CN111650509B - Fault judging method, device, computer equipment and medium for brushless excitation motor - Google Patents
Fault judging method, device, computer equipment and medium for brushless excitation motor Download PDFInfo
- Publication number
- CN111650509B CN111650509B CN202010396950.6A CN202010396950A CN111650509B CN 111650509 B CN111650509 B CN 111650509B CN 202010396950 A CN202010396950 A CN 202010396950A CN 111650509 B CN111650509 B CN 111650509B
- Authority
- CN
- China
- Prior art keywords
- effective value
- current
- value
- harmonic
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
- G01R31/346—Testing of armature or field windings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
- G01R31/343—Testing dynamo-electric machines in operation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
技术领域technical field
本发明涉及电力系统主设备继电保护技术领域。更具体地,涉及一种无刷励磁电机的故障判断方法、装置、计算机设备及介质。The invention relates to the technical field of relay protection of main equipment of a power system. More specifically, it relates to a fault judgment method, device, computer equipment and medium for a brushless excitation motor.
背景技术Background technique
励磁系统是大型发电机的重要组成部分,性能优良、可靠性高的励磁系统是保证发电机安全及电力系统稳定运行的基础。相比于静止励磁,无刷励磁系统取消了发电机的碳刷和滑环,显著提高了励磁系统的可靠性,是大容量核电机组的首选励磁方式。The excitation system is an important part of large generators. The excitation system with excellent performance and high reliability is the basis for ensuring the safety of the generator and the stable operation of the power system. Compared with static excitation, the brushless excitation system cancels the carbon brushes and slip rings of the generator, which significantly improves the reliability of the excitation system. It is the preferred excitation method for large-capacity nuclear power units.
以电厂常用的11相环形无刷励磁电机为例,11相环形无刷励磁电机的定子绕组经常出现发两点接地故障,因此给机组设备运行带来了严重的安全隐患,极大地影响了电力生产。Taking the 11-phase toroidal brushless excitation motor commonly used in power plants as an example, the stator winding of the 11-phase toroidal brushless excitation motor often has two-point grounding faults, which brings serious safety hazards to the operation of the unit equipment and greatly affects the power Production.
然而现有技术中,对于无刷励磁电机的定子励磁绕组两点接地处均未配备相应的保护,目前公开的资料上也未见针对励磁机绕组短路故障保护的相关研究。由于保护原理不完善,相关规程标准也未对无刷励磁电机的定、转子绕组内部故障保护提出明确要求。However, in the prior art, there is no corresponding protection for the grounding points of the stator excitation winding of the brushless excitation motor, and there is no relevant research on the short-circuit fault protection of the exciter winding in the current published data. Due to the imperfect protection principle, the relevant regulations and standards have not put forward clear requirements for the internal fault protection of the stator and rotor windings of the brushless excitation motor.
因此,需要提出一种新的无刷励磁电机的故障判断方法、装置、计算机设备及介质。Therefore, it is necessary to propose a new fault judging method, device, computer equipment and medium for a brushless excitation motor.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种无刷励磁电机的故障判断方法、装置、计算机设备及介质,以解决现有技术中存在的问题中的至少一个;The purpose of the present invention is to provide a fault judging method, device, computer equipment and medium for a brushless excitation motor, so as to solve at least one of the problems existing in the prior art;
为达到上述目的,本发明采用下述技术方案:To achieve the above object, the present invention adopts the following technical solutions:
本发明的第一方面提供一种无刷励磁电机的故障判断方法,包括:A first aspect of the present invention provides a fault judgment method for a brushless excitation motor, comprising:
获取无刷励磁电机的定子励磁绕组中的励磁电流数据;Obtain the excitation current data in the stator excitation winding of the brushless excitation motor;
对所述励磁电流数据进行傅里叶分析,以及计算不同预设谐波频率下的第一有效值I1和第二有效值I2;performing Fourier analysis on the excitation current data, and calculating the first effective value I 1 and the second effective value I 2 under different preset harmonic frequencies;
基于所述第一有效值I1和所述第二有效值I2判断无刷励磁电机的定子励磁绕组接地处是否发生故障。Based on the first effective value I1 and the second effective value I2 , it is determined whether a fault occurs at the grounding of the stator excitation winding of the brushless excitation motor.
可选地,基于所述第一有效值I1和所述第二有效值I2判断无刷励磁电机的定子励磁绕组接地处是否发生故障进一步包括:Optionally, judging whether a fault occurs at the grounding of the stator field winding of the brushless excitation motor based on the first effective value I 1 and the second effective value I 2 further includes:
基于所述第一有效值I1和所述第二有效值I2确定总有效值I3以及确定所述第一有效值I1与所述第二有效值I2的有效值比值A;Determine a total effective value I3 and determine an effective value ratio A of the first effective value I1 and the second effective value I2 based on the first effective value I1 and the second effective value I2;
基于所述总有效值I3与所述有效值比值A判断无刷励磁电机的定子励磁绕组接地处是否发生故障。Based on the total effective value I3 and the effective value ratio A, it is determined whether a fault occurs at the grounding of the stator excitation winding of the brushless excitation motor.
可选地,基于所述总有效值I3与所述有效值比值A判断无刷励磁电机的定子励磁绕组接地处是否发生故障包括:Optionally, judging whether a fault occurs at the grounding of the stator excitation winding of the brushless excitation motor based on the total effective value I3 and the effective value ratio A includes:
分别获取不同预设谐波频率下的谐波电流的第一电流值和第二电流值;respectively acquiring the first current value and the second current value of the harmonic current under different preset harmonic frequencies;
基于所述第一电流值和第二电流值确定预设谐波频率下的谐波电流阈值ξ1,以及所述第一电流值与第二电流值的谐波电流比值ξ2;determining a harmonic current threshold ξ 1 at a preset harmonic frequency and a harmonic current ratio ξ 2 of the first current value and the second current value based on the first current value and the second current value;
比较所述总有效值I3与所述谐波电流阈值ξ1;以及比较所述有效值比值A与预设谐波频率下的谐波电流比值ξ2;comparing the total effective value I 3 with the harmonic current threshold ξ 1 ; and comparing the effective value ratio A with the harmonic current ratio ξ 2 at a preset harmonic frequency;
当所述总有效值I3大于所述谐波电流阈值ξ1,且所述有效值比值A大于预设谐波频率下的谐波电流比值ξ2时,则无刷励磁电机的定子励磁绕组接地处发生故障。When the total effective value I 3 is greater than the harmonic current threshold ξ 1 , and the effective value ratio A is greater than the harmonic current ratio ξ 2 at the preset harmonic frequency, the stator excitation winding of the brushless excitation motor A fault has occurred at the ground.
可选地,所述无刷励磁电机为11相无刷励磁电机,所述预设谐波频率为550Hz和1100Hz。Optionally, the brushless excitation motor is an 11-phase brushless excitation motor, and the preset harmonic frequencies are 550 Hz and 1100 Hz.
可选地,所述第一电流值与第二电流值的谐波电流比值ξ2为定值,取定值为2。Optionally, the harmonic current ratio ξ 2 of the first current value and the second current value is a fixed value, and the fixed value is 2.
本发明第二方面提供一种执行本上述无刷励磁电机的故障判断方法的判断装置,所述装置包括:A second aspect of the present invention provides a judging device for implementing the above-mentioned fault judging method for a brushless excitation motor, the device comprising:
数据采样模块,用于获取无刷励磁电机的定子励磁绕组中的励磁电流数据;The data sampling module is used to obtain the excitation current data in the stator excitation winding of the brushless excitation motor;
分析计算模块,用于对所述励磁电流数据进行傅里叶分析,以及计算不同预设谐波频率下的第一有效值I1和第二有效值I2;an analysis and calculation module, configured to perform Fourier analysis on the excitation current data, and calculate the first effective value I 1 and the second effective value I 2 under different preset harmonic frequencies;
故障判断模块,用于基于所述第一有效值I1和所述第二有效值I2判断无刷励磁电机的定子励磁绕组接地处是否发生故障。A fault judging module, configured to judge whether a fault occurs at the grounding of the stator excitation winding of the brushless excitation motor based on the first effective value I 1 and the second effective value I 2 .
可选地,所述故障判断模块包括:Optionally, the fault judging module includes:
有效值及比值计算单元,用于基于所述第一有效值I1和所述第二有效值I2确定总有效值I3以及确定所述第一有效值I1与所述第二有效值I2的有效值比值A;an effective value and a ratio calculation unit for determining a total effective value I3 and determining the first effective value I1 and the second effective value based on the first effective value I1 and the second effective value I2 The rms value ratio A of I 2 ;
接地故障判断单元,用于基于所述总有效值I3与所述有效值比值A判断无刷励磁电机的定子励磁绕组接地处是否发生故障。A ground fault judging unit, configured to judge whether a fault occurs at the grounding of the stator excitation winding of the brushless excitation motor based on the total effective value I3 and the effective value ratio A.
可选地,所述接地故障判断单元包括:Optionally, the ground fault judging unit includes:
电流获取单元,用于获取不同预设谐波频率下的谐波电流的第一电流值和第二电流值;a current acquisition unit, configured to acquire the first current value and the second current value of the harmonic current under different preset harmonic frequencies;
电流阈值比值计算单元,用于基于所述第一电流值和第二电流值确定预设谐波频率下的谐波电流阈值ξ1,以及所述第一电流值与第二电流值的谐波电流比值ξ2;a current threshold ratio calculation unit, configured to determine a harmonic current threshold ξ 1 at a preset harmonic frequency based on the first current value and the second current value, and the harmonics of the first current value and the second current value Current ratio ξ 2 ;
比较判断单元,用于比较所述总有效值I3与所述谐波电流阈值ξ1;以及用于比较所述有效值比值A与预设谐波频率下的谐波电流比值ξ2;当所述总有效值I3大于所述谐波电流阈值ξ1,且所述有效值比值A大于预设谐波频率下的谐波电流比值ξ2时,比较判断单元判断无刷励磁电机的定子励磁绕组接地处是否发生故障。a comparison and judgment unit, used for comparing the total effective value I 3 with the harmonic current threshold ξ 1 ; and for comparing the effective value ratio A with the harmonic current ratio ξ 2 at a preset harmonic frequency; when When the total effective value I 3 is greater than the harmonic current threshold ξ 1 , and the effective value ratio A is greater than the harmonic current ratio ξ 2 at the preset harmonic frequency, the comparison and judgment unit judges the stator of the brushless excitation motor Whether there is a fault at the ground of the field winding.
本发明第三方面提供一种执行本上述无刷励磁电机的故障判断方法的计算机设备,包括:A third aspect of the present invention provides a computer device for implementing the above-mentioned fault judgment method for a brushless excitation motor, including:
包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如上述的故障判断方法。It includes a memory, a processor and a computer program stored in the memory and running on the processor, characterized in that the processor implements the above-mentioned fault judging method when executing the program.
本发明第四方面提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如上述的故障判断方法。A fourth aspect of the present invention provides a computer-readable storage medium on which a computer program is stored, characterized in that, when the program is executed by a processor, the above-mentioned fault judging method is implemented.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明实施例通过对励磁电流数据进行傅里叶分析,获取当前定子励磁电阻在预设的不同谐波频率下的第一有效值和第二有效值,基于两个有效值进行定子励磁绕组接地处是否发生故障的判断。本发明实施例的具有运算简单、判断直观的特点,保证无刷励磁电机的安全性。In the embodiment of the present invention, by performing Fourier analysis on the excitation current data, the first effective value and the second effective value of the current stator excitation resistance at different preset harmonic frequencies are obtained, and the stator excitation winding is grounded based on the two effective values. to determine whether a fault has occurred. The embodiment of the present invention has the characteristics of simple operation and intuitive judgment, and ensures the safety of the brushless excitation motor.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1示出本发明一个实施例的保护方法的流程图;1 shows a flowchart of a protection method according to an embodiment of the present invention;
图2示出本发明另一实施例的保护方法的流程图;2 shows a flowchart of a protection method according to another embodiment of the present invention;
图3示出本发明实施例的无刷励磁电机的定子坐标示意图;FIG. 3 shows a schematic diagram of the stator coordinates of the brushless excitation motor according to the embodiment of the present invention;
图4示出本发明实施例的无刷励磁电机定子两点接地时,定子励磁电流谐波电流特征的分析过程示意图;4 shows a schematic diagram of the analysis process of the harmonic current characteristics of the stator excitation current when the stator of the brushless excitation motor according to the embodiment of the present invention is grounded at two points;
图5示出本发明实施例的计算机设备的结构框图。FIG. 5 shows a structural block diagram of a computer device according to an embodiment of the present invention.
具体实施方式Detailed ways
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。In order to illustrate the present invention more clearly, the present invention will be further described below with reference to the preferred embodiments and accompanying drawings. Similar parts in the figures are denoted by the same reference numerals. Those skilled in the art should understand that the content specifically described below is illustrative rather than restrictive, and should not limit the protection scope of the present invention.
如图1所示,本发明的一个实施例公开了一种无刷励磁电机的故障判断方法,具体包括:As shown in FIG. 1, an embodiment of the present invention discloses a fault judgment method for a brushless excitation motor, which specifically includes:
S1、获取无刷励磁电机的定子励磁绕组中的励磁电流数据;S1. Obtain the excitation current data in the stator excitation winding of the brushless excitation motor;
S2、对所述励磁电流数据进行傅里叶分析,以及计算不同预设谐波频率下的第一有效值I1和第二有效值I2;S2, performing Fourier analysis on the excitation current data, and calculating the first effective value I 1 and the second effective value I 2 under different preset harmonic frequencies;
S3、基于所述第一有效值I1和所述第二有效值I2判断无刷励磁电机的定子励磁绕组接地处是否发生故障。S3. Based on the first effective value I1 and the second effective value I2 , determine whether a fault occurs at the grounding of the stator excitation winding of the brushless excitation motor.
本发明实施例通过对励磁电流数据进行傅里叶分析,获取当前定子励磁电阻在预设的不同谐波频率下的第一有效值和第二有效值,基于两个有效值进行定子励磁绕组接地处是否发生故障的判断。本发明实施例的具有运算简单、判断直观的特点,保证无刷励磁电机的安全性。In the embodiment of the present invention, by performing Fourier analysis on the excitation current data, the first effective value and the second effective value of the current stator excitation resistance at different preset harmonic frequencies are obtained, and the stator excitation winding is grounded based on the two effective values. to determine whether a fault has occurred. The embodiment of the present invention has the characteristics of simple operation and intuitive judgment, and ensures the safety of the brushless excitation motor.
在一个具体示例中,利用CT(电流互感器)或者霍尔元件可以获取本实施例中的励磁电流数据;In a specific example, the excitation current data in this embodiment can be obtained by using a CT (current transformer) or a Hall element;
在本实施例的一些可选地实现方式中,S3进一步包括:In some optional implementations of this embodiment, S3 further includes:
S31、基于所述第一有效值I1和所述第二有效值I2确定总有效值I3以及确定所述第一有效值I1与所述第二有效值I2的有效值比值A;S31. Determine a total effective value I3 and determine an effective value ratio A between the first effective value I1 and the second effective value I2 based on the first effective value I1 and the second effective value I2 ;
S32、基于所述总有效值I3与所述有效值比值A判断无刷励磁电机的定子励磁绕组接地处是否发生故障。S32 , based on the total effective value I3 and the effective value ratio A, determine whether a fault occurs at the grounding of the stator excitation winding of the brushless excitation motor.
在本实施例的一些可选地实现方式中,S32包括:In some optional implementations of this embodiment, S32 includes:
S321、分别获取不同预设谐波频率下的谐波电流的第一电流值和第二电流值;S321, respectively obtaining the first current value and the second current value of the harmonic current under different preset harmonic frequencies;
S322、基于所述第一电流值和第二电流值确定预设谐波频率下的谐波电流阈值ξ1,以及所述第一电流值与第二电流值的谐波电流比值ξ2;S322. Determine, based on the first current value and the second current value, a harmonic current threshold ξ 1 at a preset harmonic frequency, and a harmonic current ratio ξ 2 between the first current value and the second current value;
S323、比较所述总有效值I3与所述谐波电流阈值ξ1;以及比较所述有效值比值A与预设谐波频率下的谐波电流比值ξ2;S323. Compare the total effective value I 3 with the harmonic current threshold ξ 1 ; and compare the effective value ratio A with the harmonic current ratio ξ 2 at a preset harmonic frequency;
当所述总有效值I3大于所述谐波电流阈值ξ1,且所述有效值比值A大于预设谐波频率下的谐波电流比值ξ2时,则无刷励磁电机的定子励磁绕组接地处发生故障。When the total effective value I 3 is greater than the harmonic current threshold ξ 1 , and the effective value ratio A is greater than the harmonic current ratio ξ 2 at the preset harmonic frequency, the stator excitation winding of the brushless excitation motor A fault has occurred at the ground.
在本实施例的一些可选地实现方式中,所述无刷励磁电机为11相无刷励磁电机,预设谐波频率为550Hz和1100Hz。In some optional implementations of this embodiment, the brushless excitation motor is an 11-phase brushless excitation motor, and the preset harmonic frequencies are 550 Hz and 1100 Hz.
在本实施例的一些可选地实现方式中,第一电流值与第二电流值的谐波电流比值ξ2为定值,取定值为2。In some optional implementations of this embodiment, the harmonic current ratio ξ 2 of the first current value and the second current value is a fixed value, and the fixed value is 2.
在本发明的可选实施方式中,将发生故障的情况设置为:当所述总有效值I3大于所述谐波电流阈值ξ1,且所述有效值比值A大于预设谐波频率下的谐波电流比值ξ2时,即当I3≥ξ1且A>ξ2时,判断该11相环形无刷励磁机发生了定子两点接地故障;其中ξ1为预设的550Hz和1100Hz谐波电流之和的门槛阈值,该阈值应能可靠躲过正常运行时各种工况下550Hz和1100Hz谐波电流之和;ξ2为预设的550Hz和1100Hz谐波电流之比的定值,该定值可固定取为2。In an optional embodiment of the present invention, the fault condition is set as: when the total effective value I 3 is greater than the harmonic current threshold ξ 1 , and the effective value ratio A is greater than a preset harmonic frequency When the harmonic current ratio is ξ 2 , that is, when I 3 ≥ξ 1 and A>ξ 2 , it is judged that the 11-phase annular brushless exciter has a two-point grounding fault on the stator; where ξ 1 is the preset 550Hz and 1100Hz Threshold threshold for the sum of harmonic currents, which should be able to reliably avoid the sum of 550Hz and 1100Hz harmonic currents under various operating conditions during normal operation; ξ 2 is the preset value of the ratio of 550Hz and 1100Hz harmonic currents , the fixed value can be fixed as 2.
图2示出了本发明另一个实施例基于计算机的无刷励磁电机的保护方法,所述方法是在计算机中依次按以下步骤进行的:2 shows a computer-based protection method for a brushless excitation motor according to another embodiment of the present invention, and the method is performed in the computer according to the following steps in sequence:
步骤(1),在无刷励磁电机端对定子励磁绕组中的励磁电流进行采样,并将采样数据送入计算机;In step (1), the excitation current in the stator excitation winding is sampled at the brushless excitation motor end, and the sampled data is sent to the computer;
步骤(2),对采样的励磁电流数据进行傅里叶分析,取其中550Hz的谐波及1100Hz的谐波,并计算其有效值为I1和I2;Step (2), carry out Fourier analysis to the sampled excitation current data, take the harmonic of 550Hz and the harmonic of 1100Hz, and calculate its effective value as I 1 and I 2 ;
步骤(3),求得两者有效值I3:I3=I1+I2;Step (3), obtain the effective value I 3 of the two: I 3 =I 1 +I 2 ;
步骤(4),求得两者有效值的比值为A:A=I1/I2 Step (4), obtain the ratio of the two effective values as A: A=I 1 /I 2
步骤(5),故障判断:Step (5), fault judgment:
当I3≥ξ1且A>ξ2时,判断该11相环形无刷励磁机发生了定子两点接地故障;其中ξ1为预设的550Hz和1100Hz谐波电流之和的门槛定值,应能可靠躲过正常运行时各种工况下550Hz和1100Hz谐波电流之和;ξ2为预设的550Hz和1100Hz谐波电流之比的定值,该定值可固定取为2。When I 3 ≥ξ 1 and A>ξ 2 , it is judged that the 11-phase annular brushless exciter has a two-point ground fault of the stator; where ξ 1 is the preset threshold value of the sum of harmonic currents of 550Hz and 1100Hz, It should be able to reliably avoid the sum of 550Hz and 1100Hz harmonic currents under various working conditions during normal operation; ξ 2 is the preset value of the ratio of 550Hz and 1100Hz harmonic currents, which can be fixed as 2.
在本实施例中,11相无刷励磁机发生定子两点接地故障时,定子励磁电流中的550Hz和1100Hz的高频分量明显增加,且550Hz的谐波电流有效值要显著大于1100Hz的谐波电流有效值,因此,本发明实施例只需从无刷励磁电机端采集定子励磁绕组中的定子励磁电流,进而得到励磁电流在的550Hz和1100Hz下的谐波电流的稳态有效值,求取两者的和,并与整定阈值进行比较,即可实现定子两点接地故障的简单、有效判断。In this embodiment, when the 11-phase brushless exciter has a two-point grounding fault on the stator, the high-frequency components of 550Hz and 1100Hz in the stator excitation current increase significantly, and the effective value of the harmonic current at 550Hz is significantly larger than the harmonic at 1100Hz. Therefore, the embodiment of the present invention only needs to collect the stator excitation current in the stator excitation winding from the brushless excitation motor end, and then obtain the steady-state effective value of the harmonic current of the excitation current at 550Hz and 1100Hz. The sum of the two is compared with the setting threshold value, and a simple and effective judgment of the stator two-point ground fault can be realized.
本发明的原理如下,仍以11相环形无刷励磁电机为例:The principle of the present invention is as follows, still taking the 11-phase annular brushless excitation motor as an example:
如图3所示,假设第1极下的w匝励磁绕组被大地短接,这w匝励磁绕组流过直流电流I时,将产生矩形波磁动势,对其进行谐波分析,在整个电机圆周[-5π,5π]区间,矩形波磁动势F(x)为:As shown in Figure 3, assuming that the w-turn excitation winding under the first pole is shorted to the ground, when the DC current I flows through the w-turn excitation winding, a rectangular wave magnetomotive force will be generated. In the interval of the motor circumference [-5π, 5π], the rectangular wave magnetomotive force F(x) is:
由于矩形波磁动势对转子坐标d轴对称,所以上式中只有余弦项。式中:Since the rectangular wave magnetomotive force is symmetrical to the rotor coordinate d axis, there is only a cosine term in the above formula. where:
式中,Fk是k次谐波的磁动势,β为励磁线圈短距比,由于凸极机的励磁绕组可看作集中的整距绕组,因此β=1。In the formula, F k is the magnetomotive force of the k-th harmonic, and β is the short-distance ratio of the excitation coil. Since the excitation winding of the salient pole machine can be regarded as a concentrated full-pitch winding, β=1.
因此:therefore:
从上式可以看出,当k为偶数时,Fk等于零。因此,励磁故障附加回路产生的磁动势不含偶数次谐波,含基波、奇数次谐波及1/5、2/5等分数次谐波。这些磁动势作用于不均匀气隙中将产生一系列谐波磁场,以k=ν/5(ν=1,2…)次磁动势为例:It can be seen from the above formula that when k is an even number, F k is equal to zero. Therefore, the magnetomotive force generated by the excitation fault additional circuit does not contain even harmonics, but includes fundamental, odd harmonics and fractional harmonics such as 1/5 and 2/5. These magnetomotive forces acting in the non-uniform air gap will generate a series of harmonic magnetic fields, taking k=ν/5 (ν=1,2...) order magnetomotive force as an example:
B(x)=Fk(x)·λδ(x) (4)B(x)=F k (x) λ δ (x) (4)
与隐极发电机不同,不考虑齿、槽影响时的气隙磁导系数:Different from the hidden pole generator, the air gap permeability coefficient when the influence of teeth and slots is not considered:
因此:therefore:
从上式可知,励磁故障附加回路直流分量电流产生磁场含基波、奇数次及分数次谐波。其中,含λ0的项表示与励磁磁动势同次的空间磁场,而由于气隙磁导谐波的影响,气隙磁场还含有(ν/5±2l)次谐波(l=0,1,2…),这些磁场都随转子同步旋转。It can be seen from the above formula that the magnetic field generated by the DC component current of the additional circuit of the excitation fault contains fundamental, odd and fractional harmonics. Among them, the term containing λ 0 represents the space magnetic field of the same order as the excitation magnetomotive force, and due to the influence of the air-gap permeability harmonics, the air-gap magnetic field also contains (ν/5±2l) order harmonics (l=0, 1,2…), these magnetic fields all rotate synchronously with the rotor.
定子两点接地故障时电枢绕组中的分数次电动势将会叠加到正常运行时的基波及奇数次电动势中,引起负载旋转整流器换相模式的改变。但无论旋转整流器换相模式如何改变,因为各分数次电动势都将各自在电枢相电流中引起相应频率的谐波电流。When the stator two-point ground fault occurs, the fractional electromotive force in the armature winding will be superimposed on the fundamental wave and odd-numbered electromotive force during normal operation, which will cause the change of the commutation mode of the load rotating rectifier. But no matter how the commutation mode of the rotating rectifier changes, because each fractional electromotive force will each induce harmonic currents of corresponding frequencies in the armature phase current.
第k相电枢绕组的μ1/5次谐波电流可以表示为:The μ 1/5 harmonic current of the k-th phase armature winding can be expressed as:
式中:μ1,n为常数;t为时间;where: μ 1 , n is a constant; t is time;
谐波电流将产生各次谐波磁动势,对一相绕组产生的空间磁动势进行傅里叶分解,谐波磁动势次数为v1/5,第k相电枢绕组的μ1/5次谐波电流产生的v1/5次空间谐波磁势可以表示为:The harmonic current will generate each harmonic magnetomotive force, and the space magnetomotive force generated by the one - phase winding will be Fourier decomposed. The v 1 /5th space harmonic magnetic potential generated by the /5th harmonic current can be expressed as:
可得第k相绕组产生的磁势表达式为The expression of the magnetic potential generated by the k-th phase winding can be obtained as
式中;α为电角度;where α is the electrical angle;
各相绕组产生的磁势均为脉振磁势,可分解为正、反转磁势,把相同转向的磁势分别合成。正、反转磁势分别为:The magnetic potential generated by each phase winding is a pulsed magnetic potential, which can be decomposed into positive and reversed magnetic potentials, and the magnetic potentials of the same direction are synthesized respectively. The forward and reverse magnetic potentials are:
经进一步数学推导(复杂过程从略),正、反转磁势的幅值可以表示为:After further mathematical derivation (complex process is omitted), the magnitudes of the positive and reverse magnetic potentials can be expressed as:
由式(12)和(13)可知:当且仅当v1=11n2+μ1(n2∈N)时fv∑才不为零,电枢反应中只存在11n2+μ1次正转分量。同理,当且仅当v1=11n2-μ1(n2∈N)时fv∑才不为零,电枢反应中只存在11n2-μ1次反转分量。From equations (12) and (13), it can be known that f v∑ is not zero if and only if v 1 =11n 2 +μ 1 (n 2 ∈N), and there are only 11n 2 +μ 1 times in the armature reaction Forward rotation component. Similarly, if and only when v 1 =11n 2 -μ 1 (n 2 ∈N), f vΣ is not zero, and only 11n 2 -μ 1 reversal components exist in the armature reaction.
定子两点接地故障时,定子励磁电流谐波电流特征的分析过程如图4所示。电枢绕组中的μ1/11次谐波电流产生的v1/11次谐波磁动势,极对数是v1/11,其正转分量转速是同步转速的μ1/v1倍,相对定子转速为|μ1/v1-1|倍,在定子中感应的电动势频率为基波的|μ1-v1|/11倍,即550倍数次谐波电势。When the stator is grounded at two points, the analysis process of the harmonic current characteristics of the stator excitation current is shown in Figure 4. The v 1/11 harmonic magnetomotive force generated by the μ 1/11 harmonic current in the armature winding, the number of pole pairs is v 1/11 , and its forward rotation component speed is 1 times the synchronous speed μ 1 /v , the relative stator speed is |μ 1 /v 1 -1| times, and the frequency of the electromotive force induced in the stator is |μ 1 -v 1 |/11 times of the fundamental wave, that is, 550 times the harmonic potential.
通过上面的计算与分析,说明了励磁电流的特定谐波能够反映励磁机定子励磁绕组两点接地故障,而本发明利用发现的无刷励磁电机在发生故障时产生特定谐波的原理,通过从无刷励磁电机端采集定子励磁绕组中的定子励磁电流,进而得到励磁电流在的550Hz和1100Hz下的谐波电流的稳态有效值,求取两者的和,并与整定阈值进行比较以实现无刷励磁机定子绕组两点接地故障判断。本发明提出的无刷励磁机定子绕组两点接地故障的判断方法简单且有效。Through the above calculation and analysis, it is explained that the specific harmonics of the excitation current can reflect the two-point grounding fault of the excitation winding of the exciter stator. The brushless excitation motor terminal collects the stator excitation current in the stator excitation winding, and then obtains the steady-state effective value of the harmonic current of the excitation current at 550Hz and 1100Hz, obtains the sum of the two, and compares it with the setting threshold to achieve Two-point ground fault judgment of stator winding of brushless exciter. The method for judging the two-point grounding fault of the stator winding of the brushless exciter proposed by the invention is simple and effective.
本发明的另一个实施例公开了一种无刷励磁电机的故障判断装置,该装置包括:Another embodiment of the present invention discloses a fault judging device for a brushless excitation motor, the device comprising:
数据采样模块,用于获取无刷励磁电机的定子励磁绕组中的励磁电流数据;The data sampling module is used to obtain the excitation current data in the stator excitation winding of the brushless excitation motor;
分析计算模块,用于对所述励磁电流数据进行傅里叶分析,以及计算不同预设谐波频率下的第一有效值I1和第二有效值I2;an analysis and calculation module, configured to perform Fourier analysis on the excitation current data, and calculate the first effective value I 1 and the second effective value I 2 under different preset harmonic frequencies;
故障判断模块,用于基于所述第一有效值I1和所述第二有效值I2判断无刷励磁电机的定子励磁绕组接地处是否发生故障。A fault judging module, configured to judge whether a fault occurs at the grounding of the stator excitation winding of the brushless excitation motor based on the first effective value I 1 and the second effective value I 2 .
在本实施例的一些可选的实现方式中,故障判断模块包括:In some optional implementations of this embodiment, the fault judging module includes:
有效值及比值计算单元,用于基于所述第一有效值I1和所述第二有效值I2确定总有效值I3以及确定所述第一有效值I1与所述第二有效值I2的有效值比值A;an effective value and a ratio calculation unit for determining a total effective value I3 and determining the first effective value I1 and the second effective value based on the first effective value I1 and the second effective value I2 The rms value ratio A of I 2 ;
接地故障判断单元,用于基于所述总有效值I3与所述有效值比值A判断无刷励磁电机的定子励磁绕组接地处是否发生故障。A ground fault judging unit, configured to judge whether a fault occurs at the grounding of the stator excitation winding of the brushless excitation motor based on the total effective value I3 and the effective value ratio A.
在本实施例的一些可选的实现方式中,接地故障判断单元包括:In some optional implementation manners of this embodiment, the ground fault judgment unit includes:
电流获取单元,用于获取不同预设谐波频率下的谐波电流的第一电流值和第二电流值;a current acquisition unit, configured to acquire the first current value and the second current value of the harmonic current under different preset harmonic frequencies;
电流阈值比值计算单元,用于基于所述第一电流值和第二电流值确定预设谐波频率下的谐波电流阈值ξ1,以及所述第一电流值与第二电流值的谐波电流比值ξ2;a current threshold ratio calculation unit, configured to determine a harmonic current threshold ξ 1 at a preset harmonic frequency based on the first current value and the second current value, and the harmonics of the first current value and the second current value Current ratio ξ 2 ;
比较判断单元,用于比较所述总有效值I3与所述谐波电流阈值ξ1;以及用于比较所述有效值比值A与预设谐波频率下的谐波电流比值ξ2;当所述总有效值I3大于所述谐波电流阈值ξ1,且所述有效值比值A大于预设谐波频率下的谐波电流比值ξ2时,比较判断单元判断无刷励磁电机的定子励磁绕组接地处是否发生故障。a comparison and judgment unit, used for comparing the total effective value I 3 with the harmonic current threshold ξ 1 ; and for comparing the effective value ratio A with the harmonic current ratio ξ 2 at a preset harmonic frequency; when When the total effective value I 3 is greater than the harmonic current threshold ξ 1 , and the effective value ratio A is greater than the harmonic current ratio ξ 2 at the preset harmonic frequency, the comparison and judgment unit judges the stator of the brushless excitation motor Whether there is a fault at the ground of the field winding.
在本实施例的一些可选的实现方式中,所述无刷励磁电机为11相无刷励磁电机,预设谐波频率为550Hz和1100Hz。In some optional implementations of this embodiment, the brushless excitation motor is an 11-phase brushless excitation motor, and the preset harmonic frequencies are 550 Hz and 1100 Hz.
在本实施例的一些可选的实现方式中,所述第一电流值与第二电流值的谐波电流比值为定值,取固定值为2。In some optional implementation manners of this embodiment, the harmonic current ratio between the first current value and the second current value is a fixed value, which is a fixed value of 2.
需要说明的是,本实施例提供的基于计算机的无刷励磁电机的保护装置的原理及工作流程与上述基于计算机的无刷励磁电机的保护方法相似,相关之处可以参照上述说明,在此不再赘述。It should be noted that the principle and work flow of the computer-based brushless excitation motor protection device provided in this embodiment are similar to the above-mentioned computer-based brushless excitation motor protection method. Repeat.
本发明的另一个实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现:获取无刷励磁电机的定子励磁绕组中的励磁电流数据;对所述励磁电流数据进行傅里叶分析,以及计算不同预设谐波频率下的第一有效值I1和第二有效值I2;基于所述第一有效值I1和所述第二有效值I2判断无刷励磁电机的定子励磁绕组接地处是否发生故障。Another embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, realizes: acquiring excitation current data in a stator excitation winding of a brushless excitation motor; Fourier analysis is performed on the excitation current data, and the first effective value I 1 and the second effective value I 2 under different preset harmonic frequencies are calculated; based on the first effective value I 1 and the second effective value I 2 judges whether there is a fault at the ground of the stator field winding of the brushless field motor.
在实际应用中,所述计算机可读存储介质可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。In practical applications, the computer-readable storage medium may adopt any combination of one or more computer-readable media. The computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium. The computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (a non-exhaustive list) of computer readable storage media include: electrical connections having one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the above. In this embodiment, the computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。A computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。Program code embodied on a computer readable medium may be transmitted using any suitable medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for carrying out operations of the present invention may be written in one or more programming languages, including object-oriented programming languages—such as Java, Smalltalk, C++, but also conventional Procedural programming language - such as the "C" language or similar programming language. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server. In the case of a remote computer, the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through Internet connection).
如图5所示,本发明的另一个实施例提供的一种计算机设备的结构示意图。图5显示的计算机设备12仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。As shown in FIG. 5, another embodiment of the present invention provides a schematic structural diagram of a computer device. The
如图5所示,计算机设备12以通用计算设备的形式表现。计算机设备12的组件可以包括但不限于:一个或者多个处理器或者处理单元16,系统存储器28,连接不同系统组件(包括系统存储器28和处理单元16)的总线18。As shown in FIG. 5,
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线,微通道体系结构(MAC)总线,增强型ISA总线、视频电子标准协会(VESA)局域总线以及外围组件互连(PCI)总线。
计算机设备12典型地包括多种计算机系统可读介质。这些介质可以是任何能够被计算机设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器28可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM)30和/或高速缓存存储器32。计算机设备12可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统34可以用于读写不可移动的、非易失性磁介质(图5未显示,通常称为“硬盘驱动器”)。尽管图5中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM,DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本发明各实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如存储器28中,这样的程序模块42包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块42通常执行本发明所描述的实施例中的功能和/或方法。A program/
计算机设备12也可以与一个或多个外部设备14(例如键盘、指向设备、显示器24等)通信,还可与一个或者多个使得用户能与该计算机设备12交互的设备通信,和/或与使得该计算机设备12能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口22进行。并且,计算机设备12还可以通过网络适配器20与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图5所示,网络适配器20通过总线18与计算机设备12的其它模块通信。应当明白,尽管图5中未示出,可以结合计算机设备12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
处理器单元16通过运行存储在系统存储器28中的程序,从而执行各种功能应用以及数据处理,例如实现本发明实施例所提供的一种无刷励磁电机的故障判断方法。The
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。Obviously, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, and are not intended to limit the embodiments of the present invention. Changes or changes in other different forms cannot be exhausted here, and all obvious changes or changes derived from the technical solutions of the present invention are still within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010396950.6A CN111650509B (en) | 2020-05-12 | 2020-05-12 | Fault judging method, device, computer equipment and medium for brushless excitation motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010396950.6A CN111650509B (en) | 2020-05-12 | 2020-05-12 | Fault judging method, device, computer equipment and medium for brushless excitation motor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111650509A CN111650509A (en) | 2020-09-11 |
CN111650509B true CN111650509B (en) | 2022-10-14 |
Family
ID=72347063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010396950.6A Active CN111650509B (en) | 2020-05-12 | 2020-05-12 | Fault judging method, device, computer equipment and medium for brushless excitation motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111650509B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113608144A (en) * | 2021-07-09 | 2021-11-05 | 阳江核电有限公司 | Brushless exciter and quick judging method for short-circuit fault of rotating armature winding thereof |
CN116298883B (en) * | 2023-05-23 | 2023-08-11 | 国家能源集团科学技术研究院有限公司 | Accurate testing method and device for hydraulic generator ground fault current |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080238108A1 (en) * | 1999-09-28 | 2008-10-02 | Jonathan Sidney Edelson | Electronically Controlled Engine Generator Set |
CN102520352A (en) * | 2011-12-02 | 2012-06-27 | 中国人民解放军海军工程大学 | Brushless alternating current (AC) generator failure diagnosis instrument |
CN102636751A (en) * | 2012-04-26 | 2012-08-15 | 中国人民解放军海军工程大学 | Alternating-current brushless generator fault detection method based on exciter exciting current |
CN104345247A (en) * | 2014-10-20 | 2015-02-11 | 中国南方电网有限责任公司调峰调频发电公司 | Online monitoring method for inter-turn short circuit fault of exciting winding of water-pumping, energy-accumulation and power generation motor |
US20150198668A1 (en) * | 2014-01-16 | 2015-07-16 | Rolls-Royce Plc | Fault detection in brushless exciters |
CN106291146A (en) * | 2015-05-13 | 2017-01-04 | 中广核工程有限公司 | The fault detection method of heterogeneous brushless excitation system rotating rectifier and device |
EP3306330A1 (en) * | 2016-10-05 | 2018-04-11 | Rolls-Royce plc | Brushless synchronous generator stator winding fault |
CN109581219A (en) * | 2018-12-14 | 2019-04-05 | 广州孚鼎自动化控制设备有限公司 | A kind of brushless AC generator excitation system fault detection method |
CN109738796A (en) * | 2019-01-11 | 2019-05-10 | 华北电力大学(保定) | Fault diagnosis device and diagnosis method for excitation winding of nuclear power half-speed steam turbine generator |
CN109738780A (en) * | 2019-02-02 | 2019-05-10 | 广东核电合营有限公司 | Method and system for detecting open circuit of rotating diode-tube of multi-phase angle-connected brushless exciter |
-
2020
- 2020-05-12 CN CN202010396950.6A patent/CN111650509B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080238108A1 (en) * | 1999-09-28 | 2008-10-02 | Jonathan Sidney Edelson | Electronically Controlled Engine Generator Set |
CN102520352A (en) * | 2011-12-02 | 2012-06-27 | 中国人民解放军海军工程大学 | Brushless alternating current (AC) generator failure diagnosis instrument |
CN102636751A (en) * | 2012-04-26 | 2012-08-15 | 中国人民解放军海军工程大学 | Alternating-current brushless generator fault detection method based on exciter exciting current |
US20150198668A1 (en) * | 2014-01-16 | 2015-07-16 | Rolls-Royce Plc | Fault detection in brushless exciters |
CN104345247A (en) * | 2014-10-20 | 2015-02-11 | 中国南方电网有限责任公司调峰调频发电公司 | Online monitoring method for inter-turn short circuit fault of exciting winding of water-pumping, energy-accumulation and power generation motor |
CN106291146A (en) * | 2015-05-13 | 2017-01-04 | 中广核工程有限公司 | The fault detection method of heterogeneous brushless excitation system rotating rectifier and device |
EP3306330A1 (en) * | 2016-10-05 | 2018-04-11 | Rolls-Royce plc | Brushless synchronous generator stator winding fault |
CN109581219A (en) * | 2018-12-14 | 2019-04-05 | 广州孚鼎自动化控制设备有限公司 | A kind of brushless AC generator excitation system fault detection method |
CN109738796A (en) * | 2019-01-11 | 2019-05-10 | 华北电力大学(保定) | Fault diagnosis device and diagnosis method for excitation winding of nuclear power half-speed steam turbine generator |
CN109738780A (en) * | 2019-02-02 | 2019-05-10 | 广东核电合营有限公司 | Method and system for detecting open circuit of rotating diode-tube of multi-phase angle-connected brushless exciter |
Non-Patent Citations (3)
Title |
---|
无刷励磁发电机转子绕组接地检测新原理的研究;王佼;《江西电力》;20120428;第36卷(第2期);全文 * |
核电多相环形无刷励磁机转子绕组短路故障特征分析;郝亮亮等;《电工技术学报》;20200325;第35卷(第6期);全文 * |
核电多相角形无刷励磁机定子匝间短路故障特征分析;郝亮亮等;《中国电机工程学报》;20191120;第39卷(第22期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111650509A (en) | 2020-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102279341B (en) | Cage asynchronous motor rotor broken-bar fault detection method based on electronic stability program rotation invariant technology (ESPRIT) and pattern search algorithm (PSA) | |
CN113009334B (en) | Motor fault detection method and system based on wavelet packet energy analysis | |
CN109738780B (en) | Method and system for detecting open circuit of rotating diode-tube of multi-phase angle-connected brushless exciter | |
CN103487718B (en) | A kind of method of permagnetic synchronous motor interturn short-circuit failure diagnosing | |
CN111650509B (en) | Fault judging method, device, computer equipment and medium for brushless excitation motor | |
CN109991539B (en) | Method and system for detecting one-phase open circuit of rotating diode of multi-phase angle-connected brushless exciter | |
CN106199424B (en) | A fault diagnosis method for inter-turn short circuit of permanent magnet synchronous motor | |
US20070005194A1 (en) | System for three-phase voltage detection and protection | |
CN103926533A (en) | Field failure on-line diagnostic method and system for permanent magnet synchronous motor | |
CN102279364A (en) | Method for detecting broken bar fault of cage type asynchronous motor rotor based on multiple signal classification (MUSIC) and pattern search algorithm (PSA) | |
CN113325334B (en) | Open-circuit fault diagnosis method for three-phase permanent magnet synchronous motor driving system | |
CN108680858A (en) | Method and system for monitoring permanent magnet failure | |
CN110535392A (en) | A kind of permanent magnet synchronous motor parameter identification method based on LM algorithm | |
Qi et al. | Diagnosis of inter‐turn short circuit in excitation winding of pumped storage unit based on frequency‐resolved circulation spectrum | |
CN113311332A (en) | Demagnetization fault diagnosis device and method for permanent magnet of high-speed permanent magnet synchronous motor | |
Kia | Monitoring of wound rotor induction machines by means of discrete wavelet transform | |
CN116298873A (en) | Permanent magnet synchronous motor turn-to-turn fault diagnosis method based on high-frequency common mode voltage | |
CN111650510B (en) | Fault judgment method and device for brushless excitation motor, computer equipment and medium | |
CN112147548B (en) | Excitation winding short-circuit fault detection method and device for multi-phase angular brushless excitation system | |
CN115459647B (en) | Method and device for synchronous motor demagnetization protection based on equivalent excitation electromotive force criterion | |
CN113708343A (en) | Stator grounding protection method and device for salient pole generator and electronic equipment | |
CN108776254B (en) | Amplitude detection method, motor drive device, storage medium, and apparatus | |
CN112098838B (en) | Method and device for detecting faults of diode open circuit of multiphase angular brushless excitation system | |
CN113759248B (en) | Method for detecting and distinguishing stator winding faults of synchronous phase modulator | |
CN114675183A (en) | A method and system for detecting broken bar fault of variable frequency motor based on correlation analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |