CN111688913B - A wing with double drive, variable length and dihedral angle - Google Patents
A wing with double drive, variable length and dihedral angle Download PDFInfo
- Publication number
- CN111688913B CN111688913B CN202010456573.0A CN202010456573A CN111688913B CN 111688913 B CN111688913 B CN 111688913B CN 202010456573 A CN202010456573 A CN 202010456573A CN 111688913 B CN111688913 B CN 111688913B
- Authority
- CN
- China
- Prior art keywords
- wing
- hinged
- rib
- supporting
- composite module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005452 bending Methods 0.000 claims abstract description 14
- 230000033001 locomotion Effects 0.000 claims abstract description 10
- 239000002131 composite material Substances 0.000 claims description 58
- 230000000712 assembly Effects 0.000 claims description 32
- 238000000429 assembly Methods 0.000 claims description 32
- 230000001360 synchronised effect Effects 0.000 claims description 28
- 239000000758 substrate Substances 0.000 claims description 11
- 239000002344 surface layer Substances 0.000 claims description 11
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 230000009977 dual effect Effects 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 6
- 239000003292 glue Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000004831 Hot glue Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/18—Spars; Ribs; Stringers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/32—Wings specially adapted for mounting power plant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
- B64C3/44—Varying camber
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Wind Motors (AREA)
- Transmission Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于航空航天设备领域,特别是涉及一种双驱动可变展长与上下反角的机翼。The invention belongs to the field of aerospace equipment, in particular to a double-drive wing with variable extension and anhedral angle.
背景技术Background technique
目前传统飞行器无法做到在飞行包线的各个状态都具有最佳的气动效率,其固定布局已经越来越很难满足在当前的真实的作战、侦查、救援等不同复杂环境中执行多任务的需求。现实状态飞行器在实际飞行过程中需要面临不同的飞行环境,这就需要飞行器的机翼形状能够进行相应的变化,以使其气动性能在不同飞行状态下都达到最佳状态,这促进了可变形飞行器的发展。At present, traditional aircraft cannot achieve the best aerodynamic efficiency in each state of the flight envelope, and its fixed layout has become more and more difficult to meet the requirements of performing multiple tasks in different complex environments such as current real combat, reconnaissance, and rescue. need. In reality, the aircraft needs to face different flight environments in the actual flight process, which requires that the wing shape of the aircraft can be changed accordingly, so that its aerodynamic performance can reach the best state in different flight states, which promotes deformable Aircraft development.
飞行器具有变扭转机翼、变弦长机翼、变弯度机翼、变展长机翼、变翼型厚度机翼、变后掠机翼等多种变形形式。在飞行过程中翼展伸缩与展向上下弯曲可以显著提高低速飞行器的飞行效率,并且一定程度地提升飞行器的机动性,但是现有低速飞行器变形方式一般无法同时实现翼展伸缩与展向变弯曲。The aircraft has various deformation forms such as variable torsion wings, variable chord length wings, variable camber wings, variable span length wings, variable airfoil thickness wings, and variable sweep wings. Wing stretching and spanning up and down bending during flight can significantly improve the flight efficiency of low-speed aircraft, and improve the maneuverability of the aircraft to a certain extent, but the existing deformation methods of low-speed aircraft generally cannot achieve wingspan stretching and spanning bending at the same time .
发明内容Contents of the invention
本发明为了解决现有技术中的问题,提出一种双驱动可变展长与上下反角的机翼。In order to solve the problems in the prior art, the present invention proposes a double-driven wing with variable extension and anhedral angle.
为实现上述目的,本发明采用以下技术方案:一种双驱动可变展长与上下反角的机翼,它包括串联联动骨架、柔性蒙皮、支撑翼肋和双电机驱动部件,所述串联联动骨架上安装有多个支撑翼肋,所述柔性蒙皮设置在支撑翼肋的表面上,所述双电机驱动部件安装在串联联动骨架上,双电机驱动部件驱动串联联动骨架变形,通过串联联动骨架带动支撑翼肋之间的相对直线和回转运动,实现柔性蒙皮的拉伸和弯曲变形。In order to achieve the above object, the present invention adopts the following technical solutions: a double-drive wing with variable extension and dihedral angle, which includes a series linkage skeleton, a flexible skin, supporting wing ribs and dual motor drive components. A plurality of supporting ribs are installed on the linkage frame, the flexible skin is arranged on the surface of the supporting ribs, the dual motor driving parts are installed on the series linkage frame, and the double motor driving parts drive the series linkage frame to deform, and through the series The linkage skeleton drives the relative linear and rotary motions between the supporting ribs to realize stretching and bending deformation of the flexible skin.
更进一步的,所述串联联动骨架包括支撑座和多个复合模块单元,所述多个复合模块单元之间相互铰接,长度相同,每个复合模块单元均包括四个V型铰链组件、两个滑块组件和两个同步轴,每个V型铰链组件均由两个杆件通过同步轴呈V字形铰接在一起构成,多个支撑翼肋中的一个与支撑座固连,其余支撑翼肋上均设置有肋板轴,最内侧的复合模块单元中的四个V型铰链组件一端与双电机驱动部件铰接,另一端与相邻支撑翼肋的肋板轴铰接,其余复合模块单元中的四个V型铰链组件一端均与相邻复合模块单元中的两个同步轴铰接,另一端均与相邻支撑翼肋的肋板轴铰接,支撑座或与支撑座相连的支撑翼肋上设有底座,最内侧的复合模块单元中两个滑块组件一端与底座铰接,另一端与相邻支撑翼肋的肋板轴铰接,其余复合模块单元中的两个滑块组件两端均分别与相邻支撑翼肋的肋板轴铰接。Furthermore, the series linkage framework includes a support base and a plurality of composite module units, the plurality of composite module units are hinged to each other and have the same length, and each composite module unit includes four V-shaped hinge assemblies, two Slider assembly and two synchronous shafts, each V-shaped hinge assembly is composed of two rods hinged together in a V shape through the synchronous shaft, one of the multiple supporting ribs is fixedly connected to the supporting base, and the rest of the supporting ribs Rib shafts are arranged on the top of the innermost composite module unit. One end of the four V-shaped hinge components in the innermost composite module unit is hinged with the dual-motor drive part, and the other end is hinged with the rib shaft supporting the adjacent wing rib. The other composite module units One end of the four V-shaped hinge components is hinged with two synchronous shafts in the adjacent composite module unit, and the other end is hinged with the rib shaft of the adjacent supporting rib. There is a base, and one end of the two slider assemblies in the innermost composite module unit is hinged to the base, and the other end is hinged to the rib shaft of the adjacent supporting rib, and the two ends of the two slider assemblies in the other composite module units are respectively connected to The ribs of adjacent supporting ribs are hinged.
更进一步的,所述双电机驱动部件包括上涡轮转轴、涡轮、支座、电机、联轴器、法兰、蜗杆和下涡轮转轴,所述支座和法兰均与支撑座固定连接,所述电机和蜗杆的数量均为两个,两个电机均与法兰相连,两个蜗杆分别通过联轴器与两个电机相连,所述涡轮设置在上涡轮转轴和下涡轮转轴上,上涡轮转轴和下涡轮转轴上的涡轮分别与两个蜗杆配合相连。Furthermore, the dual-motor drive components include an upper turbine shaft, a turbine, a support, a motor, a coupling, a flange, a worm, and a lower turbine shaft, and the support and the flange are fixedly connected to the support base, so There are two motors and worms, both of which are connected to flanges, and the two worms are respectively connected to the two motors through couplings. The turbines are arranged on the upper and lower turbine shafts, and the upper turbine The turbine on the rotating shaft and the lower turbine rotating shaft is connected with two worms respectively.
更进一步的,所述柔性蒙皮包括弹性橡胶表层和波纹结构基体,所述波纹结构基体与多个支撑翼肋的上下表面铆接,所述弹性橡胶表层粘接固定在波纹结构基体的表面。Furthermore, the flexible skin includes an elastic rubber surface layer and a corrugated structure substrate, the corrugated structure substrate is riveted with the upper and lower surfaces of a plurality of supporting ribs, and the elastic rubber surface layer is bonded and fixed on the surface of the corrugated structure substrate.
更进一步的,所述串联联动骨架还包括铰链,V型铰链组件的两个杆件分别通过多个铰链与同步轴相互铰接。Furthermore, the series linkage framework further includes a hinge, and the two rods of the V-shaped hinge assembly are hinged to each other through a plurality of hinges and synchronous shafts respectively.
更进一步的,所述弹性橡胶表层通过耐热胶水粘接固定在波纹结构基体的表面。Furthermore, the elastic rubber surface layer is bonded and fixed on the surface of the corrugated structure substrate by heat-resistant glue.
更进一步的,所述滑块组件由导轨和滑块配合组成。Furthermore, the slider assembly is composed of guide rails and sliders.
更进一步的,所述多个支撑翼肋之间平行布置,长度相等。Furthermore, the plurality of supporting ribs are arranged in parallel and have equal lengths.
更进一步的,所述串联联动骨架的自由度为2。Furthermore, the degrees of freedom of the series linkage framework is 2.
与现有技术相比,本发明的有益效果是:本发明解决了现有低速飞行器无法同时实现翼展伸缩与展向变弯曲的问题。Compared with the prior art, the beneficial effect of the present invention is: the present invention solves the problem that the existing low-speed aircraft cannot realize the expansion and contraction of the wings and the bending of the span direction at the same time.
本发明将模块化与协调变速设计理念引入可变展长与上下反角机翼的设计中,串联联动骨架通过铰链连接组成的一个二自由度平面线性机构,在初始翼根位置安装双电机驱动部件,双电机驱动部件可以实现弯曲和伸缩变形。在串联联动骨架表面覆盖一层柔性蒙皮,即可实现整个机翼的连续变形。机翼初始状态为翼展最小状态,由于机翼面积最小可以有效减少无人机安置空间。当飞行器起降时,通过伸长机翼翼展达到最大,可以有效提高机翼升阻比。当飞行器处于巡航状态时,机翼需展向向上弯曲,此时无人机机动性能降低稳定性增强。当飞行器处于追击状态时,机翼需展向向下弯曲,此时无人机灵活性增强。The present invention introduces the concept of modularization and coordinated variable speed design into the design of variable span and upper and lower dihedral wings, a two-degree-of-freedom planar linear mechanism composed of series linkage skeletons connected by hinges, and dual motor drives are installed at the initial wing root position Components, dual motor drive components can achieve bending and telescopic deformation. A layer of flexible skin is covered on the surface of the series linkage skeleton to realize continuous deformation of the entire wing. The initial state of the wing is the state of the minimum wingspan, because the minimum wing area can effectively reduce the installation space of the UAV. When the aircraft takes off and lands, the wing lift-to-drag ratio can be effectively improved by extending the wingspan to the maximum. When the aircraft is in the cruising state, the wings need to be bent upwards in the span direction, and at this time, the maneuverability of the UAV is reduced and the stability is enhanced. When the aircraft is in the pursuit state, the wings need to be bent downwards, and the flexibility of the UAV is enhanced at this time.
本发明结构简单,生产安装比较方便,适用于大规模生产制造,制造成本低。采用双电机驱动部件对机翼变形进行驱动,通过调节单独电机的转速即可实现机翼伸展和弯曲的功能,原理简单便于控制。The invention has simple structure, convenient production and installation, is suitable for large-scale production and manufacturing, and has low manufacturing cost. The dual-motor drive components are used to drive the deformation of the wing, and the functions of wing extension and bending can be realized by adjusting the speed of a single motor. The principle is simple and easy to control.
附图说明Description of drawings
图1为本发明所述的串联联动骨架结构示意图;Fig. 1 is a schematic diagram of the skeleton structure of series linkage according to the present invention;
图2为本发明所述的串联联动骨架初始状态示意图;Fig. 2 is a schematic diagram of the initial state of the series linkage skeleton according to the present invention;
图3为本发明所述的串联联动骨架附着蒙皮结构示意图;Fig. 3 is a schematic diagram of the skin structure attached to the series linkage skeleton according to the present invention;
图4为本发明所述的双电机驱动部件结构示意图;Fig. 4 is a schematic structural view of a dual-motor drive unit according to the present invention;
图5为本发明所述的串联联动骨架变展长状态示意图;Fig. 5 is a schematic diagram of the stretching state of the series linkage skeleton according to the present invention;
图6为本发明所述的串联联动骨架变翼展弯度状态示意图。Fig. 6 is a schematic diagram of the camber state of the series linkage frame variable wingspan according to the present invention.
1-串联联动骨架,2-肋板轴,3-同步轴,4-双电机驱动部件,5-支撑座,6-第一支撑翼肋,7-第二支撑翼肋,8-第三支撑翼肋,9-第四支撑翼肋,10-V型铰链组件,11-滑块组件,12-底座,13-第一复合模块单元,14-第二复合模块单元,15-第三复合模块单元,16-铰链,17-弹性橡胶表层,18-波纹结构基体,19-上涡轮转轴,20-涡轮,21-支座,22-电机,23-联轴器,24-法兰,25-蜗杆,26-下涡轮转轴。1-series linkage frame, 2-rib shaft, 3-synchronous shaft, 4-double motor drive components, 5-support seat, 6-first support rib, 7-second support rib, 8-third support Wing rib, 9-the fourth supporting rib, 10-V-shaped hinge assembly, 11-slider assembly, 12-base, 13-the first composite module unit, 14-the second composite module unit, 15-the third composite module Unit, 16-hinge, 17-elastic rubber surface, 18-corrugated structure substrate, 19-upper turbine shaft, 20-turbine, 21-support, 22-motor, 23-coupling, 24-flange, 25- Worm screw, 26-lower turbine rotating shaft.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地阐述。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention.
参见图1-6说明本实施方式,一种双驱动可变展长与上下反角的机翼,它包括串联联动骨架1、柔性蒙皮、支撑翼肋和双电机驱动部件4,所述串联联动骨架1上安装有多个支撑翼肋,所述柔性蒙皮设置在支撑翼肋的表面上,所述双电机驱动部件4安装在串联联动骨架1上,双电机驱动部件4驱动串联联动骨架1变形,通过串联联动骨架1带动支撑翼肋之间的相对直线和回转运动,实现柔性蒙皮的拉伸和弯曲变形。Referring to Figures 1-6 to illustrate this embodiment, a dual-drive variable extension and dihedral wing includes a
本实施例串联联动骨架1包括支撑座5和多个复合模块单元,多个复合模块单元之间相互铰接,长度相同,每个复合模块单元均包括四个V型铰链组件10、两个滑块组件11和两个同步轴3,每个V型铰链组件10均由两个杆件通过同步轴3呈V字形铰接在一起构成,多个支撑翼肋中的一个与支撑座5固连,其余支撑翼肋上均设置有肋板轴2,最内侧的复合模块单元中的四个V型铰链组件10一端与双电机驱动部件4铰接,另一端与相邻支撑翼肋的肋板轴2铰接,其余复合模块单元中的四个V型铰链组件10一端均与相邻复合模块单元中的两个同步轴3铰接,另一端均与相邻支撑翼肋的肋板轴2铰接,支撑座5或与支撑座5相连的支撑翼肋上设有底座12,最内侧的复合模块单元中两个滑块组件11一端与底座12铰接,另一端与相邻支撑翼肋的肋板轴2铰接,其余复合模块单元中的两个滑块组件11两端均分别与相邻支撑翼肋的肋板轴2铰接。机翼采用串联联动骨架1机构,具有结构紧凑,制造及维护方便、承载量大以及刚性好的优点,在伸展与弯曲过程中实现各铰接部件与滑动部件之间的同步运动,最后实现整个机翼的形状变化。The
双电机驱动部件4包括上涡轮转轴19、涡轮20、支座21、电机22、联轴器23、法兰24、蜗杆25和下涡轮转轴26,支座21和法兰24均与支撑座5固定连接,电机22和蜗杆25的数量均为两个,两个电机22均与法兰24相连,两个蜗杆25分别通过联轴器23与两个电机22相连,涡轮20设置在上涡轮转轴19和下涡轮转轴26上,上涡轮转轴19和下涡轮转轴26上的涡轮20分别与两个蜗杆25配合相连。Double-
柔性蒙皮包括弹性橡胶表层17和波纹结构基体18,波纹结构基体18与多个支撑翼肋的上下表面铆接,弹性橡胶表层17粘接固定在波纹结构基体18的表面,弹性橡胶表层17通过耐热胶水粘接固定在波纹结构基体18的表面,在串联联动骨架1伸展和弯曲变形时,柔性蒙皮结构能够相应进行协调变形,面积变化量大,表面光滑并具有一定的面外刚度。The flexible skin includes an elastic
串联联动骨架1还包括铰链16,V型铰链组件10的两个杆件分别通过多个铰链16与同步轴3相互铰接,实现串联联动骨架1各复合模块单元间的回转运动。滑块组件11由导轨和滑块配合组成。多个支撑翼肋之间平行布置,长度相等。串联联动骨架1的自由度为2。机翼需要在电机的转速控制下带动串联联动骨架1完成伸展以及弯曲运动,变形过程稳定,便于控制,且能够实现机翼四种形态的快速转换。The
弹性橡胶表层17具有低模量、高应变的特点,串联联动骨架1通过带动等比例的多个支撑翼肋之间的相对直线和回转运动,实现橡胶-波纹蒙皮拉伸和弯曲变形,双电机驱动部件4驱动串联联动骨架结构1实现整个变形翼机构的变形。The elastic
本实施例复合模块单元数量共三个,分别为第一复合模块单元13、第二复合模块单元14和第三复合模块单元15,支撑翼肋的数量为四个,分别为第一支撑翼肋6、第二支撑翼肋7、第三支撑翼肋8和第四支撑翼肋9,复合模块单元和支撑翼肋的数量可根据翼展面积要求进行选择,采用模块化设计,机翼面积越大则复合模块单元和支撑翼肋的数量越多。There are three composite modular units in this embodiment, which are respectively the first composite
第一复合模块单元13包括四个V型铰链组件10、两个滑块组件11和两个同步轴3,每个V型铰链组件10由两个杆件通过同步轴3呈V字形铰接在一起构成,滑块组件11由导轨滑块单元配合组成。其中两个V型铰链组件10的一侧端部与双电机驱动部件4上的上涡轮转轴19铰接,另外两个V型铰链组件10的相同侧端部与双电机驱动部件4上的下涡轮转轴26铰接,这四个V型铰链组件的另一侧端部都与第二支撑翼肋7上的肋板轴2铰接,滑动组件11的一侧与支撑座5或第一支撑翼肋6上的底座12铰接,滑动组件11的另一侧与第二支撑翼肋7上的肋板轴2铰接,从而构成可同时形成拉伸和弯曲的复合模块单元。The first
第二复合模块单元14包括四个V型铰链组件10,两个滑动组件11和两个同步轴3,其中两个V型铰链组件10的一侧端部与第一复合模块单元13上部的同步轴3铰接,另外两个V型铰链组件10的相同侧端部与第一复合模块单元13下部的同步轴3铰接,这四个V型铰链组件10的另一侧端部都与第三支撑翼肋8上的肋板轴2铰接,滑动组件11的一侧与第二支撑翼肋7上的肋板轴2铰接,滑动组件11的另一侧与第三支撑翼肋8上的肋板轴2铰接,从而构成可同时形成拉伸和弯曲的复合模块单元。The second
第三复合模块单元15包括四个V型铰链组件10,两个滑动组件11和两个同步轴3,其中两个V型铰链组10件的一侧端部与第二复合模块单元14上部的同步轴3铰接,另外两个V型铰链组件10的相同侧端部与第二复合模块单元14下部的同步轴3铰接,这四个V型铰链组件10的另一侧端部都与第四支撑翼肋9上的肋板轴2铰接,滑动组件11的一侧与第三支撑翼肋8上的肋板轴2铰接,滑动组件11的另一侧与第四支撑翼肋9上的肋板轴2铰接,从而构成可同时形成拉伸和弯曲的复合模块单元。The 3rd
串联联动骨架1结构为提高工业化以及扩展性,采用模块化方式进行设计,由多个结构相同的单元模块串联而成,串联数量由结构设定。故以此类推:第N复合模块单元包括四个V型铰链组件10,两个滑动组件11和两个同步轴3,其中两个V型铰链组件10的一侧端部与第N-1复合模块单元上部的同步轴3铰接,另外两个V型铰链组件10的相同侧端部与第N-1复合模块单元下部的同步轴3铰接,这四个V型铰链组件的另一侧端部都与第N+1支撑翼肋上的肋板轴2铰接,滑动组件11的一侧与第N支撑翼肋上的肋板轴铰接,滑动组件的另一侧与第N+1支撑翼肋上的肋板轴2铰接,从而构成可同时形成拉伸和弯曲的复合模块单元。In order to improve industrialization and expansibility, the structure of the
第一支撑翼肋6与机翼根部支撑座5固连,其余支撑翼肋由内向外依次通过肋板轴2与第一复合模块单元13至第N复合模块单元对应部位铰接,多个支撑翼肋之间平行布置,长度相等。The first supporting
工作原理如下:It works as follows:
假定变形翼状态如图1所示,此时支撑座5上的双电机驱动部件4运作,带动蜗杆25和涡轮20相对转动,上涡轮轴19顺时针转动,下涡轮轴26逆时针转动,从而带动第一复合模块单元13的四个V型铰链单元10向外作伸展运动,由于第二支撑翼肋7的肋板轴2分别与第一复合模块单元13中的V型铰链单元10和滑动组件11相互铰接,而第二复合模块单元14中的四个V型铰链10分别与第一复合模块单元13上部的同步轴和下部的同步轴相互铰接,使第二支撑翼肋7、滑动组件11以及第二复合模块单元14中的V型铰链10产生从动变形,跟随向外作伸展运动,由于串联联动骨架1采用模块化方式进行设计,由多个结构相同的元模块串联而成,后续模块变形方式与上述形式相同,故以此类推,由于第N支撑翼肋的翼肋轴2分别与第N-1复合模块单元中的V型铰链单元10和滑组件11相互铰接,而第N复合模块单元中的四个V型铰链分别于第N-1复合模块单元上部的同步轴和下部的同步轴相互铰接,使第N支撑翼肋、滑动组件11以及第N复合模块单元中的V型铰链10产生从动变形,跟随向外作伸展运动。当串联联动骨架1进行变形时,铆接在支撑翼肋上的波纹结构基体18和粘接在波纹结构基体18上的弹性橡胶表层17随之运动,实现变形机翼的整体变形。当需要实现机翼变展长功能时,双电机驱动部件4功率需保持一致,使上涡轮轴19和下涡轮轴26转动速率相同,保证串联联动骨架1各单元协调运作直至完全伸展,如图5所示。当需要实现机翼变上下反角功能时,双电机各自的驱动功率需具有一定差值,使上涡轮轴19和下涡轮轴26转动速率不同,当上涡轮轴19转速大于下涡轮轴26转速时,机翼整体向下弯曲,反之,机翼整体向上弯曲,如图6所示。Assume that the state of the deformed wing is as shown in Figure 1. At this time, the dual-
以上对本发明所提供的一种双驱动可变展长与上下反角的机翼,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The above has introduced in detail a kind of double-drive variable extension and dihedral wing provided by the present invention. In this paper, specific examples have been used to illustrate the principle and implementation of the present invention. The description of the above embodiments It is only used to help understand the method of the present invention and its core idea; at the same time, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and scope of application. In summary, The contents of this description should not be construed as limiting the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010456573.0A CN111688913B (en) | 2020-05-26 | 2020-05-26 | A wing with double drive, variable length and dihedral angle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010456573.0A CN111688913B (en) | 2020-05-26 | 2020-05-26 | A wing with double drive, variable length and dihedral angle |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111688913A CN111688913A (en) | 2020-09-22 |
CN111688913B true CN111688913B (en) | 2023-02-17 |
Family
ID=72478271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010456573.0A Active CN111688913B (en) | 2020-05-26 | 2020-05-26 | A wing with double drive, variable length and dihedral angle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111688913B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111703512A (en) * | 2020-07-22 | 2020-09-25 | 湖北汽车工业学院 | A scissor-type flexible wing device |
CN112319771B (en) * | 2020-11-05 | 2024-04-26 | 西北工业大学 | Flexible driver-based variable trailing edge camber rib |
CN116552781B (en) * | 2023-06-07 | 2024-02-20 | 北方工业大学 | Adaptive intelligent torsional deformation mechanism of tilt-rotor propeller blades |
CN118309594B (en) * | 2024-03-20 | 2024-12-13 | 北京威浮科技有限责任公司 | Paddle and power generation device with same |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB472567A (en) * | 1936-08-31 | 1937-09-27 | Horace Charles Luttman | Improvements in aerofoils with variable camber |
EP1413782A1 (en) * | 2002-10-21 | 2004-04-28 | The Boeing Company | Method and apparatus for rotatably supporting movable components, including canards |
EP2368793A2 (en) * | 2010-03-23 | 2011-09-28 | Deutsches Zentrum für Luft- und Raumfahrt e. V. | Manned aircraft |
CN103158861A (en) * | 2011-12-12 | 2013-06-19 | 波音公司 | Wing variable camber trailing edge tip |
CN103192982A (en) * | 2013-04-01 | 2013-07-10 | 哈尔滨工业大学 | Variant aerofoil capable of transforming into W-shaped wing, M-shaped wing or flat wing |
CN103538717A (en) * | 2012-07-16 | 2014-01-29 | 空中客车西班牙运营有限责任公司 | Aircraft lifting surface with variable sweep distribution along the span |
EP2930103A1 (en) * | 2014-04-12 | 2015-10-14 | The Boeing Company | Wing tip device for an aircraft wing |
CN106715263A (en) * | 2014-09-25 | 2017-05-24 | 庞巴迪公司 | Morphing skin for an aircraft |
EP3296202A1 (en) * | 2016-09-19 | 2018-03-21 | Bell Helicopter Textron Inc. | Wing extension winglets for tiltrotor aircraft |
CN108482645A (en) * | 2018-04-20 | 2018-09-04 | 哈尔滨工业大学 | A kind of deformation wing mechanism based on scissor linkage skeleton with sliding covering |
EP3546341A1 (en) * | 2018-03-29 | 2019-10-02 | Bombardier Inc. | Deflectable airfoil assembly and method of determining loading on same |
EP3604124A1 (en) * | 2018-08-03 | 2020-02-05 | Aurora Flight Sciences Corporation | Combination flight and ground apparatus for a vehicle |
CN110920865A (en) * | 2019-12-13 | 2020-03-27 | 浙江大学 | Telescopic wing structure with continuously variable wingspan |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4824053A (en) * | 1987-08-27 | 1989-04-25 | Branko Sarh | Telescopic wing |
WO2008022428A1 (en) * | 2006-08-25 | 2008-02-28 | A Partnership Of Jim Langley And Courtney Hunter | Aircraft wing modification and related methods |
GB2524828A (en) * | 2014-04-04 | 2015-10-07 | Airbus Operations Ltd | An aircraft comprising a foldable aerodynamic structure and a method of manufacturing a foldable aerodynamic structure for an aircraft |
US10005541B2 (en) * | 2015-02-24 | 2018-06-26 | Karem Aircraft, Inc. | Methods for providing a durable solar powered aircraft with a variable geometry wing |
CN105109668B (en) * | 2015-09-23 | 2017-08-29 | 燕山大学 | A kind of variable geometry parallel institution |
CN105438443B (en) * | 2015-12-08 | 2017-11-21 | 中国航空工业集团公司成都飞机设计研究所 | A kind of conformal folding wings |
US20180079488A1 (en) * | 2016-09-21 | 2018-03-22 | Bell Helicopter Textron Inc. | Foldable aircraft with anhedral stabilizing wings |
CN107972844A (en) * | 2017-12-09 | 2018-05-01 | 佛山市神风航空科技有限公司 | A kind of folded wing |
-
2020
- 2020-05-26 CN CN202010456573.0A patent/CN111688913B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB472567A (en) * | 1936-08-31 | 1937-09-27 | Horace Charles Luttman | Improvements in aerofoils with variable camber |
EP1413782A1 (en) * | 2002-10-21 | 2004-04-28 | The Boeing Company | Method and apparatus for rotatably supporting movable components, including canards |
EP2368793A2 (en) * | 2010-03-23 | 2011-09-28 | Deutsches Zentrum für Luft- und Raumfahrt e. V. | Manned aircraft |
CN103158861A (en) * | 2011-12-12 | 2013-06-19 | 波音公司 | Wing variable camber trailing edge tip |
CN103538717A (en) * | 2012-07-16 | 2014-01-29 | 空中客车西班牙运营有限责任公司 | Aircraft lifting surface with variable sweep distribution along the span |
CN103192982A (en) * | 2013-04-01 | 2013-07-10 | 哈尔滨工业大学 | Variant aerofoil capable of transforming into W-shaped wing, M-shaped wing or flat wing |
EP2930103A1 (en) * | 2014-04-12 | 2015-10-14 | The Boeing Company | Wing tip device for an aircraft wing |
CN106715263A (en) * | 2014-09-25 | 2017-05-24 | 庞巴迪公司 | Morphing skin for an aircraft |
EP3296202A1 (en) * | 2016-09-19 | 2018-03-21 | Bell Helicopter Textron Inc. | Wing extension winglets for tiltrotor aircraft |
EP3546341A1 (en) * | 2018-03-29 | 2019-10-02 | Bombardier Inc. | Deflectable airfoil assembly and method of determining loading on same |
CN108482645A (en) * | 2018-04-20 | 2018-09-04 | 哈尔滨工业大学 | A kind of deformation wing mechanism based on scissor linkage skeleton with sliding covering |
EP3604124A1 (en) * | 2018-08-03 | 2020-02-05 | Aurora Flight Sciences Corporation | Combination flight and ground apparatus for a vehicle |
CN110920865A (en) * | 2019-12-13 | 2020-03-27 | 浙江大学 | Telescopic wing structure with continuously variable wingspan |
Non-Patent Citations (3)
Title |
---|
变后掠变展长翼身组合体系统设计与特性分析;陈钱等;《航空学报》;20100331(第03期);全文 * |
弹簧展开铰链锁定冲击及减小冲击方法;郭宏伟等;《哈尔滨工业大学学报》;20161231(第001期);全文 * |
柔性后缘可变形机翼的气动特性分析;秦博谦;《中国高新科技》;20191231(第013期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111688913A (en) | 2020-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111688913B (en) | A wing with double drive, variable length and dihedral angle | |
CN102211667B (en) | Flapping wing driving mechanism of two-level parallel gear reduction | |
CN111688911B (en) | A deformable wing device based on a four-pointed star-shaped scissors mechanism and variable-length ribs | |
CN110979660B (en) | Three steering engine direct-drive coaxial rotor system and control strategy | |
CN110341935B (en) | A spanwise telescopic deformable wing | |
CN110979652B (en) | Two-steering engine direct-drive coaxial rotor system and control strategy | |
CN111645848A (en) | Skeleton structure of telescopic wing | |
CN110104175A (en) | A kind of coaxial reversed pair is flutterred rotor mechanism | |
CN111516856B (en) | Wing surface driving mechanism | |
CN112141318A (en) | Trailing edge variable camber mechanism based on knuckle link drive | |
CN101767647B (en) | Self-locking 90-degree full-wing variable sweepback transmission mechanism | |
CN214824042U (en) | Aircraft with a flight control device | |
CN202038454U (en) | Flapping wing driving mechanism with two-stage parallel gear reduction | |
US20240092474A1 (en) | Wing Element Structure for Aircraft, Wing Structure, and Aircraft | |
CN109572988B (en) | Deformation aircraft cabin section structure | |
CN115924060A (en) | Asymmetric airfoil inversion mechanism based on connecting rod assembly and use method thereof | |
CN109760833A (en) | Can take down the exhibits resilient wing | |
CN115871915A (en) | Large-angle continuous variable camber aileron based on compliant variant structure | |
CN217049016U (en) | Wing interval adjusting module and aircraft comprising same | |
CN114148505A (en) | Composite hinge-containing continuously-variable-camber wing structure for high-speed aircraft | |
CN108045556A (en) | A kind of aircraft flaperon motion | |
CN203958608U (en) | Under thin airfoil, use a pressurized strut to complete the device of double slit wing flap motion | |
CN113120220B (en) | Three-dimensional single-shaft driving system for rigid-flexible coupling variable camber wing front edge | |
CN216887196U (en) | Variant mechanism of aircraft wing | |
CN113246098A (en) | Four-degree-of-freedom parallel robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |