CN111725466A - A kind of functionalized polyolefin composite membrane and its preparation method and application - Google Patents
A kind of functionalized polyolefin composite membrane and its preparation method and application Download PDFInfo
- Publication number
- CN111725466A CN111725466A CN202010539605.3A CN202010539605A CN111725466A CN 111725466 A CN111725466 A CN 111725466A CN 202010539605 A CN202010539605 A CN 202010539605A CN 111725466 A CN111725466 A CN 111725466A
- Authority
- CN
- China
- Prior art keywords
- separator
- polyolefin
- diaphragm
- lithium
- lithium salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Cell Separators (AREA)
Abstract
本发明提供了一种功能化聚烯烃复合隔膜及其制备方法和应用,本发明的功能化聚烯烃复合隔膜由碳纳米管、锂盐、无机纳米二氧化硅和聚烯烃成分组成,本发明提供的复合隔膜制备方法为:将粘结剂和功能化碳纳米管的溶液和纳米二氧化硅混合后获得涂敷液,再将聚烯烃隔膜放置在锂盐的乙醇溶液中获得锂盐改性聚烯烃隔膜,然后再将涂敷液均匀的涂敷到锂盐改性聚烯烃隔膜上,再经真空干燥后获得功能化碳纳米管和锂盐涂覆聚烯烃隔膜,制备的隔膜具有优良的机械强度、高稳定性、高活性表面积、电解液浸润性好、优良的锂离子传导能力和电化学性能,可以很好的应用于锂离子电池领域。
The present invention provides a functionalized polyolefin composite diaphragm and a preparation method and application thereof. The functionalized polyolefin composite diaphragm of the present invention is composed of carbon nanotubes, lithium salts, inorganic nano-silica and polyolefin components. The present invention provides The preparation method of the composite diaphragm is as follows: the solution of the binder and the functionalized carbon nanotubes is mixed with nano-silica to obtain a coating solution, and then the polyolefin diaphragm is placed in an ethanol solution of lithium salt to obtain a lithium salt modified polymer. olefin separator, and then uniformly coat the coating liquid on the lithium salt modified polyolefin separator, and then vacuum dry to obtain functionalized carbon nanotubes and lithium salt coated polyolefin separator. The prepared separator has excellent mechanical properties. Strength, high stability, high active surface area, good electrolyte wettability, excellent lithium ion conductivity and electrochemical performance, can be well used in the field of lithium ion batteries.
Description
技术领域technical field
本发明属于锂离子电池领域,具体涉及到一种功能化聚烯烃复合隔膜及其制备方法和应用,以及功能化聚烯烃复合隔膜在锂离子电池的应用。The invention belongs to the field of lithium ion batteries, and specifically relates to a functionalized polyolefin composite diaphragm, a preparation method and application thereof, and the application of the functionalized polyolefin composite diaphragm in lithium ion batteries.
技术背景technical background
锂离子电池(LIBs)具有工作电压高、能量密度高、使用寿命长等优点,是一种很有发展前景的移动设备电源和智能电网、电动汽车等大型电力储能应用电源。然而,用于制造LIBs的传统材料固有的安全和效率问题限制了它们的进一步应用。LIBs是由正极、电解液、隔膜和负极这四个主要部件组成。隔膜位于正极和负极之间是LIBs的重要组成部分,它是离子导体和电子绝缘体,而且通过切断正负极,起到防止短路的关键作用。目前商用的LIBs隔膜是由聚丙烯(PP)和聚乙烯(PE)等聚烯烃制成的。Lithium-ion batteries (LIBs) have the advantages of high operating voltage, high energy density, and long service life. They are a promising power source for mobile devices and large-scale power storage applications such as smart grids and electric vehicles. However, the inherent safety and efficiency issues of traditional materials used to fabricate LIBs limit their further applications. LIBs are composed of four main components: positive electrode, electrolyte, separator, and negative electrode. The separator located between the positive and negative electrodes is an important part of LIBs, which is an ionic conductor and an electronic insulator, and plays a key role in preventing short circuits by cutting off the positive and negative electrodes. Currently commercial LIBs separators are made of polyolefins such as polypropylene (PP) and polyethylene (PE).
然而,传统聚烯烃隔膜受到表面能的限制导致电解液的润湿性和滞留性较差,由于聚烯烃隔膜结晶度高,与电解液接触时电解质不能进入结晶区,致使隔膜对电解液的润湿性差和润湿速度慢,从而导致隔膜的离子电导率低、电阻大。此外,由于其熔点低而导致热稳定性较差,在高温下易发生热收缩,热收缩易造成内部电极之间相互接触而短路,当工作温度过高时,隔膜可能被损坏,并造成短路,引起LIBs爆炸,隔膜的热稳定性和电化学性能不足严重影响LIBs的安全性能和循环性能。However, the traditional polyolefin separator is limited by the surface energy, which leads to poor wettability and retention of the electrolyte. Due to the high crystallinity of the polyolefin separator, the electrolyte cannot enter the crystalline region when it is in contact with the electrolyte, resulting in the wettability of the separator to the electrolyte. Poor wettability and slow wetting, resulting in low ionic conductivity and high electrical resistance of the separator. In addition, due to its low melting point, the thermal stability is poor, and thermal shrinkage is prone to occur at high temperatures. Thermal shrinkage can easily cause internal electrodes to contact each other and cause a short circuit. When the operating temperature is too high, the diaphragm may be damaged and cause a short circuit , causing the explosion of LIBs, and the insufficient thermal stability and electrochemical performance of the separators seriously affect the safety performance and cycling performance of LIBs.
使用改性的隔膜来解决这些LIBs使用中产生的安全问题是一个简而有效的方法。目前通过物理涂覆含有纳米陶瓷颗粒的粘结剂是增强聚烯烃隔膜机械性能和尺寸热稳定性能的主要方式之一。但涂覆层会增加隔膜的厚度,延长锂离子传输的路径,以及粘结剂也会降低锂离子传输速度。Shi等人将三氧化二铝(Al2O3)、羧甲基纤维素和苯乙烯-丁二烯橡胶混合,在纯PE隔膜的一侧涂覆,制备了用于LIBs的涂层隔膜,与未改性的PE隔膜相比,在145℃高温下0.5h后,改性隔膜热收缩率保持在65%。Fu等采用聚偏氟乙烯-六氟丙烯(PVDF-HFP)为粘结剂,以丙酮为溶剂,将硅酸四乙酯直接水解得到的粒径均匀的纳米二氧化硅(SiO2)粒子涂覆在PP隔膜上,改性PP隔膜在145℃高温下0.5h后尺寸热收缩率保持在63%,拉伸强度、接触角、电解液润湿性显著提高。The use of modified separators is a simple and effective approach to address the safety issues arising from the use of these LIBs. At present, one of the main ways to enhance the mechanical properties and dimensional thermal stability of polyolefin separators is by physically coating the binders containing nano-ceramic particles. But the coating layer increases the thickness of the separator, extending the path for lithium ion transport, and the binder also reduces the speed of lithium ion transport. Shi et al. prepared a coated separator for LIBs by mixing aluminum oxide (Al 2 O 3 ), carboxymethyl cellulose and styrene-butadiene rubber and coating one side of a pure PE separator, Compared with the unmodified PE separator, the thermal shrinkage of the modified separator remained at 65% after 0.5 h at a high temperature of 145 °C. Fu et al. used polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) as a binder and acetone as a solvent to directly hydrolyze tetraethyl silicate to obtain nano-silica (SiO 2 ) particles with uniform particle size. Covered on the PP separator, the dimensional thermal shrinkage of the modified PP separator remains at 63% after 0.5 h at 145 °C, and the tensile strength, contact angle, and electrolyte wettability are significantly improved.
综上所述,传统的聚烯烃隔膜的尺寸热稳定性和电解液的浸润性较差,现有的一些无机涂覆改性方法在一定程度上提高了隔膜的尺寸热稳定性,但综合性能仍有很大提高的空间和需要,因此需要更好的改进方法获得一个尺寸热稳定性增强、电解液浸润性好、电化学性能优异的锂离子电池复合隔膜。To sum up, the dimensional thermal stability of the traditional polyolefin separator and the wettability of the electrolyte are poor. Some existing inorganic coating modification methods improve the dimensional thermal stability of the separator to a certain extent, but the overall performance There is still much room and need for improvement, so a better improved method is needed to obtain a lithium-ion battery composite separator with enhanced dimensional thermal stability, good electrolyte wettability, and excellent electrochemical performance.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为解决传统聚烯烃隔膜的尺寸热稳定性差以及电解液浸润性差等缺点,本发明提供了一种功能化聚烯烃复合隔膜及其制备方法和应用,获得了热稳定性优异、力学强度提高、电解液浸润性良好以及电化学性能提高的综合性能优异的复合隔膜。The purpose of the present invention is to solve the shortcomings of the traditional polyolefin diaphragm, such as poor dimensional thermal stability and poor electrolyte wettability, the present invention provides a functionalized polyolefin composite diaphragm, a preparation method and application thereof, and obtains excellent thermal stability, The composite separator with improved mechanical strength, good electrolyte wettability and improved electrochemical performance has excellent comprehensive properties.
本发明提供了一种功能化聚烯烃复合隔膜及其制备方法和应用,其步骤如下:The invention provides a functionalized polyolefin composite diaphragm and a preparation method and application thereof. The steps are as follows:
(1)涂覆液的制备:将粘结剂和溶剂混合,在70-100℃回流搅拌4-8h后获粘结剂溶液,将碳纳米管、纳米SiO2和去离子水混合后加入粘结剂溶液,经超声搅拌获得涂覆液;(1) Preparation of coating solution: mix binder and solvent, reflux and stir at 70-100°C for 4-8h to obtain binder solution, mix carbon nanotubes, nano-SiO 2 and deionized water, and add binder solution A binder solution is obtained by ultrasonic stirring to obtain a coating solution;
(2)锂盐改性聚烯烃隔膜:将锂盐加入到乙醇中获得锂盐乙醇溶液,再将聚烯烃隔膜在乙醇超声清洗之后进行真空干燥,将干燥后的聚烯烃隔膜置于锂盐乙醇溶液中浸泡30—60min后经真空干燥获得锂盐改性聚烯烃隔膜。(2) Lithium salt-modified polyolefin diaphragm: adding lithium salt to ethanol to obtain a lithium salt ethanol solution, then vacuum drying the polyolefin diaphragm after ultrasonic cleaning with ethanol, and placing the dried polyolefin diaphragm in lithium salt ethanol After being soaked in the solution for 30-60 minutes, the lithium salt modified polyolefin diaphragm is obtained by vacuum drying.
(3)聚烯烃复合隔膜的制备:将步骤(2)获得的锂盐改性聚烯烃隔膜平整的铺放在玻璃板上,用刮刀将步骤(1)的涂覆液均匀的涂覆到步骤(2)的聚烯烃隔膜的一侧后进行真空干燥,获得碳纳米管、锂盐和纳米SiO2改性的聚烯烃复合隔膜。(3) Preparation of polyolefin composite diaphragm: Lay the lithium salt-modified polyolefin diaphragm obtained in step (2) evenly on a glass plate, and use a scraper to evenly coat the coating solution of step (1) on the step (1) One side of the polyolefin separator in (2) is then vacuum-dried to obtain a polyolefin composite separator modified with carbon nanotubes, lithium salts and nano-SiO 2 .
步骤(1)所述的碳纳米管为羧基化碳纳米管(CNT-COOH)、磺酸化碳纳米管(CNT-SO3)、羟基化碳纳米管(CNT-OH)中的任意一种;The carbon nanotubes described in step (1) are any one of carboxylated carbon nanotubes (CNT-COOH), sulfonated carbon nanotubes (CNT-SO 3 ), and hydroxylated carbon nanotubes (CNT-OH);
步骤(1)所述的粘结剂为聚偏氟乙烯(PVDF)、聚乙烯醇(PVA)、羧甲基纤维素(CMC)或聚丙烯酸甲酯;The binder described in step (1) is polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC) or polymethyl acrylate;
步骤(1)所述的溶剂为N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAC)、去离子水、乙醇、丙酮、中的任意一种;The solvent described in step (1) is any one in N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC), deionized water, ethanol, acetone, etc.;
步骤(1)所述的碳纳米管在涂覆液的质量浓度为0.05-0.4%,优选为0.1-0.3%;The mass concentration of the carbon nanotubes in the coating solution in step (1) is 0.05-0.4%, preferably 0.1-0.3%;
步骤(2)所述的锂盐为六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、双氟磺酰亚胺锂(LiFSI)、三氟甲基磺酸锂(CF3SO3Li)、二(三氟甲基磺酸)亚胺锂(LiTFSI)中的任意一种;The lithium salt in step (2) is lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium bisfluorosulfonimide (LiFSI), lithium trifluoromethanesulfonate (CF 3 SO 3 Li) , any one in lithium bis(trifluoromethanesulfonic acid) imide (LiTFSI);
步骤(2)所述的聚烯烃隔膜为聚乙烯隔膜(PE)、聚丙烯隔膜(PP)中的任意一种;The polyolefin diaphragm described in step (2) is any one of polyethylene diaphragm (PE) and polypropylene diaphragm (PP);
一种功能化聚烯烃复合隔膜,它是由如下方法制备的:A functionalized polyolefin composite membrane, which is prepared by the following method:
(1)涂覆液的制备:将PVA和去离子水混合,在90℃回流搅拌4h后获4%质量浓度的PVA水溶液,将碳纳米管、纳米SiO2和去离子水混合后加入PVA水溶液,经超声搅拌获得碳纳米管含量为0.3%的涂覆液;(1) Preparation of coating solution: PVA and deionized water were mixed, and a 4% mass concentration of PVA aqueous solution was obtained after refluxing and stirring at 90 °C for 4 h. After mixing carbon nanotubes, nano-SiO 2 and deionized water, the PVA aqueous solution was added. , a coating solution with a carbon nanotube content of 0.3% was obtained by ultrasonic stirring;
(2)锂盐改性聚烯烃隔膜的制备:将双三氟甲基磺酰亚胺锂加入到乙醇中制备质量浓度为2%的锂盐乙醇溶液,再将聚烯烃隔膜置于2%的锂盐乙醇溶液中浸泡30min后,再经40℃真空干燥24h获得锂盐改性聚烯烃隔膜。(2) Preparation of lithium salt-modified polyolefin diaphragm: Lithium bis-trifluoromethanesulfonimide was added to ethanol to prepare a lithium salt ethanol solution with a mass concentration of 2%, and then the polyolefin diaphragm was placed in a 2% ethanol solution. After soaking in the lithium salt ethanol solution for 30 min, and then vacuum drying at 40 °C for 24 h to obtain the lithium salt modified polyolefin separator.
(3)聚烯烃复合隔膜的制备:将步骤(2)获得的锂盐改性聚烯烃隔膜平整的铺放在玻璃板上,用刮刀将步骤(1)的涂覆液均匀的涂覆到步骤(2)的聚烯烃隔膜的一侧后进行真空干燥,获得碳纳米管、锂盐和纳米SiO2改性的聚烯烃复合隔膜。(3) Preparation of polyolefin composite diaphragm: Lay the lithium salt-modified polyolefin diaphragm obtained in step (2) evenly on a glass plate, and use a scraper to evenly coat the coating solution of step (1) on the step (1) One side of the polyolefin separator in (2) is then vacuum-dried to obtain a polyolefin composite separator modified with carbon nanotubes, lithium salts and nano-SiO 2 .
本发明还提供了一种功能化聚烯烃复合隔膜在锂离子电池的应用。The invention also provides the application of the functionalized polyolefin composite separator in the lithium ion battery.
本发明的有益效果The beneficial effects of the present invention
本发明提供了一种功能化碳纳米管和锂盐涂覆聚烯烃隔膜的方法及其复合膜的制备方法,该方法利用热稳定性能优异的纳米二氧化硅,提高隔膜热稳定性;同时,纳米SiO2的比表面积大,堆积密度小等优点提高聚烯烃隔膜对电解液的浸润性,但无机二氧化硅的会增加界面阻抗。进而利用碳纳米管优异的电学性能、强的机械强度、高稳定性和高比表面积等显著特点,在隔膜的正极侧涂覆功能化碳纳米管,改善电池性能,获得高尺寸热稳定性、电解液浸润性好、界面阻抗降低、电化学性能提高的综合性能优异的复合聚烯烃隔膜,进而使其更大范围地应用在锂离子电池中。The present invention provides a method for coating a polyolefin diaphragm with functionalized carbon nanotubes and lithium salts and a method for preparing a composite film thereof. The method utilizes nano-silicon dioxide with excellent thermal stability to improve the thermal stability of the diaphragm; at the same time, The advantages of nano- SiO2 , such as large specific surface area and small bulk density, improve the wettability of the polyolefin separator to the electrolyte, but the inorganic silica will increase the interface impedance. Furthermore, taking advantage of the outstanding electrical properties, strong mechanical strength, high stability and high specific surface area of carbon nanotubes, functionalized carbon nanotubes are coated on the positive side of the separator to improve battery performance and obtain high dimensional thermal stability, The composite polyolefin separator with excellent comprehensive properties of good electrolyte wettability, reduced interface impedance and improved electrochemical performance makes it widely used in lithium-ion batteries.
附图说明Description of drawings
图1中(a)、(b)、(c)、(d)分别为对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的表面扫描电镜图;(a), (b), (c) and (d) in Figure 1 are the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2 and the PE@LiSiCNT0.1 composite separator of Example 1, respectively. SEM image of the surface of the PE@LiSiCNT0.3 composite separator of Example 2;
图2中((a)、(b)、(c)、(d)分别为对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜热处理前的照片,(e)、(f)、(g)、(h)分别为对比例1PE隔膜、对比例2的PE@Si复合隔膜和实施例1、实施例2的PE@LiSiCNT复合隔膜150℃下热处理30min的热收缩照片;In Figure 2 ((a), (b), (c), (d) are the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2 and the PE@LiSiCNT0.1 composite separator of Example 1, respectively, Photographs of the PE@LiSiCNT0.3 composite separator of Example 2 before heat treatment, (e), (f), (g), and (h) are the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2 and the examples, respectively 1. The thermal shrinkage photo of the PE@LiSiCNT composite membrane of Example 2 heat-treated at 150 °C for 30 min;
图3是对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的本体阻抗图谱;3 is the bulk impedance spectra of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2;
图4是对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的交流阻抗图谱;4 is the AC impedance spectrum of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2;
图5是对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜在不同倍率下的电池循环性能;Figure 5 shows the battery cycles of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2 at different rates performance;
图6是对比例1的PE隔膜在充放电流密度为0.2C的电池循环性能;Figure 6 shows the cycle performance of the PE separator of Comparative Example 1 at a charge-discharge current density of 0.2C;
图7是对比例2的PE@Si复合隔膜在充放电流密度为0.2C的电池循环性能;Figure 7 shows the cycle performance of the PE@Si composite separator of Comparative Example 2 at a charge-discharge current density of 0.2 C;
图8是实施例1的PE@LiSiCNT0.1复合隔膜在充放电流密度为0.2C的电池循环性能;Fig. 8 is the battery cycle performance of the PE@LiSiCNT0.1 composite separator of Example 1 at a charge-discharge current density of 0.2C;
图9是实施例2的PE@LiSiCNT0.3复合隔膜在充放电流密度为0.2C的电池循环性能。FIG. 9 shows the battery cycle performance of the PE@LiSiCNT0.3 composite separator of Example 2 at a charge-discharge current density of 0.2 C.
具体实施方式Detailed ways
下面将结合具体的实施例对本发明的技术方案作进一步的详细说明。目的在于使本领域技术人员对本申请有更加清楚的理解和认识。以下各具体实施例不应在任何程度上被理解或解释为对本申请权利要求书请求保护范围的限制。The technical solutions of the present invention will be further described in detail below with reference to specific embodiments. The purpose is to make those skilled in the art have a clearer understanding and understanding of the present application. The following specific examples should not be construed or construed to limit the scope of protection claimed in the claims of the present application to any extent.
实施例1Example 1
(1)涂覆液的制备:(1) Preparation of coating liquid:
分别将4g聚乙烯醇(PVA)和96ml去离子水加入到三口烧瓶中,90℃回流搅拌4h,获得4%质量浓度的PVA水溶液。将水性羟基化碳纳米管(CNT-OH)和去离子水混合,配成5%的CNT-OH溶液。将1g纳米SiO2和0.3g 5%的CNT-OH溶液加入13.7g的PVA水溶液中,超声并搅拌0.5h得到CNT-OH含量为0.1%的涂覆液。4 g of polyvinyl alcohol (PVA) and 96 ml of deionized water were respectively added to the three-necked flask, and the mixture was refluxed and stirred at 90° C. for 4 h to obtain a PVA aqueous solution with a mass concentration of 4%. Aqueous hydroxylated carbon nanotubes (CNT-OH) were mixed with deionized water to prepare a 5% CNT-OH solution. 1 g of nano-SiO 2 and 0.3 g of 5% CNT-OH solution were added to 13.7 g of PVA aqueous solution, sonicated and stirred for 0.5 h to obtain a coating solution with a CNT-OH content of 0.1%.
(2)锂盐改性聚烯烃隔膜:(2) Lithium salt modified polyolefin separator:
将双三氟甲基磺酰亚胺锂(LiTFSI)加入到乙醇中制备质量浓度为2%的LiTFSI/乙醇溶液,将PE隔膜首先经乙醇超声清洗再在40℃真空烘干后置于LiTFSI/乙醇溶液中浸泡30min,40℃真空干燥24h获得锂盐改性聚烯烃隔膜。Lithium bistrifluoromethanesulfonimide (LiTFSI) was added into ethanol to prepare a LiTFSI/ethanol solution with a mass concentration of 2%. Immersion in ethanol solution for 30 min, and vacuum drying at 40 °C for 24 h to obtain a lithium salt modified polyolefin separator.
(3)PE@LiSiCNT0.1复合隔膜的制备:(3) Preparation of PE@LiSiCNT0.1 composite separator:
将步骤(2)获得的锂盐改性聚烯烃隔膜平整的铺放在玻璃板上,用刮刀将步骤(1)制备的涂覆液均匀的涂覆到步骤(2)获得的PE隔膜的一侧,并真空干燥,得到PE@LiSiCNT0.1复合隔膜。The lithium salt-modified polyolefin separator obtained in step (2) is laid flat on a glass plate, and the coating solution prepared in step (1) is evenly coated on one side of the PE separator obtained in step (2) with a scraper. side, and vacuum-dried to obtain the PE@LiSiCNT0.1 composite separator.
(4)正极片的制备:(4) Preparation of positive electrode sheet:
分别取1.6g LiFePO4,0.2g乙炔黑及0.2g PVDF,溶解在N-甲基吡咯烷酮(NMP)中,搅拌均匀,将得到的浆料涂在铝箔纸上,裁片,烘干得到正极片。Take 1.6g LiFePO 4 , 0.2g acetylene black and 0.2g PVDF respectively, dissolve them in N-methylpyrrolidone (NMP), stir evenly, apply the obtained slurry on aluminum foil paper, cut out pieces, and dry them to obtain positive electrode pieces .
(5)电池的组装:(5) Assembly of the battery:
将正极壳、步骤(4)的正极片、步骤(3)中的PE@LiSiCNT0.1复合隔膜、锂片、垫片、弹片组装成Li//PE@LiSiCNT0.1//LiFePO4半电池。A Li//PE@LiSiCNT0.1//LiFePO 4 half-cell was assembled from the positive electrode shell, the positive electrode sheet in step (4), the PE@LiSiCNT0.1 composite separator in step (3), lithium sheet, gasket, and spring sheet.
实施例2Example 2
(1)涂覆液的制备:(1) Preparation of coating liquid:
分别将4g PVA和96ml去离子水置于三口烧瓶中,90℃回流搅拌4h,获得4%质量浓度的PVA水溶液,将水性CNT-OH和去离子水配成5%的CNT-OH溶液,将1g纳米SiO2和0.9g5%的CNT-OH溶液加入13.1g的PVA水溶液中,超声并搅拌0.5h得到CNT-OH含量为0.3%的涂覆液。Put 4g of PVA and 96ml of deionized water in a three-necked flask, respectively, and stir at 90 °C for 4 hours to obtain a 4% mass concentration of PVA aqueous solution. The aqueous CNT-OH and deionized water were made into a 5% CNT-OH solution, and the 1 g of nano-SiO 2 and 0.9 g of 5% CNT-OH solution were added to 13.1 g of PVA aqueous solution, sonicated and stirred for 0.5 h to obtain a coating solution with a CNT-OH content of 0.3%.
(2)锂盐改性聚烯烃隔膜:(2) Lithium salt modified polyolefin separator:
将双三氟甲基磺酰亚胺锂(LiTFSI)加入到乙醇中制备质量浓度为2%的LiTFSI/乙醇溶液,将PE隔膜经乙醇超声清洗,40℃真空烘干后置于LiTFSI/乙醇溶液中浸泡30min,40℃真空干燥24h获得锂盐改性聚烯烃隔膜。Lithium bistrifluoromethanesulfonimide (LiTFSI) was added to ethanol to prepare a LiTFSI/ethanol solution with a mass concentration of 2%. The PE diaphragm was ultrasonically cleaned with ethanol, dried in vacuum at 40°C and placed in LiTFSI/ethanol solution. Soak for 30 min and vacuum dry at 40 °C for 24 h to obtain a lithium salt-modified polyolefin separator.
(3)PE@LiSiCNT0.3复合隔膜的制备:(3) Preparation of PE@LiSiCNT0.3 composite separator:
将步骤(2)获得的锂盐改性聚烯烃隔膜平整的铺放在玻璃板上,用刮刀将步骤(1)制备的涂覆液均匀的涂覆到PE隔膜的一侧,并真空干燥,获得PE@LiSiCNT0.3复合隔膜。The lithium salt-modified polyolefin diaphragm obtained in step (2) is evenly spread on a glass plate, and the coating solution prepared in step (1) is evenly coated on one side of the PE diaphragm with a scraper, and vacuum-dried, The PE@LiSiCNT0.3 composite separator was obtained.
(4)正极片的制备:(4) Preparation of positive electrode sheet:
分别取1.6g LiFePO4,0.2g乙炔黑及0.2g PVDF,溶解在NMP中,搅拌均匀,将得到的浆料涂在铝箔纸上,裁片,烘干得到正极片。Take 1.6g LiFePO 4 , 0.2g acetylene black and 0.2g PVDF respectively, dissolve them in NMP, stir evenly, apply the obtained slurry on aluminum foil paper, cut out, and dry to obtain a positive electrode sheet.
(5)电池的组装:(5) Assembly of the battery:
取步骤(3)中的PE@LiSiCNT0.3复合隔膜,取步骤(4)制备的正极片,将正极壳、步骤(4)的正极片、步骤(3)的PE@LiSiCNT0.3复合隔膜、锂片、垫片、弹片组装成Li//PE@LiSiCNT0.3//LiFePO4半电池。Take the PE@LiSiCNT0.3 composite diaphragm in step (3), take the positive electrode sheet prepared in step (4), and combine the positive electrode shell, the positive electrode sheet in step (4), the PE@LiSiCNT0.3 composite diaphragm in step (3), Li//PE@LiSiCNT0.3//LiFePO 4 half-cells were assembled from lithium sheets, spacers, and shrapnel.
对比例1Comparative Example 1
采用商用聚烯烃隔膜和与实施例1-2相同的LiFePO4正极片,组装成Li//PE//LiFePO4半电池。A Li//PE//LiFePO 4 half-cell was assembled using a commercial polyolefin separator and the same LiFePO 4 positive electrode sheet as in Example 1-2.
对比例2Comparative Example 2
(1)将4g PVA和96ml去离子水置于三口烧瓶中,90℃回流搅拌4h,获得4%质量浓度的PVA水溶液,将1g纳米SiO2加入14g的PVA水溶液中,超声并搅拌0.5h得到1wt%的SiO2纳米涂覆液。(1) Place 4g of PVA and 96ml of deionized water in a three-necked flask, stir at 90°C for 4h under reflux to obtain a PVA aqueous solution with 4% mass concentration, add 1g of nano - SiO to 14g of PVA aqueous solution, ultrasonically and stir for 0.5h to obtain 1wt% SiO2 nanocoating solution.
(2)将PE隔膜经乙醇超声清洗,40℃真空烘干,将步骤(1)的涂覆液涂覆在PE隔膜的一侧,获得PE@Si复合隔膜。(2) ultrasonically cleaning the PE diaphragm with ethanol, vacuum drying at 40° C., and coating the coating solution of step (1) on one side of the PE diaphragm to obtain a PE@Si composite diaphragm.
(3)采用与实施例1-2相同的LiFePO4正极片和步骤(2)的PE@Si复合隔膜,组装成Li//PE@Si//LiFePO4的半电池(3) Using the same LiFePO 4 positive electrode sheet and the PE@Si composite separator of step (2) as in Example 1-2, a half-cell of Li//PE@Si//LiFePO 4 was assembled
性能测试Performance Testing
1、对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的厚度、孔隙率、电解液吸收率。1. Thickness, porosity and electrolyte of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2 Absorption rate.
2、对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的电解液静态接触角测试。2. Electrolyte static contact angle test of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2.
3、对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的SEM测试。3. SEM test of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2.
4、对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的热收缩率测试。4. The thermal shrinkage rate test of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2.
5、对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的离子电导率测试。5. The ionic conductivity test of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2.
6、对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的交流阻抗测试。6. AC impedance test of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2.
7、对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的电池循环性能测试。7. Battery cycle performance test of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2.
详细测试及结论如下:The detailed tests and conclusions are as follows:
1、膜厚度、孔隙率、电解液吸收率测试:用螺旋测微器测量各膜的厚度,测量三次取平均值;将隔膜裁切为2*2cm的尺寸,称其质量Wdry,然后将隔膜浸泡2h在装有正丁醇的密闭容器中,取出用滤纸擦去隔膜表面的正丁醇称其质量Wwet,根据公式吸液率=(Wwet-Wdry)/ρv*100(Wdry表示吸收正丁醇之前的隔膜质量,Wwet表示吸收电解液之后的隔膜质量。ρ为正丁醇密度,v为隔膜体积)计算孔隙率;将隔膜裁切为2*2cm的尺寸,称其质量Wdry,然后将隔膜在装有电解液的密闭容器中浸泡2h,取出隔膜称其质量Wwet,根据公式吸液率=(Wwet-Wdry)/Wdry*100(Wdry表示吸收电解液之前的隔膜质量,Wwet表示吸收电解液之后的隔膜质量),计算各隔膜的电解液吸液率。1. Membrane thickness, porosity, electrolyte absorption rate test: measure the thickness of each membrane with a screw micrometer, and measure three times to get the average value; cut the diaphragm into a size of 2*2cm, weigh its quality W dry , and then Soak the diaphragm for 2 hours in a closed container with n-butanol, take out the n-butanol wiped off the surface of the diaphragm with filter paper and call its quality W wet , according to the formula liquid absorption = (W wet -W dry )/ρv*100 (W dry represents the quality of the diaphragm before absorbing n-butanol, W we t represents the quality of the diaphragm after absorbing the electrolyte. ρ is the density of n-butanol, v is the volume of the diaphragm) to calculate the porosity; cut the diaphragm into a size of 2*2cm, Weigh its mass W dry , then soak the diaphragm in a closed container filled with electrolyte for 2h, take out the diaphragm and weigh its mass W wet , according to the formula liquid absorption rate=(W we tW dry )/W dry *100(W dry The mass of the diaphragm before absorbing the electrolyte, W we t represents the mass of the diaphragm after absorbing the electrolyte), and the electrolyte absorption rate of each diaphragm is calculated.
参考表1,实施例1-2获得的PE@LiSiCNT复合膜的厚度约为22μm,其符合LIB隔膜厚度小于25μm的要求。实施例1-2获得的PE@LiSiCNT复合膜相对于PE隔膜、PE@Si复合隔膜的电解液吸收率和孔隙率都有提高。其中CNT-OH的比表面积大,对电解液具有较好的亲和性,提高了复合隔膜的孔隙率和吸液率。PE@LiSiCNT0.1复合隔膜和PE@LiSiCNT0.3复合隔膜含有锂盐,可进一步促进实施例1-2复合隔膜的电解液浸润性。Referring to Table 1, the thickness of the PE@LiSiCNT composite film obtained in Examples 1-2 is about 22 μm, which meets the requirement that the thickness of the LIB separator is less than 25 μm. Compared with the PE separator and the PE@Si composite separator, the PE@LiSiCNT composite membrane obtained in Example 1-2 has improved electrolyte absorption rate and porosity. Among them, CNT-OH has a large specific surface area and good affinity for the electrolyte, which improves the porosity and liquid absorption of the composite membrane. The PE@LiSiCNT0.1 composite separator and the PE@LiSiCNT0.3 composite separator contain lithium salts, which can further promote the electrolyte wettability of the composite separators of Examples 1-2.
2、电解液静态接触角测试:将实施例和对比例的隔膜样品裁切成一定尺寸的样条,平整的将测试样粘在玻璃板表面,用约1.2μl每滴的电解液,测试并记录接触角数值,多次测量取平均值。参考表2,PE@LiSiCNT0.1复合隔膜、PE@LiSiCNT0.3复合隔膜的电解液接触角优于PE隔膜和PE@Si复合隔膜。2. Electrolyte static contact angle test: Cut the diaphragm samples of the examples and comparative examples into strips of a certain size, stick the test samples flat on the surface of the glass plate, and use about 1.2 μl of each drop of the electrolyte to test and test. The contact angle values were recorded and averaged over multiple measurements. Referring to Table 2, the electrolyte contact angles of PE@LiSiCNT0.1 composite separator and PE@LiSiCNT0.3 composite separator are better than PE separator and PE@Si composite separator.
3、形貌观察:将隔膜样品喷金后,在电子扫描显微镜下观察隔膜的表面形貌。3. Morphology observation: After spraying gold on the diaphragm sample, observe the surface morphology of the diaphragm under an electron scanning microscope.
参考说明书附图1,PE@Si复合隔膜的表面有纳米SiO2涂层,纳米SiO2之间有丰富的孔隙结构,PE@LiSiCNT0.1和PE@LiSiCNT0.3复合隔膜表面的CNT-OH以三维网络状的形态存在,形成了大量的孔隙结构。Referring to Figure 1 of the specification, the surface of the PE@Si composite separator is coated with nano-SiO 2 , and there are abundant pore structures between the nano-SiO 2. The CNT-OH on the surface of the PE@LiSiCNT0.1 and PE@LiSiCNT0.3 composite separators is Three-dimensional network-like morphology exists, forming a large number of pore structures.
4、热稳定性测试:将实施例和对比例隔膜样品裁成2*2cm的尺寸,在150℃的电热恒温鼓风干燥箱中加热30min,观察隔膜的尺寸变化。4. Thermal stability test: The diaphragm samples of the examples and comparative examples were cut into a size of 2*2 cm, heated in an electric heating constant temperature blast drying oven at 150°C for 30 minutes, and the dimensional changes of the diaphragms were observed.
参考表3和说明书附图2,PE隔膜和PE@Si复合隔膜、PE@LiSiCNT0.1复合隔膜、PE@LiSiCNT0.3复合隔膜,热收缩率分别为74%、36%、17%、14%。相对于纯PE隔膜热收缩率(74%),复合隔膜的热收缩率明显改善。这主要是复合隔膜表面的SiO2和CNT-OH涂层提高了隔膜的热稳定性能,同时PE@LiSiCNT复合隔膜中的LiTFSI熔点为236℃,在150℃高温下隔膜孔隙中的LiTFSI有效地减少隔膜的热收缩,因而PE@LiSiCNT复合隔膜的热稳定性提高显著。Referring to Table 3 and Figure 2 of the description, the thermal shrinkage rates of PE separator and PE@Si composite separator, PE@LiSiCNT0.1 composite separator, and PE@LiSiCNT0.3 composite separator are 74%, 36%, 17%, and 14%, respectively. . Compared with the heat shrinkage rate of the pure PE separator (74%), the thermal shrinkage rate of the composite separator is significantly improved. This is mainly because the SiO and CNT - OH coatings on the surface of the composite separator improve the thermal stability of the separator, while the melting point of LiTFSI in the PE@LiSiCNT composite separator is 236 °C, and the LiTFSI in the pores of the separator is effectively reduced at a high temperature of 150 °C The thermal shrinkage of the separator, so the thermal stability of the PE@LiSiCNT composite separator is significantly improved.
5、离子电导率测试:将隔膜样品剪裁直径为1.6cm的圆片,在充满氩气的手套箱中将裁切好的隔膜在电解液中充分浸润,取出置于两个不锈钢极之间组装成CR2032型纽扣电池。通过辰华CHI660E型电化学工作站测试电导率,在室温下使用10mHz-1MHz的频率范围。根据σ=L/(R S)(σ是离子电导率,L为隔膜的厚度,R为隔膜的本体电阻,S为隔膜有效接触面积)计算得离子电导率。5. Ionic conductivity test: Cut the diaphragm sample into a circle with a diameter of 1.6 cm, fully infiltrate the cut diaphragm in the electrolyte in an argon-filled glove box, take it out and place it between two stainless steel electrodes to assemble A CR2032 button battery. Conductivity was tested by Chenhua CHI660E electrochemical workstation, using the frequency range of 10mHz-1MHz at room temperature. The ionic conductivity was calculated according to σ=L/(R S) (σ is the ionic conductivity, L is the thickness of the separator, R is the bulk resistance of the separator, and S is the effective contact area of the separator).
参考表5和说明书附图3,PE隔膜和PE@Si复合隔膜、PE@LiSiCNT0.1复合隔膜、PE@LiSiCNT0.3复合隔膜电阻阻值分别为1.84、2.06、1.72和1.69Ω。离子电导率分别为1.01×10-3、1.21×10-3、1.66×10-3和1.69×10-3S cm-1。PE@LiSiCNT复合隔膜具有低电阻和高离子电导率。Referring to Table 5 and Figure 3 of the description, the resistance values of the PE separator, PE@Si composite separator, PE@LiSiCNT0.1 composite separator, and PE@LiSiCNT0.3 composite separator are 1.84, 2.06, 1.72 and 1.69Ω, respectively. The ionic conductivities are 1.01×10-3, 1.21×10-3, 1.66×10-3 and 1.69×10-3S cm-1, respectively. The PE@LiSiCNT composite separator has low resistance and high ionic conductivity.
6、交流阻抗测试:将隔膜样品剪裁直径为1.6cm的圆片,在充满氩气的手套箱中将裁切好的隔膜在电解液中充分浸润,取出置于锂片负极和LiFePO4正极之间组装成扣电池。通过辰华CHI660E型电化学工作站测试电阻,在室温下使用10mHz-1MHz的频率范围。6. AC impedance test: Cut the diaphragm sample into a circle with a diameter of 1.6 cm, fully infiltrate the cut diaphragm in the electrolyte in a glove box filled with argon gas, take it out and place it between the negative electrode of the lithium sheet and the positive electrode of LiFePO 4 assembled into a button battery. The resistance is tested by Chenhua CHI660E electrochemical workstation, and the frequency range of 10mHz-1MHz is used at room temperature.
参考表6和说明书附图4,PE隔膜和PE@Si复合隔膜、PE@LiSiCNT0.1复合隔膜、PE@LiSiCNT0.3复合隔膜的界面电阻分别为181、202、130和128Ω。PE@LiSiCNT复合隔膜较PE隔膜电池的阻抗明显降低。Referring to Table 6 and Figure 4 of the description, the interface resistances of the PE separator and the PE@Si composite separator, the PE@LiSiCNT0.1 composite separator, and the PE@LiSiCNT0.3 composite separator are 181, 202, 130, and 128Ω, respectively. The impedance of PE@LiSiCNT composite separator is significantly lower than that of PE separator battery.
7、电性能测试7. Electrical performance test
在室温下用新威电池测试系统(BTS-4000)测试电池的充放电性能及库伦效率。在实施例和对比例中,用锂片作负极,LiFePO4在为正极,将隔膜样品放在中间且涂覆面靠近正极一侧,组装成扣式电池,恒定电流-恒定电压模式下(0.2C充放电)充电至4.3V,然后再放电至3.0V的模式下测量电池的循环性能。同理,将隔膜组装成的电池在充放电电流密度为0.2C、0.5C、1.0C、2.0C和0.2C时,充电至4.2V并放电至3V时的电池的倍率性能。The charge-discharge performance and coulombic efficiency of the battery were tested by Xinwei battery test system (BTS-4000) at room temperature. In the examples and comparative examples, a lithium sheet is used as the negative electrode, LiFePO 4 is used as the positive electrode, the separator sample is placed in the middle and the coating surface is close to the positive electrode side, and a button battery is assembled, under constant current-constant voltage mode (0.2C The cycle performance of the battery was measured in the mode of charging to 4.3V and then discharging to 3.0V. Similarly, the rate performance of the battery assembled with the separator was charged to 4.2V and discharged to 3V when the charge-discharge current density was 0.2C, 0.5C, 1.0C, 2.0C and 0.2C.
参考说明书附图5,在0.2C、0.5C、1.0C、2.0C和0.2C下的充放电电流密度下,与PE隔膜、PE@Si复合隔膜相比,PE@LiSiCNT复合隔膜的放电容量有明显提高。电流密度达到2C时,PE隔膜、PE@Si复合隔膜、PE@LiSiCNT0.1复合隔膜、PE@LiSiCNT0.3复合隔膜的放电容量分别为105、113、137、138mAh/g。这说明Li+在PE@LiSiCNT复合膜中的传输受电流密度的影响减小。高电流密度使界面产生极化影响Li+传输,PE膜在高倍率条件下产生界面极化现象严重,影响了Li+的传输速度;而PE@LiSiCNT复合隔膜的低阻抗和高效离子传输提高了电池的稳定性。Referring to Figure 5 of the description, at the charge-discharge current densities at 0.2C, 0.5C, 1.0C, 2.0C and 0.2C, compared with the PE separator and the PE@Si composite separator, the discharge capacity of the PE@LiSiCNT composite separator was Significantly improved. When the current density reaches 2C, the discharge capacities of the PE separator, PE@Si composite separator, PE@LiSiCNT0.1 composite separator, and PE@LiSiCNT0.3 composite separator are 105, 113, 137, and 138 mAh/g, respectively. This indicates that the Li transport in the PE@ LiSiCNT composite films is less affected by the current density. The high current density makes the interface polarized and affects Li+ transport. The PE film has serious interfacial polarization under high rate conditions, which affects the Li + transport speed; while the low impedance and efficient ion transport of the PE@LiSiCNT composite separator improves the battery. stability.
参考说明书附图6、7、8、9,循环充放电250次后PE隔膜、PE@Si复合隔膜、PE@LiSiCNT0.1复合隔膜、PE@LiSiCNT0.3复合隔膜的放电容量分别为143、148、163、164mAh/g,在循环过程中PE@LiSiCNT复合隔膜的放电容量较PE和PE@Si复合隔膜有明显提高。PE@LiSiCNT复合隔膜的放电容量较高,因为CNT-OH的亲电解液及其CNT-OH的网络状结构赋予了复合隔膜高孔隙率;另外Li+可以通过CNT的端口或侧壁开口以及碳纳米管层有效扩散到CNT表面和单个CNT内部的稳定位置,CNT能够富集存储Li+,缓冲Li+的损耗和堆积,同时降低隔膜阻抗,从而提高隔膜的锂离子传导能力和高传输效率。同时LiTFSI引入提供了更多锂源,提高离子传输性能,有效降低电池的阻抗和极化,进而获得高的放电比容量和稳定的循环性能,改善了电化学性能。Referring to Figures 6, 7, 8, and 9 in the description, the discharge capacities of the PE separator, PE@Si composite separator, PE@LiSiCNT0.1 composite separator, and PE@LiSiCNT0.3 composite separator are 143 and 148 respectively after 250 cycles of charge and discharge. , 163, and 164 mAh/g, and the discharge capacity of PE@LiSiCNT composite separators was significantly higher than that of PE and PE@Si composite separators during cycling. The discharge capacity of the PE@LiSiCNT composite separator is higher because the electrophilic solution of CNT-OH and its network-like structure of CNT-OH endow the composite separator with high porosity; in addition, Li + can pass through the ports or sidewall openings of CNTs and carbon The nanotube layer effectively diffuses to stable positions on the surface of CNTs and inside individual CNTs, and CNTs can enrich and store Li + , buffer the loss and accumulation of Li + , and reduce the resistance of the separator, thereby improving the lithium ion conductivity and high transport efficiency of the separator. At the same time, the introduction of LiTFSI provides more lithium sources, improves the ion transport performance, effectively reduces the impedance and polarization of the battery, and then obtains high discharge specific capacity and stable cycle performance, and improves the electrochemical performance.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention. scope.
表1对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的厚度、孔隙率、电解液吸收率Table 1 Thickness, porosity and electrolyte of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2 Absorption rate
表2对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的电解液静态接触角Table 2 Electrolyte static contact angles of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2
表3对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的热收缩率数据Table 3 Thermal shrinkage data of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2
表4对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的离子电导率Table 4 The ionic conductivity of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2
表5对比例1的PE隔膜、对比例2的PE@Si复合隔膜与实施例1的PE@LiSiCNT0.1复合隔膜、实施例2的PE@LiSiCNT0.3复合隔膜的交流阻抗数据Table 5 AC impedance data of the PE separator of Comparative Example 1, the PE@Si composite separator of Comparative Example 2, the PE@LiSiCNT0.1 composite separator of Example 1, and the PE@LiSiCNT0.3 composite separator of Example 2
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010539605.3A CN111725466B (en) | 2020-06-12 | 2020-06-12 | Functionalized polyolefin composite diaphragm and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010539605.3A CN111725466B (en) | 2020-06-12 | 2020-06-12 | Functionalized polyolefin composite diaphragm and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111725466A true CN111725466A (en) | 2020-09-29 |
CN111725466B CN111725466B (en) | 2022-02-01 |
Family
ID=72566639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010539605.3A Active CN111725466B (en) | 2020-06-12 | 2020-06-12 | Functionalized polyolefin composite diaphragm and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111725466B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113921989A (en) * | 2021-09-16 | 2022-01-11 | 宁德卓高新材料科技有限公司 | Preparation process of flexible diaphragm |
CN114156595A (en) * | 2021-12-02 | 2022-03-08 | 新乡市中科科技有限公司 | Composite diaphragm for semi-solid lithium battery and preparation method thereof |
CN115411454A (en) * | 2022-10-13 | 2022-11-29 | 深圳市成晟新能源技术有限公司 | Lithium battery diaphragm and preparation method thereof |
CN117903383A (en) * | 2024-01-19 | 2024-04-19 | 广州巨湾技研有限公司 | A modified mesoporous material and its preparation method and application |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102268783A (en) * | 2011-06-20 | 2011-12-07 | 东华大学 | Method for preparing polyvinylidene fluoride (PVDF) porous nanofiber membrane with high ion migration number |
CN104051693A (en) * | 2014-06-16 | 2014-09-17 | 中国东方电气集团有限公司 | Polyoxometallic acid lithium ceramic diaphragm of lithium ion battery |
CN105977430A (en) * | 2016-06-18 | 2016-09-28 | 清华大学 | Polyoxometallic acid lithium salt ceramic membrane for lithium-ion battery |
US20160336625A1 (en) * | 2015-05-15 | 2016-11-17 | Samsung Electronics Co., Ltd. | Lithium metal battery |
CN106169564A (en) * | 2016-04-25 | 2016-11-30 | 中国科学院长春应用化学研究所 | A kind of silicon-carbon nanotube spheroid and preparation method thereof, battery cathode and lithium ion battery |
CN108075088A (en) * | 2016-11-10 | 2018-05-25 | 苏州高通新材料科技有限公司 | Lithium battery diaphragm, its preparation method and the application of the lithium salts containing sulfonated graphene |
CN108807825A (en) * | 2018-08-31 | 2018-11-13 | 深圳市星源材质科技股份有限公司 | Coating fluid, lithium ion battery separator and lithium ion battery for lithium ion battery |
CN109244319A (en) * | 2018-09-14 | 2019-01-18 | 北京工业大学 | A method of improving polyolefins lithium ion battery separator wetability |
CN109786627A (en) * | 2019-01-28 | 2019-05-21 | 中国科学院兰州化学物理研究所 | A kind of preparation method of super-electrophilic lithium battery separator |
CN110148697A (en) * | 2019-05-22 | 2019-08-20 | 深圳市本征方程石墨烯技术股份有限公司 | A kind of polyolefin lithium battery diaphragm coating paste and its application |
CN110854345A (en) * | 2019-12-02 | 2020-02-28 | 安徽新衡新材料科技有限公司 | High-performance lithium-sulfur battery diaphragm and preparation method and application thereof |
-
2020
- 2020-06-12 CN CN202010539605.3A patent/CN111725466B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102268783A (en) * | 2011-06-20 | 2011-12-07 | 东华大学 | Method for preparing polyvinylidene fluoride (PVDF) porous nanofiber membrane with high ion migration number |
CN104051693A (en) * | 2014-06-16 | 2014-09-17 | 中国东方电气集团有限公司 | Polyoxometallic acid lithium ceramic diaphragm of lithium ion battery |
US20160336625A1 (en) * | 2015-05-15 | 2016-11-17 | Samsung Electronics Co., Ltd. | Lithium metal battery |
CN106169564A (en) * | 2016-04-25 | 2016-11-30 | 中国科学院长春应用化学研究所 | A kind of silicon-carbon nanotube spheroid and preparation method thereof, battery cathode and lithium ion battery |
CN105977430A (en) * | 2016-06-18 | 2016-09-28 | 清华大学 | Polyoxometallic acid lithium salt ceramic membrane for lithium-ion battery |
CN108075088A (en) * | 2016-11-10 | 2018-05-25 | 苏州高通新材料科技有限公司 | Lithium battery diaphragm, its preparation method and the application of the lithium salts containing sulfonated graphene |
CN108807825A (en) * | 2018-08-31 | 2018-11-13 | 深圳市星源材质科技股份有限公司 | Coating fluid, lithium ion battery separator and lithium ion battery for lithium ion battery |
CN109244319A (en) * | 2018-09-14 | 2019-01-18 | 北京工业大学 | A method of improving polyolefins lithium ion battery separator wetability |
CN109786627A (en) * | 2019-01-28 | 2019-05-21 | 中国科学院兰州化学物理研究所 | A kind of preparation method of super-electrophilic lithium battery separator |
CN110148697A (en) * | 2019-05-22 | 2019-08-20 | 深圳市本征方程石墨烯技术股份有限公司 | A kind of polyolefin lithium battery diaphragm coating paste and its application |
CN110854345A (en) * | 2019-12-02 | 2020-02-28 | 安徽新衡新材料科技有限公司 | High-performance lithium-sulfur battery diaphragm and preparation method and application thereof |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113921989A (en) * | 2021-09-16 | 2022-01-11 | 宁德卓高新材料科技有限公司 | Preparation process of flexible diaphragm |
CN114156595A (en) * | 2021-12-02 | 2022-03-08 | 新乡市中科科技有限公司 | Composite diaphragm for semi-solid lithium battery and preparation method thereof |
CN114156595B (en) * | 2021-12-02 | 2024-04-02 | 新乡市中科科技有限公司 | Composite diaphragm for semisolid lithium battery and preparation method thereof |
CN115411454A (en) * | 2022-10-13 | 2022-11-29 | 深圳市成晟新能源技术有限公司 | Lithium battery diaphragm and preparation method thereof |
CN115411454B (en) * | 2022-10-13 | 2023-12-19 | 深圳市成晟新能源技术有限公司 | Lithium battery diaphragm and preparation method thereof |
CN117903383A (en) * | 2024-01-19 | 2024-04-19 | 广州巨湾技研有限公司 | A modified mesoporous material and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN111725466B (en) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103972467B (en) | A kind of lithium-sulfur battery multilayer composite positive electrode and preparation method thereof | |
CN102529247B (en) | Inorganic/organic composite porous lithium battery diaphragm and preparation method thereof | |
CN111725466B (en) | Functionalized polyolefin composite diaphragm and preparation method and application thereof | |
CN111725468B (en) | Silicon dioxide inorganic nanoparticle reinforced polyolefin diaphragm and application thereof | |
CN106356488A (en) | Composite diaphragm for lithium ion battery for lithium-sulfur battery and preparation method and application of composite diaphragm for lithium ion battery | |
CN101969114A (en) | Lithium-ion secondary battery and preparation method thereof | |
CN113113565B (en) | Negative plate and battery | |
CN110661032A (en) | Solid electrolyte film and application thereof | |
CN108899522B (en) | High-capacity silicon-carbon negative electrode material, preparation method and application | |
CN115799441B (en) | A kind of lithium ion battery and electric device | |
WO2024227351A1 (en) | Separator, secondary battery comprising same, and electric device | |
CN116435466B (en) | Lithium ion battery positive plate and lithium ion battery | |
CN114057488B (en) | Preparation method of porous SiOC ceramic and application of porous SiOC ceramic in negative electrode material of lithium ion battery | |
CN109494348B (en) | Negative pole piece and secondary battery | |
WO2022204979A1 (en) | Silicon-based composite material, preparation method therefor and application thereof | |
CN114649560A (en) | A kind of Zn-MOF/PAN@PAN composite diaphragm material and its preparation method and application | |
WO2025055864A1 (en) | Electrolyte for lithium-ion battery and lithium-ion battery | |
CN116682974B (en) | Negative electrode sheet, secondary battery comprising same and electricity utilization device | |
CN108987705B (en) | An electrode material composition, a lithium ion battery positive electrode sheet and a lithium ion battery | |
CN115377606B (en) | High-performance chitosan/polyacrylonitrile membrane for multifunctional lithium sulfur battery, and preparation method and application thereof | |
CN117117084A (en) | Negative electrode piece, lithium ion battery and electric equipment | |
CN113540697B (en) | Composite diaphragm and preparation method thereof | |
WO2023179550A1 (en) | Composite oil-based separator and preparation method therefor, and secondary battery | |
CN116345064A (en) | A kind of preparation method of functional battery diaphragm | |
CN104362278B (en) | Compound lithium-ion battery diaphragm and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |