CN111645848A - Skeleton structure of telescopic wing - Google Patents
Skeleton structure of telescopic wing Download PDFInfo
- Publication number
- CN111645848A CN111645848A CN202010495384.4A CN202010495384A CN111645848A CN 111645848 A CN111645848 A CN 111645848A CN 202010495384 A CN202010495384 A CN 202010495384A CN 111645848 A CN111645848 A CN 111645848A
- Authority
- CN
- China
- Prior art keywords
- wing
- connecting rod
- transmission connecting
- pin
- motion module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 145
- 230000033001 locomotion Effects 0.000 claims abstract description 91
- 238000000034 method Methods 0.000 claims abstract description 11
- 238000013519 translation Methods 0.000 claims abstract description 6
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims description 3
- 238000009434 installation Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 6
- 230000008602 contraction Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
- B64C3/56—Folding or collapsing to reduce overall dimensions of aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Toys (AREA)
Abstract
Description
技术领域technical field
本发明属于可变形飞行器技术领域,涉及一种可伸缩机翼的骨架结构。The invention belongs to the technical field of deformable aircraft, and relates to a skeleton structure of a retractable wing.
背景技术Background technique
可变形飞行器作为人类对鸟类卓越飞行能力不断追求的产物,可以在不同的飞行环境中通过改变自身的外形来获得最佳气动效率,可变的机翼提高了飞行器的综合能力,使飞行器能够适应更加复杂多变的任务环境。As a product of human beings' continuous pursuit of excellent flight ability of birds, the deformable aircraft can obtain the best aerodynamic efficiency by changing its shape in different flight environments. The variable wings improve the comprehensive ability of the aircraft, so that the aircraft can Adapt to more complex and changing task environment.
固定高展弦比机翼在燃油效率方面有优势,但机动性差,巡航速度也相对较低。相反,低展弦比机翼的飞机速度更快机动性更好,但气动效率较差。具有可伸缩机翼的飞机有潜力利用各方面的优势配置,是未来飞行器研究发展的重要方向。Fixed high aspect ratio wings offer advantages in terms of fuel efficiency, but poor maneuverability and relatively low cruising speeds. Conversely, aircraft with low aspect ratio wings are faster and more maneuverable, but less aerodynamically efficient. Aircraft with retractable wings have the potential to utilize various advantageous configurations, which is an important direction for the research and development of future aircraft.
当前变跨度飞机中Z字形折叠机翼,分段机翼缝隙会影响飞机气动性能且翼展只有折叠前带折叠段的全展、折叠后不带折叠端两种状态。目前的变翼展普遍表现出不可连续变化、翼展可变范围小局限性大,控制复杂、操作繁琐,难以满足在不同环境下的需求。In the current variable-span aircraft, the Z-shaped folded wings and the gaps in the segmented wings will affect the aerodynamic performance of the aircraft, and the wingspan has only two states of full extension with a folded section before folding, and without a folded end after folding. The current variable wingspan generally shows non-continuous change, small variable range of wingspan, large limitations, complex control and cumbersome operation, which are difficult to meet the needs of different environments.
发明内容SUMMARY OF THE INVENTION
本发明目的在于克服上诉现有技术的缺点,为可变跨度飞机提供一种内部机翼骨架可折叠,翼展可连续变化、翼展变化范围大的机翼骨架结构,并且结构简单、制造容易、控制简单。The purpose of the present invention is to overcome the shortcomings of the prior art, and to provide a variable-span aircraft with a foldable internal wing frame, a wing frame structure with a continuously variable wingspan and a wide range of wingspan variation, which is simple in structure and easy to manufacture. , Control is simple.
为了达到上述目的,本发明采用的技术方案为:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种可伸缩机翼的骨架结构,包括舵机驱动装置、翼肋、滑轨梁5和多个运动模块单元;所述舵机驱动装置包括固定在机身内的舵机1以及与舵机1连接的舵机连杆2,舵机驱动装置驱动机翼的伸缩和展开;所述翼肋包括一个机身处翼肋3和多个普通翼肋8,翼肋之间通过运动模块单元连接,普通翼肋8能够沿滑轨梁5滑动;每个所述运动模块单元由多根传动连杆11铰接组成;当舵机1驱动舵机连杆2逆时针旋转时,与舵机连杆相连的运动模块单元运动,压缩机翼内空间;运动模块单元带动相连的普通翼肋8在滑轨梁5上往机身方向滑动,下一个运动模块单元也随普通翼肋8滑动相同距离、同时与上一个运动模块单元同样压缩;后面运动模块单元与普通翼肋8同样运动,机翼进行收缩;反之舵机1驱动舵机连杆2顺时针旋转时、运动模块单元伸展开、普通翼肋8沿滑轨梁5向翼梢方向滑动、机翼进行伸展。A skeleton structure of a retractable wing includes a steering gear drive device, a wing rib, a
多个所述运动模块单元的运动方式和连接方式均相同;每个运动模块单元中有结构相同的八根传动连杆11,传动连杆11一端伸出一个凸台,另一端伸出两个凸台,两端的凸台位置互补,传动连杆11两端的凸台中有相同直径的通孔,传动连杆11中心也有同样大小的通孔;传动连杆11之间利用孔形成铰接;两端凸台与杆中间部分夹角为148°,这种连杆设计方便配合,在传动连杆运动过程中不会发生干涉,并且能够很好的传力。The movement and connection methods of the plurality of motion module units are the same; each motion module unit has eight
所述普通翼肋8离前缘在弦线方向距离为弦长1/5处上下两端分别有耳状凸台6、离前缘在弦线方向距离为弦长2/5到7/10上下两端分别有滑动导轨7;耳状凸台6的孔与传动连杆11两端的通孔形成同心,第一销10穿过通孔将耳状凸台6与传动连杆11形成铰接;滑动杆4是上下变直径阶梯形圆柱,滑动杆4较粗段一端挂于滑动导轨7上,滑动杆4沿着滑动导轨7滑动;滑动导轨7孔开口的宽度与传动连杆11两端圆通孔的直径大小相等,滑动杆4较细段穿过滑动导轨孔与传动连杆孔;两个滑动导轨7之间有矩形孔,耳状凸台6旁边也设有矩形孔,使得传动连杆11穿过普通翼肋8,运动过程中不会与普通翼肋发生干涉;所述机身处翼肋3固定于机身上,去除了普通翼肋8中耳状凸台6与滑动导轨7之间的部分分成两块,使得舵机连杆2穿过机身处翼肋3与运动模块单元连接,其他部分与普通翼肋8结构相同。The
所述运动模块单元的连接方式为:把传动连杆沿竖直方向分层,第二传动连杆13、第五传动连杆19为第一层、第一传动连杆12、第六传动连杆21为第二层、第四传动连杆16、第七传动连杆22为第三层、第三传动连杆14、第八传动连杆24为第四层;相同层的两根传动连杆之间形成V形铰接,两根传动连杆均与翼肋的对应相同位置的耳状凸台6或滑动导轨7相连;四层传动连杆形成V形的夹角大小相等,水平上看相邻层交叉,相邻层两个V型交叉点为传动连杆的中心点;第一层与第三层、第二层与第四层传动连杆上的所有孔都对中经销连接形成铰接,因此第一层与第三层、第二层与第四层运动方式相同;其中四层对应位置的传动连杆中心孔均同轴、利用销形成铰接。The connection method of the motion module unit is as follows: the transmission link is layered in the vertical direction, the
舵机驱动装置驱动后,运动模块单元带动翼肋只沿翼展方向平动,在伸缩过程中保证普通翼肋8其他方向不发生运动,翼展连续变化、不会有分段伸缩机翼之间的缝隙;整体机翼的变化由六个相同的运动模块单元的运动组成;对于第一个运动模块单元:当舵机1驱动舵机连杆2逆时针旋转时,带动第二销15旋转,与第二销15相连的第一传动连杆12、第二传动连杆13、第三传动连杆14和第四传动连杆16随第二销15平动同时绕第二销15逆时针转动,滑动杆4沿着滑动导轨7向后滑动;第三销17、第四销18在翼展方向朝机身做相等位移的运动;与第三销17连接的第六传动连杆21、第七传动连杆22的运动是随第三销17平动和与第二传动连杆13、第三传动连杆14相同角度的转动运动叠加;与第四销18连接的第五传动连杆19、第八传动连杆24的运动是随第四销18平动和与第一传动连杆12、第四传动连杆16相同角度的转动运动叠加;连接在第五传动连杆19和第八传动连杆24后端的第六销25与滑动杆4在翼展方向做两倍于第四销18和第三销17位移的运动;第六销25与滑动杆4带动普通翼肋8只在翼展方向发生平动;第六销25与滑动杆4的运动会带动相邻的下一个运动模块单元发生相同的运动。After the steering gear drive device is driven, the motion module unit drives the wing rib to move only in the direction of the wingspan. During the expansion and contraction process, it is ensured that the
所述滑轨梁5一端固定于机身,沿翼展方向布置,滑轨梁5长度比机翼完全折叠时长度短,当机翼完全折叠时,滑轨梁5也不会伸出机翼;所述普通翼肋8前后有两个圆通孔,两根滑轨梁5穿过普通翼8肋上的圆通孔,使得普通翼肋8能够沿滑轨梁5滑动;滑轨梁5一端固定于机身沿翼展方向布置,滑轨梁5的长度比机翼完全折叠后的长度短,使得当机翼完全折叠时,滑轨梁5不会伸出机翼;滑轨梁5上的普通翼肋8将所受气动载荷传到滑轨梁5上,其中不在滑轨梁5上的其他普通翼肋将蒙皮传过来的气动载荷通过传动连杆传到滑轨梁5上,滑轨梁5将受力传到机身上。One end of the
翼展变化率最大达40%,机翼能够在在最大变化率范围内连续变化。The wingspan change rate is up to 40%, and the wing can change continuously within the maximum change rate range.
和现有技术相比,本发明的技术方案具有下述优点:Compared with the prior art, the technical scheme of the present invention has the following advantages:
1、能进一步利用机翼的伸缩,翼展在最大变化范围内可连续变化,可以利用机翼的对称变形实现飞机在不同飞行环境都调节合适的翼展在所需性能上保持最佳飞行状态。利用机翼的非对称变形可实现无副翼滚转机动,能提供比副翼更大的滚转力矩、提供更好的滚转性能。1. The expansion and contraction of the wings can be further utilized, and the wingspan can be continuously changed within the maximum variation range, and the symmetrical deformation of the wings can be used to achieve the aircraft in different flight environments. . Aileronless rolling maneuver can be achieved by using the asymmetric deformation of the wing, which can provide a larger rolling moment and better rolling performance than ailerons.
2、制造容易、控制简单、加工及安装方便。这种可伸缩机翼的骨架结构只有一个自由度,只需一个驱动,运动模块运动方式和连接方式相同。其中一种传动连杆能承担力传导和传动任务,方便加工与安装。2. Easy to manufacture, simple to control, convenient to process and install. The skeleton structure of this retractable wing has only one degree of freedom, and only needs one drive, and the movement and connection methods of the motion modules are the same. One of the transmission connecting rods can undertake the tasks of force transmission and transmission, which is convenient for processing and installation.
3、机翼折叠率大,没有飞行任务时,可将两侧机翼收缩到最短减小存放空间。3. The wing folding rate is large. When there is no flight mission, the wings on both sides can be retracted to the shortest to reduce the storage space.
附图说明Description of drawings
图1为本发明机翼骨架在完全展开状态的结构示意图Fig. 1 is the structural schematic diagram of the wing frame of the present invention in a fully expanded state
图2为本发明机翼骨架在完全收缩状态的结构示意图FIG. 2 is a schematic structural diagram of the wing frame of the present invention in a fully retracted state
图3为本发明机翼骨架主要传动传动连杆的结构示意图Fig. 3 is the structural schematic diagram of the main transmission link of the wing frame of the present invention
图4为本发明例机翼骨架普通翼肋8的结构示意图FIG. 4 is a schematic structural diagram of the
图5为本发明机翼骨架中舵机1、机身处翼肋3与穿过他的舵机连杆2的结构示意图5 is a schematic structural diagram of the
图6为一个运动模块单元与翼肋及驱动模块的结构示意图。FIG. 6 is a schematic structural diagram of a motion module unit, a wing rib and a drive module.
其中1为舵机,2为舵机连杆,3为机身处翼肋,4为滑动杆,5为滑轨梁,6为耳状凸台,7为滑动导轨,8为普通翼肋,9为盖帽、10为第一销、11为传动连杆。12为第一传动连杆、13为第二传动连杆、14为第三传动连杆、15为第二销、16为第四传动连杆、17为第三销、18为第四销、19为第五传动连杆、21为第六传动连杆、22为第七传动连杆、23为第五销、24为第八传动连杆、25为第六销。Among them, 1 is the steering gear, 2 is the steering gear connecting rod, 3 is the wing rib at the fuselage, 4 is the sliding rod, 5 is the sliding rail beam, 6 is the ear-shaped boss, 7 is the sliding guide rail, and 8 is the ordinary wing rib, 9 is a cap, 10 is a first pin, and 11 is a transmission link. 12 is the first transmission link, 13 is the second transmission link, 14 is the third transmission link, 15 is the second pin, 16 is the fourth transmission link, 17 is the third pin, 18 is the fourth pin, 19 is the fifth transmission link, 21 is the sixth transmission link, 22 is the seventh transmission link, 23 is the fifth pin, 24 is the eighth transmission link, and 25 is the sixth pin.
具体实施方式Detailed ways
下面结合附图对本发明做进一步详细描述。The present invention will be further described in detail below with reference to the accompanying drawings.
如图1和图2所示,本发明一种可伸缩机翼的骨架结构,包括舵机驱动装置、翼肋、滑轨梁5和多个运动模块单元;所述舵机驱动装置包括固定在机身内的舵机1以及与舵机1连接的舵机连杆2,舵机驱动装置驱动机翼的伸缩和展开;所述翼肋包括一个机身处翼肋3和多个普通翼肋8,翼肋之间通过运动模块单元连接,普通翼肋8能够沿滑轨梁5滑动;每个所述运动模块单元由多根传动连杆11铰接组成。As shown in Figures 1 and 2, a skeleton structure of a retractable wing of the present invention includes a steering gear drive device, a wing rib, a
如图2所示,当舵机1驱动舵机连杆2逆时针旋转时,与舵机连杆相连的运动模块单元运动,压缩机翼内空间;运动模块单元带动相连的普通翼肋8在滑轨梁5上往机身方向滑动,下一个运动模块单元也随普通翼肋8滑动相同距离、同时与上一个运动模块单元同样压缩;后面运动模块单元与普通翼肋8同样运动,机翼进行收缩。As shown in Figure 2, when the
如图1所示,当舵机1驱动舵机连杆2顺时针旋转时、运动模块单元伸展开、普通翼肋8沿滑轨梁5向翼梢方向滑动、机翼进行伸展。As shown in FIG. 1 , when the
作为本发明的优选实施方式,每个运动模块单元中有结构相同的八根传动连杆11,如图3所示,传动连杆11一端伸出一个凸台,另一端伸出两个凸台,两端的凸台位置互补,传动连杆11两端的凸台中有相同直径的通孔,传动连杆11中心也有同样大小的通孔;传动连杆11之间利用孔形成铰接;两端凸台与杆中间部分夹角为148°,这种连杆设计方便配合,在传动连杆运动过程中不会发生干涉,并且能够很好的传力。As a preferred embodiment of the present invention, each motion module unit has eight
如图4所示,作为本发明的优选实施方式,所述普通翼肋8离前缘在弦线方向距离为弦长1/5处上下两端分别有耳状凸台6、离前缘在弦线方向距离为弦长2/5到7/10上下两端分别有滑动导轨7;耳状凸台6的孔与传动连杆11两端的通孔形成同心,第一销10穿过通孔将耳状凸台6与传动连杆11形成铰接;滑动杆4是上下变直径阶梯形圆柱,滑动杆4较粗段一端挂于滑动导轨7上,滑动杆4沿着滑动导轨7滑动;滑动导轨7孔开口的宽度与传动连杆11两端圆通孔的直径大小相等,滑动杆4较细段穿过滑动导轨孔与传动连杆孔;两个滑动导轨7之间有矩形孔,耳状凸台6旁边也设有矩形孔,使得传动连杆11穿过普通翼肋8,运动过程中不会与普通翼肋发生干涉。As shown in FIG. 4 , as a preferred embodiment of the present invention, the
如图5所示,作为本发明的优选实施方式,所述机身处翼肋3固定于机身上,去除了普通翼肋8中耳状凸台6与滑动导轨7之间的部分分成两块,使得舵机连杆2穿过机身处翼肋3与运动模块单元连接,其他部分与普通翼肋8结构相同。As shown in FIG. 5 , as a preferred embodiment of the present invention, the
如图6所示,作为本发明的优选实施方式,所述运动模块单元的连接方式为:把传动连杆沿竖直方向分层,第二传动连杆13、第五传动连杆19为第一层、第一传动连杆12、第六传动连杆21为第二层、第四传动连杆16、第七传动连杆22为第三层、第三传动连杆14、第八传动连杆24为第四层;相同层的两根传动连杆之间形成V形铰接,两根传动连杆均与翼肋的对应相同位置的耳状凸台6或滑动导轨7相连;四层传动连杆形成V形的夹角大小相等,水平上看相邻层交叉,相邻层两个V型交叉点为传动连杆的中心点;第一层与第三层、第二层与第四层传动连杆上的所有孔都对中经销连接形成铰接,因此第一层与第三层、第二层与第四层运动方式相同;其中四层对应位置的传动连杆中心孔均同轴、利用销形成铰接,如第一传动连杆12、第二传动连杆13、第三传动连杆14、第四传动连杆16中心位置的通孔均同心,第五传动连杆19、第六传动连杆21、第七传动连杆22、第八传动连杆24中心位置的通孔均同心。As shown in FIG. 6 , as a preferred embodiment of the present invention, the connection mode of the motion module unit is as follows: the transmission link is layered in the vertical direction, and the
舵机驱动装置驱动后,运动模块单元带动翼肋只沿翼展方向平动,在伸缩过程中保证普通翼肋8其他方向不发生运动,翼展连续变化、不会有分段伸缩机翼之间的缝隙;整体机翼的变化由六个相同的运动模块单元的运动组成;如图6所示,对于第一个运动模块单元:当舵机1驱动舵机连杆2逆时针旋转时,带动第二销15旋转,与第二销15相连的第一传动连杆12、第二传动连杆13、第三传动连杆14和第四传动连杆16随第二销15平动同时绕第二销15逆时针转动,滑动杆4沿着滑动导轨7向后滑动;第三销17、第四销18在翼展方向朝机身做相等位移的运动;与第三销17连接的第六传动连杆21、第七传动连杆22的运动是随第三销17平动和与第二传动连杆13、第三传动连杆14相同角度的转动运动叠加;与第四销18连接的第五传动连杆19、第八传动连杆24的运动是随第四销18平动和与第一传动连杆12、第四传动连杆16相同角度的转动运动叠加;连接在第五传动连杆19和第八传动连杆24后端的第六销25与滑动杆4在翼展方向做两倍于第四销18和第三销17位移的运动;第六销25与滑动杆4带动普通翼肋8只在翼展方向发生平动;第六销25与滑动杆4的运动会带动相邻的下一个运动模块单元发生相同的运动。After the steering gear drive device is driven, the motion module unit drives the wing rib to move only in the direction of the wingspan. During the expansion and contraction process, it is ensured that the
如图4所示,作为本发明的优选实施方式,所述滑轨梁5一端固定于机身,沿翼展方向布置,滑轨梁5长度比机翼完全折叠时长度略短,当机翼完全折叠时,滑轨梁5也不会伸出机翼;所述普通翼肋8前后有两个圆通孔,两根滑轨梁5穿过普通翼8肋上的圆通孔,使得普通翼肋8能够沿滑轨梁5滑动;滑轨梁5一端固定于机身沿翼展方向布置,滑轨梁5的长度比机翼完全折叠后的长度短,使得当机翼完全折叠时,滑轨梁5不会伸出机翼;滑轨梁5上的普通翼肋8将所受气动载荷传到滑轨梁5上,其中不在滑轨梁5上的其他普通翼肋将蒙皮传过来的气动载荷通过传动连杆传到滑轨梁5上,滑轨梁5将受力传到机身上。滑轨梁5可传导大部分气动载荷,同时在安装时起定位作用。As shown in FIG. 4 , as a preferred embodiment of the present invention, one end of the
本发明可伸缩机翼的骨架结构翼展变化率最大达40%,机翼能够在在最大变化率范围内连续变化。The skeleton structure of the retractable wing of the present invention has a wingspan change rate of up to 40%, and the wing can be continuously changed within the range of the maximum change rate.
利用两侧机翼的伸缩可在当飞机需要实现无副翼滚转机动时控制两侧机翼的非对称变形,在不同环境下可控制两侧机翼对称变形以不同状态巡航。没有飞行任务时,可将两侧机翼收缩到最短减小存放空间。The expansion and contraction of the wings on both sides can be used to control the asymmetric deformation of the wings on both sides when the aircraft needs to achieve aileronless rolling maneuvers, and the symmetrical deformation of the wings on both sides can be controlled to cruise in different states in different environments. When there is no flight mission, the wings on both sides can be retracted to the shortest to reduce the storage space.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010495384.4A CN111645848B (en) | 2020-06-03 | 2020-06-03 | A skeleton structure of a retractable wing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010495384.4A CN111645848B (en) | 2020-06-03 | 2020-06-03 | A skeleton structure of a retractable wing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111645848A true CN111645848A (en) | 2020-09-11 |
CN111645848B CN111645848B (en) | 2021-09-03 |
Family
ID=72350359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010495384.4A Active CN111645848B (en) | 2020-06-03 | 2020-06-03 | A skeleton structure of a retractable wing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111645848B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112722237A (en) * | 2021-02-20 | 2021-04-30 | 江西经济管理干部学院 | Wingtip winglet of aviation aircraft |
CN113353243A (en) * | 2021-07-30 | 2021-09-07 | 郑州航空工业管理学院 | From multi-functional unmanned aerial vehicle commodity circulation car of becoming wing |
CN113859516A (en) * | 2021-10-22 | 2021-12-31 | 哈尔滨工业大学 | Deformation wing parallel guide rail distributed type driving telescopic mechanism |
CN114872882A (en) * | 2022-07-08 | 2022-08-09 | 西安羚控电子科技有限公司 | Aircraft wing receiving device for aircraft and aircraft |
CN115649419A (en) * | 2022-12-12 | 2023-01-31 | 太原理工大学 | Deformable wing rib based on gradient hexagonal structure and control method thereof |
CN116215907A (en) * | 2023-04-11 | 2023-06-06 | 南京航空航天大学 | A vertical take-off and landing variant UAV with tiltable, foldable and telescopic wings |
CN116620545A (en) * | 2023-07-19 | 2023-08-22 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | Wing structure based on bistable beam |
CN116729658A (en) * | 2023-04-20 | 2023-09-12 | 北京科技大学 | A flying device with retractable wings and a method of using the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110001016A1 (en) * | 2007-12-18 | 2011-01-06 | Robert Stewart Skillen | Telescoping and sweeping wing that is reconfigurable during flight |
US20150136898A1 (en) * | 2013-10-28 | 2015-05-21 | Jeremiah Benjamin Bowe McCoy | Telescopic Wing and Rack System for Automotive Airplane |
CN206068134U (en) * | 2016-10-12 | 2017-04-05 | 沈阳航空航天大学 | A kind of Inflatable flexible wing structure of the variable span |
CN108248826A (en) * | 2016-12-29 | 2018-07-06 | 北京卓翼智能科技有限公司 | A kind of telescopic wing mechanism, telescopic method and include its aircraft |
CN110271659A (en) * | 2019-07-03 | 2019-09-24 | 北京航空航天大学 | A kind of small drone fold concertina-wise wing based on paper folding principle |
CN110803276A (en) * | 2019-12-05 | 2020-02-18 | 江西洪都航空工业集团有限责任公司 | Flexibly deformable wing mechanism and assembly method |
CN110920853A (en) * | 2019-12-05 | 2020-03-27 | 中国特种飞行器研究所 | Telescopic airship wing |
-
2020
- 2020-06-03 CN CN202010495384.4A patent/CN111645848B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110001016A1 (en) * | 2007-12-18 | 2011-01-06 | Robert Stewart Skillen | Telescoping and sweeping wing that is reconfigurable during flight |
US20150136898A1 (en) * | 2013-10-28 | 2015-05-21 | Jeremiah Benjamin Bowe McCoy | Telescopic Wing and Rack System for Automotive Airplane |
CN206068134U (en) * | 2016-10-12 | 2017-04-05 | 沈阳航空航天大学 | A kind of Inflatable flexible wing structure of the variable span |
CN108248826A (en) * | 2016-12-29 | 2018-07-06 | 北京卓翼智能科技有限公司 | A kind of telescopic wing mechanism, telescopic method and include its aircraft |
CN110271659A (en) * | 2019-07-03 | 2019-09-24 | 北京航空航天大学 | A kind of small drone fold concertina-wise wing based on paper folding principle |
CN110803276A (en) * | 2019-12-05 | 2020-02-18 | 江西洪都航空工业集团有限责任公司 | Flexibly deformable wing mechanism and assembly method |
CN110920853A (en) * | 2019-12-05 | 2020-03-27 | 中国特种飞行器研究所 | Telescopic airship wing |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112722237A (en) * | 2021-02-20 | 2021-04-30 | 江西经济管理干部学院 | Wingtip winglet of aviation aircraft |
CN112722237B (en) * | 2021-02-20 | 2023-08-25 | 江西经济管理干部学院 | Aviation aircraft wing tip winglet |
CN113353243B (en) * | 2021-07-30 | 2023-08-22 | 郑州航空工业管理学院 | A multifunctional unmanned aerial vehicle with self-changing wings |
CN113353243A (en) * | 2021-07-30 | 2021-09-07 | 郑州航空工业管理学院 | From multi-functional unmanned aerial vehicle commodity circulation car of becoming wing |
CN113859516A (en) * | 2021-10-22 | 2021-12-31 | 哈尔滨工业大学 | Deformation wing parallel guide rail distributed type driving telescopic mechanism |
CN114872882A (en) * | 2022-07-08 | 2022-08-09 | 西安羚控电子科技有限公司 | Aircraft wing receiving device for aircraft and aircraft |
CN114872882B (en) * | 2022-07-08 | 2022-09-20 | 西安羚控电子科技有限公司 | Aircraft wing receiving device for aircraft and aircraft |
CN115649419B (en) * | 2022-12-12 | 2023-03-07 | 太原理工大学 | A deformable rib based on gradient hexagonal structure and its control method |
CN115649419A (en) * | 2022-12-12 | 2023-01-31 | 太原理工大学 | Deformable wing rib based on gradient hexagonal structure and control method thereof |
CN116215907A (en) * | 2023-04-11 | 2023-06-06 | 南京航空航天大学 | A vertical take-off and landing variant UAV with tiltable, foldable and telescopic wings |
CN116215907B (en) * | 2023-04-11 | 2023-08-04 | 南京航空航天大学 | A vertical take-off and landing variant UAV with tiltable, foldable and telescopic wings |
CN116729658A (en) * | 2023-04-20 | 2023-09-12 | 北京科技大学 | A flying device with retractable wings and a method of using the same |
CN116729658B (en) * | 2023-04-20 | 2024-04-26 | 北京科技大学 | A flying device with retractable wings and a method of using the same |
CN116620545A (en) * | 2023-07-19 | 2023-08-22 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | Wing structure based on bistable beam |
CN116620545B (en) * | 2023-07-19 | 2023-09-22 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | Wing structure based on bistable beam |
Also Published As
Publication number | Publication date |
---|---|
CN111645848B (en) | 2021-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111645848B (en) | A skeleton structure of a retractable wing | |
CN108482645B (en) | Deformable wing mechanism based on scissor linkage framework and sliding skin | |
CN109703741B (en) | Folding morphing wing and aircraft based on Sarrus structure drive | |
CN112027062B (en) | An SMA-driven telescopic wing structure | |
CN111688911B (en) | A deformable wing device based on a four-pointed star-shaped scissors mechanism and variable-length ribs | |
CN106184711B (en) | The wingfold mechanism of variant aircraft | |
WO2021114578A1 (en) | Telescopic wing structure with continuously variable wingspan | |
CN106927022A (en) | Super Large Aspect Ratio Aircraft Based on Self-Deploying Folding Wing Technology | |
CN111959746B (en) | Parallel connecting rod type deformation wing framework | |
CN110341935A (en) | A spanwise telescopic deformable wing | |
CN111688913B (en) | A wing with double drive, variable length and dihedral angle | |
CN109606634B (en) | Double-shaft wing folding mechanism | |
CN113277066B (en) | Retractable wing, aircraft including the same, and aircraft control method | |
CN104176237B (en) | Deformable wing installation and apply its aircraft | |
WO2021143015A1 (en) | Telescopic wing mechanism with slotted wing flaps and continuously variable wingspan | |
CN112896487A (en) | Unmanned aerial vehicle synchronous unfolding and folding system, method and application | |
CN111003145A (en) | Variable unmanned aerial vehicle | |
CN201214485Y (en) | Bionic flapping-wing air vehicle | |
CN111348177A (en) | Variable-configuration airplane with foldable telescopic wings | |
CN115489717A (en) | A deformable wing, aircraft and deformation control method | |
CN115675832B (en) | Multi-section type space quadrilateral wing framework and bionic aircraft | |
CN108454824B (en) | A multi-stage telescopic wing mechanism | |
CN217456332U (en) | Deformable wing device, wing and flight equipment | |
CN112537438B (en) | Flexible skin based on unit structure | |
CN115056966A (en) | Z-shaped folding wing unmanned aerial vehicle wing folding framework and working method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |