback equalizer |
CN104756452A (en) * | 2012-08-15 | 2015-07-01 | 马维尔国际贸易有限公司 | Switched continuous time linear equalizer with integrated sampler |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES305306A1 (en) * | 1964-10-15 | 1965-05-01 | Western Electric Co | Data handling system. (Machine-translation by Google Translate, not legally binding) |
US20020181575A1 (en) * | 2001-05-29 | 2002-12-05 | Koninklijke Philips Electronics N.V. | Circuitry for Mitigating performance loss associated with feedback loop delay in decision feedback equalizer and method therefor |
US7200164B2 (en) * | 2002-11-07 | 2007-04-03 | Winbond Electronics Corp. | Packet-based multiplication-free CCK demodulator with a fast multipath interference cipher |
TWI265700B (en) * | 2004-05-27 | 2006-11-01 | Samsung Electronics Co Ltd | Decision feedback equalization input buffer |
KR100801055B1 (en) * | 2006-10-16 | 2008-02-04 | 삼성전자주식회사 | Data receiver and semiconductor device having same |
US7936812B2 (en) * | 2007-07-02 | 2011-05-03 | Micron Technology, Inc. | Fractional-rate decision feedback equalization useful in a data transmission system |
US7792187B2 (en) * | 2007-08-31 | 2010-09-07 | International Business Machines Corporation | Multi-tap decision feedback equalizer (DFE) architecture eliminating critical timing path for higher-speed operation |
CN106534011B (en) * | 2015-09-09 | 2019-06-14 | 创意电子股份有限公司 | Receiver and related control method |
-
2019
- 2019-03-22 CN CN201910222504.0A patent/CN111726104B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104756452A (en) * | 2012-08-15 | 2015-07-01 | 马维尔国际贸易有限公司 | Switched continuous time linear equalizer with integrated sampler |
CN103684281A (en) * | 2012-09-04 | 2014-03-26 | 南亚科技股份有限公司 | Decision feedback equalizer |
Also Published As
Publication number | Publication date |
---|---|
CN111726104A (en) | 2020-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7701257B2 (en) | Data receiver and semiconductor device including the data receiver | |
Krupnik et al. | 112-Gb/s PAM4 ADC-based SERDES receiver with resonant AFE for long-reach channels | |
US8755428B2 (en) | Feed-forward equalizer architectures | |
US7724079B1 (en) | Programmable logic enabled dynamic offset cancellation | |
US7443913B2 (en) | High speed decision feedback equalizer | |
KR101642831B1 (en) | Equalizer and semiconductor memory device comprising the same | |
US8879616B2 (en) | Receiver with decision feedback equalizer | |
US7646323B2 (en) | Clock generator | |
US8040973B2 (en) | Transmitter including pre-distortion | |
WO2008032492A1 (en) | Judgement negative-feedback type waveform equalizing method and equalizer | |
US9628302B2 (en) | Decision feedback equalizer | |
CN101110581B (en) | Receiver for reducing intersymbol interference of a channel and compensating for signal gain loss, and method thereof | |
US20080191772A1 (en) | Clock Correction Circuit and Method | |
TWI745970B (en) | Receiver front-end | |
KR101203457B1 (en) | Multi-channel serial link receiver with a central processing unit | |
TWI681651B (en) | Decision feedback equalizer | |
CN111726104B (en) | Decision feedback equalizer | |
US9621176B2 (en) | Offset correction for sense amplifier | |
JP4673426B2 (en) | Receiver circuit | |
TWI724544B (en) | Communication receiving device and clock data recovery method | |
JP2009010544A (en) | Signal waveform equalization circuit and reception circuit | |
KR100873626B1 (en) | Data Receivers in Semiconductor Integrated Circuits | |
JP4872228B2 (en) | Output buffer circuit | |
CN112491429B (en) | Communication receiving device and clock data recovery method | |
JP4992927B2 (en) | Serial parallel converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |