CN111624714A - Optical path structure and optical device - Google Patents
Optical path structure and optical device Download PDFInfo
- Publication number
- CN111624714A CN111624714A CN202010617193.0A CN202010617193A CN111624714A CN 111624714 A CN111624714 A CN 111624714A CN 202010617193 A CN202010617193 A CN 202010617193A CN 111624714 A CN111624714 A CN 111624714A
- Authority
- CN
- China
- Prior art keywords
- optical
- light
- filter
- wavelength
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 317
- 239000013307 optical fiber Substances 0.000 claims description 20
- 239000000835 fiber Substances 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 6
- 230000009286 beneficial effect Effects 0.000 abstract description 7
- 239000000243 solution Substances 0.000 description 8
- 239000002131 composite material Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4215—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4214—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
技术领域technical field
本发明涉及光电通信技术领域,特别涉及一种光路结构和光器件。The invention relates to the technical field of optoelectronic communication, in particular to an optical circuit structure and an optical device.
背景技术Background technique
随着光通信技术的发展,客户端对接入网的宽带需求越来越高,宽带无源光综合接入标准GPON网络已经不能很好的满足市场需求,因此往往引入其他传输速率的GPON网络,比如10G GPON网络。With the development of optical communication technology, the client's demand for broadband on the access network is getting higher and higher, and the broadband passive optical integrated access standard GPON network can no longer meet the market demand, so GPON networks with other transmission rates are often introduced. , such as 10G GPON network.
目前的多种规格GPON通过光器件进行部署时,为了实现不同规格的GPON光信号的独立发送和接收往往需要给每一规格的GPON光信号设置独立的传播光路,这就使光器件需要根据每一传播光路的架构设置多个光路元器件,导致光器件的体积增加,不利于光器件的轻量化和小型化。At present, when GPONs of various specifications are deployed through optical devices, in order to realize the independent transmission and reception of GPON optical signals of different specifications, it is often necessary to set an independent propagation optical path for each specification of GPON optical signals, which makes the optical devices need to be based on each specification. The structure of a propagation optical path is provided with multiple optical path components, which leads to an increase in the volume of the optical device, which is not conducive to the lightweight and miniaturization of the optical device.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的是提出一种光路结构和光器件,旨在缩减波分光路结构的光路元件数量和光器件的体积。The main purpose of the present invention is to provide an optical path structure and an optical device, aiming at reducing the number of optical path elements and the volume of the optical device in the wavelength division optical path structure.
为实现上述目的,本发明提出了一种光路结构,应用于光器件,所述光路结构包括:In order to achieve the above object, the present invention proposes an optical path structure, which is applied to an optical device, and the optical path structure includes:
第一光信号组件,所述第一光信号组件用于发出和接收多种波长的平行光;a first optical signal component, the first optical signal component is used for emitting and receiving parallel light of multiple wavelengths;
第一光路组件,所述第一光路组件包括第一滤光片和第一光接装置,所述第一滤光片倾斜设置于所述第一光信号组件的出光光路上,所述第一光接收装置用于接收所述第一滤光反射的第一波长的光;A first optical path assembly, the first optical path assembly includes a first optical filter and a first optical connection device, the first optical filter is obliquely arranged on the light exit optical path of the first optical signal assembly, the first optical filter The light receiving device is used for receiving the light of the first wavelength reflected by the first filter;
第二光路组件,所述第二光路组件包括第二滤光片和第二光接收装置,所述第二滤光片倾斜设置于所述第一光信号组件的出光光路上,并位于所述第二滤光片背向所述第一光信号组件的一侧;所述第二光接收装置用于接收透过所述第一滤光片且被所述第二滤光片反射的第二波长的光。A second optical path assembly, the second optical path assembly includes a second optical filter and a second light receiving device, the second optical filter is obliquely arranged on the light exit optical path of the first optical signal assembly, and is located in the The side of the second optical filter facing away from the first optical signal component; the second optical receiving device is used for receiving the second optical filter which has passed through the first optical filter and is reflected by the second optical filter. wavelength of light.
在本发明的一实施例中,所述光路结构还包括全反射镜片;In an embodiment of the present invention, the optical path structure further includes a total reflection mirror;
所述全反射镜片和所述第一光接收装置设置于所述第一滤光片和所述第一光信号组件之间,并分别位于所述第一光信号组件出光光路的两侧;所述全反射镜片用于将所述第一滤光片反射的第一波长的光反射至所述第一光接收装置。The total reflection lens and the first light receiving device are arranged between the first filter and the first optical signal component, and are respectively located on both sides of the light exit light path of the first optical signal component; The total reflection lens is used for reflecting the light of the first wavelength reflected by the first filter to the first light receiving device.
在本发明的一实施例中,定义所述第一滤光片所在的平面与所述第一光信号组件的出光光路之间的夹角为α,定义所述全反射镜片所在的平面与所述第一光信号组件的出光光路之间的夹角为β,70°≤α<90°,25°≤β<90°;In an embodiment of the present invention, the angle between the plane where the first optical filter is located and the light exit path of the first optical signal component is defined as α, and the plane where the total reflection mirror is located is defined as α. The angle between the light exit light paths of the first optical signal component is β, 70°≤α<90°, and 25°≤β<90°;
且/或,定义所述第二滤光片所在的平面与所述第一光信号组件的出光光路之间的夹角为γ,γ=45°。And/or, the included angle between the plane where the second optical filter is located and the light exit light path of the first optical signal component is defined as γ, γ=45°.
在本发明的一实施例中,所述第一滤光片和所述第二滤光片为高通滤光片;In an embodiment of the present invention, the first filter and the second filter are high-pass filters;
且/或,所述第一波长小于所述第二波长。And/or, the first wavelength is smaller than the second wavelength.
在本发明的一实施例中,所述第一光路组件还包括第三滤光片,所述第三滤光片邻近所述第一光接收装置设置,并位于所述全反射镜片和所述第一光接收装置之间的光路上,所述第三滤光片用于通过所述第一波长的光。In an embodiment of the present invention, the first optical path component further includes a third optical filter, the third optical filter is disposed adjacent to the first light receiving device, and is located between the total reflection lens and the On the optical path between the first light receiving devices, the third filter is used to pass the light of the first wavelength.
在本发明的一实施例中,所述第二光路组件还包括第四滤光片,所述第四滤光片邻近所述第二光接收装置设置,并位于所述第二光接收装置和所述第二滤光片之间的光路上,所述第四滤光片用于通过所述第二波长的光。In an embodiment of the present invention, the second optical path assembly further includes a fourth optical filter, and the fourth optical filter is disposed adjacent to the second light receiving device and located between the second light receiving device and the second light receiving device. On the optical path between the second filters, the fourth filter is used to pass the light of the second wavelength.
在本发明的一实施例中,所述第一光信号组件包括光纤适配器和第一透镜;In an embodiment of the present invention, the first optical signal component includes an optical fiber adapter and a first lens;
所述光纤适配器与所述第一透镜同轴设置,所述第一透镜位于所述光纤适配器和所述第一滤光片之间,所述第一透镜用于使所述光纤适配器发出的光平行射入所述第一滤光片。The optical fiber adapter is coaxially arranged with the first lens, the first lens is located between the optical fiber adapter and the first filter, and the first lens is used to make the light emitted by the optical fiber adapter parallel injection into the first filter.
在本发明的一实施例中,所述光路结构还包括第二光信号组件,所述第二光信号组件包括第一光发射装置、第五滤光片以及第二透镜;In an embodiment of the present invention, the optical path structure further includes a second optical signal component, and the second optical signal component includes a first light emitting device, a fifth filter, and a second lens;
所述第二透镜、所述第五滤光片以及所述第一光发射装置依次间隔设置于所述第一光信号组件的出光光路的延长光路上;The second lens, the fifth filter, and the first light emitting device are sequentially and spaced apart on the extended light path of the light exit light path of the first light signal component;
所述第一光发射装置发出的第三波长的光依次透过所述第五滤光片、所述第二透镜、所述第二滤光片以及所述第一滤光片后进入所述第一光信号组件。The light of the third wavelength emitted by the first light emitting device sequentially passes through the fifth filter, the second lens, the second filter and the first filter and then enters the a first optical signal component.
在本发明的一实施例中,所述第二光信号组件还包括第二光发射装置;In an embodiment of the present invention, the second optical signal component further includes a second light emitting device;
所述第二光发射装置邻近所述第五滤光片设置,并位于所述第一光发射装置的出光光路的一侧,所述第二光发射装置发出的第四波长的光经过所述第五滤光片反射后,依次透过所述第二透镜、所述第二滤光片以及所述第一滤光片,并进入所述第一光信号组件;The second light emitting device is disposed adjacent to the fifth filter, and is located on one side of the light exit light path of the first light emitting device, and the light of the fourth wavelength emitted by the second light emitting device passes through the After the fifth filter is reflected, it sequentially passes through the second lens, the second filter and the first filter, and enters the first optical signal component;
所述第三波长大于所述第四波长,所述第四波长大于所述第二波长。The third wavelength is greater than the fourth wavelength, and the fourth wavelength is greater than the second wavelength.
此外,本发明还提出一种光器件,包括:In addition, the present invention also provides an optical device, comprising:
上述的光路结构;The above-mentioned optical path structure;
管壳,所述管壳设有安装腔,所述光路结构设于所述管壳,并部分位于所述安装腔内。A tube case is provided with an installation cavity, and the optical path structure is arranged in the tube case and partially located in the installation cavity.
本发明技术方案的光路结构设置有第一光信号组件、第一光路组件以及第二光路组件,其中第一光信号组件用于发出和接收多种波长的平行光;第一光路组件包括第一滤光片和第一光接装置,第一滤光片倾斜设置于第一光信号组件的出光光路上,第一光接收装置用于接收第一滤光反射的第一波长的光;第二光路组件包括第二滤光片和第二光接收装置,第二滤光片倾斜设置于第一光信号组件的出光光路上,并位于第二滤光片背向第一光信号组件的一侧;第二光接收装置用于接收透过第一滤光片且被第二滤光片反射的第二波长的光。以此,第一滤光片可将第一光信号组件发出的第一波长的光过滤并反射至第一光接收装置,并使第一光信号组件发出第二波长的光透射至第二滤光片;第二滤光片再将第二波长的光反射至第二光接收装置内进行接收。本光路结构中第一光信号组件发出的第一波长的光和第二波长的光在第一滤光片上进行分离后,分别进入不同的光接收装置内,实现两种不同波长的复合光的波分处理,而不需要设置多个独立的光路结构来实现复合光的波分,减少了相应的光路元器件的数量,有利于缩减光路结构的体积。The optical path structure of the technical solution of the present invention is provided with a first optical signal assembly, a first optical path assembly and a second optical path assembly, wherein the first optical signal assembly is used to emit and receive parallel light of multiple wavelengths; the first optical path assembly includes a first optical path assembly. A filter and a first optical connection device, the first filter is arranged obliquely on the light exit light path of the first optical signal component, and the first light receiving device is used to receive the light of the first wavelength reflected by the first filter; The optical path assembly includes a second optical filter and a second light receiving device. The second optical filter is obliquely arranged on the light-emitting optical path of the first optical signal assembly, and is located on the side of the second optical filter facing away from the first optical signal assembly. ; The second light receiving device is used for receiving the light of the second wavelength which is transmitted through the first filter and reflected by the second filter. In this way, the first filter can filter and reflect the light of the first wavelength emitted by the first optical signal component to the first light receiving device, and transmit the light of the second wavelength emitted by the first optical signal component to the second filter The second optical filter reflects the light of the second wavelength into the second light receiving device for receiving. In this optical path structure, the light of the first wavelength and the light of the second wavelength emitted by the first optical signal component are separated on the first filter, and then enter into different light receiving devices respectively to realize the composite light of two different wavelengths. It does not need to set up multiple independent optical path structures to realize the wavelength division of composite light, reduces the number of corresponding optical path components, and is beneficial to reduce the volume of the optical path structure.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained according to the structures shown in these drawings without creative efforts.
图1为本发明光器件的部分结构示意图;Fig. 1 is the partial structural schematic diagram of the optical device of the present invention;
图2为本发明光路结构的结构示意图;Fig. 2 is the structural representation of the optical path structure of the present invention;
图3为图2中光路结构的部分结构示意图。FIG. 3 is a partial structural schematic diagram of the optical path structure in FIG. 2 .
附图标号说明:Description of reference numbers:
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization, functional characteristics and advantages of the present invention will be further described with reference to the accompanying drawings in conjunction with the embodiments.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。It should be noted that all directional indications (such as up, down, left, right, front, back, etc.) in the embodiments of the present invention are only used to explain the relationship between various components under a certain posture (as shown in the accompanying drawings). The relative positional relationship, the movement situation, etc., if the specific posture changes, the directional indication also changes accordingly.
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise expressly specified and limited, the terms "connected", "fixed" and the like should be understood in a broad sense, for example, "fixed" may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。全文中出现的“和/刻”的含义为,包括三个并列的方案,以“A和/或B为例”,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。In addition, descriptions such as "first", "second", etc. in the present invention are only for descriptive purposes, and should not be construed as indicating or implying their relative importance or implicitly indicating the number of indicated technical features. Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. The meaning of "and/ke" in the whole text is to include three side-by-side schemes. Taking "A and/or B as an example", it includes scheme A, scheme B, or scheme that A and B satisfy at the same time. In addition, the technical solutions between the various embodiments can be combined with each other, but must be based on the realization by those of ordinary skill in the art. When the combination of technical solutions is contradictory or cannot be realized, it should be considered that the combination of such technical solutions does not exist. , is not within the scope of protection required by the present invention.
本发明提出一种光路结构,应用于光器件。The invention provides an optical path structure, which is applied to an optical device.
在本发明实施例中,如图1所示,该光路结构包括第一光信号组件1、第一光路组件2以及第二光路组件3;第一光信号组件1用于发出和接收多种波长的平行光;第一光路组件2包括第一滤光片21和第一光接装置,第一滤光片21倾斜设置于第一光信号组件1的出光光路上,第一光接收装置23用于接收第一滤光反射的第一波长的光;第二光路组件3包括第二滤光片31和第二光接收装置32,第二滤光片31倾斜设置于第一光信号组件1的出光光路上,并位于第二滤光片31背向第一光信号组件1的一侧;第二光接收装置32用于接收透过第一滤光片21且被第二滤光片31反射的第二波长的光。In this embodiment of the present invention, as shown in FIG. 1 , the optical path structure includes a first optical signal component 1 , a first optical path component 2 and a second
在本实施例中,第一光信号组件1用于发出平行光束,该平行光束可为通过光纤传播并聚焦和准直后的光信号,该平行光束内可包含多种不同波长的光信号。In this embodiment, the first optical signal component 1 is used to emit a parallel light beam. The parallel light beam may be an optical signal propagated through an optical fiber, focused and collimated, and the parallel light beam may contain light signals of various wavelengths.
第一光路组件2用于分离第一光信号组件1发出多波长光中第一波长的光。具体地,第一光路组件2包括第一滤光片21和第一光接收装置23,第一滤光片21用于反射第一波长的光和通过第二波长的光,第一滤光片21可为高通滤光片,即可使高于某特定波长的光通过而使低于该特定波长的光截止,比如,第一滤光片21可供波长大于1270nm的光透通过,而使波长低于1270nm的光截止并反射。第一光接收装置23可为光接收器,第一光接收装置23用于接收第一波长光信号。The first optical path component 2 is used for separating the light of the first wavelength in the multi-wavelength light emitted by the first optical signal component 1 . Specifically, the first optical path assembly 2 includes a first
第二光路组件3用于配合第一光路组件2分离第一光信号组件1发出多波长光中第二波长的光。具体地,第二光路组件3包括第二滤光片31和第二光接收装置32,第二滤光片31可为高通滤光片,第二滤光片31可使高于某特定波长的光通过而使低于该特定波长的光截止,比如,第二滤光片31可供波长大于1310nm的光通过,而使波长低于1310nm的光截止并反射。第二光接收装置32为光接收器,第二光接收装置32用于接收第二波长的光信号,以配合第一光接收装置23将第一波长和第二波长的光进行分离处理和使用。The second
本实施例方案中的第一滤光片21可将第一光信号组件1发出的第一波长的光过滤并反射至第一光接收装置23,并使第一光信号组件1发出第二波长的光透射至第二滤光片31;第二滤光片31再将第二波长的光反射至第二光接收装置32内进行接收。本光路结构中第一光信号组件1发出的第一波长的光和第二波长的光在第一滤光片21上进行分离后,分别进入不同的光接收装置内,实现两种不同波长的复合光的波分处理,而不需要设置多个独立的光路结构来实现复合光的波分,减少了相应的光路元器件的数量,有利于缩减光路结构的体积。The first
在本发明的一实施例中,如图1所示,光路结构还包括全反射镜片22;全反射镜片22和第一光接收装置23设置于第一滤光片21和第一光信号组件1之间,并分别位于第一光信号组件1出光光路的两侧;全反射镜片22用于将第一滤光片21反射的第一波长的光反射至第一光接收装置23。In an embodiment of the present invention, as shown in FIG. 1 , the optical path structure further includes a
在本实施例中,全反射镜片22用于反射来自第一滤光片21反射的光束,并将该光束全反射至第一光接收装置23内进行接收。以此,第一滤光片21过滤并反射的第一波长的光能够尽可能地进入第一光接收装置23内进行回收,提升光利用率。同时,全反射镜片22的设置,使第一滤光片21和第一光接收装置23之间的光路得以折叠和压缩,缩短了从第一滤光片21至第一光接收装置23的光路,有利于缩减本光路结构的体积和光器件的体积。In this embodiment, the
在本发明的一实施例中,如图1所示,定义第一滤光片21所在的平面与第一光信号组件1的出光光路之间的夹角为α,定义全反射镜片22所在的平面与第一光信号组件1的出光光路之间的夹角为β,70°≤α<90°,25°≤β<90°;且/或,定义第二滤光片31所在的平面与第一光信号组件1的出光光路之间的夹角为γ,γ=45°。In an embodiment of the present invention, as shown in FIG. 1 , the angle between the plane where the first
在本实施例中,第一滤光片21所在的平面与第一光信号组件1的出光光路之间的夹角α大于等于70度且小于等于90度时,第一滤光片21所在的平面与竖直方向之间的夹角较小,此时第一滤光片21相对于竖直方向的倾斜度较低,第一滤光片21镀膜时的光过渡带较小,而对第一滤光片21的镀膜工艺要求更低,使第一滤光片21的镀膜更容易,且第一滤光片21对第一波长和第二波长的光的分离度更好,有利于提升第一滤光片21对第一波长的光和第二波长的光的分离效果。In this embodiment, when the angle α between the plane where the first
全反射镜片22所在的平面与第一光信号组件1的出光光路之间的夹角β大于等于25度且小于等于90度时,全反射镜片22能够与第一滤光片21配合将第一波长的光反射至第一光接收装置23内进行接收。优选地,夹角α与夹角β的夹角大小之和为95度,此时第一滤光片21能够将第一波长的光沿与第一光信号组件1的出光光路垂直的方向反射出去,能够实现第一波长的光垂直入射至第一光接收装置23中,便于第一波长的光在第一光接收装置23中进行高速率传播。When the angle β between the plane where the
第二滤光片31所在的平面与第一光信号组件1的出光光路之间的夹角γ等于45度时,第二滤光片31能够将第二波长的光沿与第一光信号组件1出光光路垂直的方向反射出去,此时能够实现第二波长的光垂直入射至第二光接收装置32中,便于第二波长的光在第二光接收装置32中进行高速率传播。When the included angle γ between the plane where the second
在本发明的一实施例中,第一滤光片21和第二滤光片31为高通滤光片;且/或,第一波长小于第二波长。In an embodiment of the present invention, the
在本实施例中,第一滤光片21和第二滤光片31为高通滤光片时,且第一滤光片21和第二滤光片31的对光的截止波长不同,第一滤光片21的截止波长为第一波长,第二滤光片31的截止波长为第二波长。第一滤光片21所过滤的第一波长的光的波长比第二滤光片31所过滤的第二波长的光的波长更小,以使第一光信号组件1中第一波长的光在经过第一滤光片21时被截止和反射,而第一光信号组件1中第二波长的光能够透过第一滤光片21入射至第二滤光片31,并在经过第二滤光片31时被截止和反射。In this embodiment, when the
可选地,第一波长可大于等于1260nm且小于等于1280nm,第二波长可大于等于1300nm且小于等于1320nm,第一滤光片21的截止波长可为1280nm,第二滤光片31的截止波长可为1320nm。Optionally, the first wavelength can be greater than or equal to 1260nm and less than or equal to 1280nm, the second wavelength can be greater than or equal to 1300nm and less than or equal to 1320nm, the cutoff wavelength of the
在本发明的一实施例中,如图1所示,第二光路组件3还包括第四滤光片33,第四滤光片33邻近第二光接收装置32设置,并位于所述全反射镜片22和所述第一光接收装置23之间的光路上,第四滤光片33用于通过第二波长的光。In an embodiment of the present invention, as shown in FIG. 1 , the second
在本实施例中,第三滤光片24为带通滤光片,第三滤光片24用于供第一波长的光通过,而使第一波长之外的光截止,因为第一滤光片21反射的是小于等于第一波长的光,第一滤光片21反射至全反射镜片22的光中夹杂着第一波长的光和比第一波长波长更小的光,全反射镜片22反射至第一光接收装置23中的光也就含有第一波长的光和波长小于比第一波长的光,这将导致第一接收组件接收到的光为多波长的复合光,光信号不够纯粹,影响对第一波长的光信号的使用。因此,第三滤光片24的设置,能够将全反射镜反射至第一光接收装置23的光进行进一步过滤,而仅使第一波长的光进入第一光接收装置23中,实现第一波长光的更纯粹的分离,有利于后续对第一波长的光的使用。In this embodiment, the
在本发明的一实施例中,如图1所示,第一光路组件2还包括第三滤光片24,第三滤光片24邻近第一光接收装置23设置,并位于第一光接收装置23和全反射镜片22之间,第三滤光片24用于通过第一波长的光。In an embodiment of the present invention, as shown in FIG. 1 , the first optical path assembly 2 further includes a third
在本实施例中,第三滤光片24为带通滤光片,第三滤光片24用于供第一波长的光通过,而使第一波长之外的光截止,因为第一滤光片21反射的是小于等于第一波长的光,第一滤光片21反射至全反射镜片22的光中夹杂着第一波长的光和比第一波长波长更小的光,全反射镜片22反射至第一光接收装置23中的光也就含有第一波长的光和波长小于比第一波长的光,这将导致第一接收组件接收到的光为多波长的复合光,光信号不够纯粹,影响对第一波长的光信号的使用。因此,第三滤光片24的设置,能够将全反射镜反射至第一光接收装置23的光进行进一步过滤,而仅使第一波长的光进入第一光接收装置23中,实现第一波长光的更纯粹的分离,有利于后续对第一波长的光的使用。In this embodiment, the
在本发明的一实施例中,如图1所示,第一光信号组件1包括光纤适配器11和第一透镜12;光纤适配器11与第一透镜12同轴设置,第一透镜12位于光纤适配器11和第一滤光片21之间的光路上,第一透镜12用于使光纤适配器11发出的光平行射入第一滤光片21。In an embodiment of the present invention, as shown in FIG. 1 , the first optical signal assembly 1 includes an
在本实施例中,光纤适配器11与光纤连接,用于接收光信号并将光信号传递至光纤中和将光纤中的光信号发射至第一滤光片21。第一透镜12用于汇聚和准直光纤适配器11发出的光束,以使光束成为准直的平行光,并射入第第一滤光片21,如此可使被第一滤光片21反射或透过第一滤光片21的光也为平行光,从而使光路易于控制而不易发散和偏转,也有利于提升光的利用率。In this embodiment, the
在本发明的一实施例中,结合图1和图2所示,光路结构还包括第二光信号组件4,第二光信号组件4包括第一光发射装置41、第五滤光片42以及第二透镜43;第二透镜43、第五滤光片42以及第一光发射装置41依次间隔设置于第一光信号组件1的出光光路的延长光路上;第一光发射装置41发出的第三波长的光依次透过第五滤光片42、第二透镜43、第二滤光片31以及第一滤光片21后进入第一光信号组件1。In an embodiment of the present invention, as shown in FIG. 1 and FIG. 2 , the optical path structure further includes a second optical signal component 4 , and the second optical signal component 4 includes a first
在本实施例中,第二光信号组件4用于向第一光信号组件1发射光信号,第二光信号组件4中的第一光发射装置41可为光发射器,第一光发射装置41用于发出光信号;第二光信号组件4中的第五滤光片42可为高通滤光片,其可供高于某特定波长的光通过而使低于该特定波长的光截止,比如,第五滤光片42可供波长大于1490nm的光通过,而使波长小于等于1490nm的光截止并反射。第二透镜43用于将光束汇聚并准直,第二透镜43可与竖直方向呈45度设置。第五滤光片42的截止波长大于第二透镜43的截止波长,第二透镜43的截止波长大于第二透镜43的截止波长,且第三波长大于第二波长,以使第一光发射装置41发出的第三波长的光可依次透过第五滤光片42、第二滤光片31以及第一滤光片21进入光纤适配器11中进行接收。In this embodiment, the second optical signal component 4 is used to transmit an optical signal to the first optical signal component 1 , the first
在本发明的一实施例中,结合图2和图3所示,第二光信号组件4还包括第二光发射装置44;第二光发射装置44邻近第五滤光片42设置,并位于第一光发射装置41的出光光路的一侧,第二光发射装置44发出的第四波长的光经过第五滤光片42反射后,依次透过第二透镜43、第二滤光片31以及第一滤光片21,并进入第一光信号组件1;第三波长大于第四波长,第四波长大于第二波长。In an embodiment of the present invention, as shown in FIG. 2 and FIG. 3 , the second optical signal component 4 further includes a second
在本实施例中,第二透镜43可与竖直方向呈45度设置,第二光发射装置44可设置于第二透镜43的上方,第二光发射装置44可为光发射器,第二光发射装置44用于向光纤适配器11发射光信号。第五滤光片42的截止波长为第三波长,且第三波长大于第四波长,第四波长大于第二波长,第二波长大于第一波长,以使第二光发射装置44发出的第四波长的光被第五滤光片42反射,并透过第二滤光片31和第一滤光片21进入光纤适配中;而第一光发射装置41发出的第三波长的光能够透过第五滤光片42,然后透过第二滤光片31和第一滤光片21进入光纤适配器11中,并与第三波长的光进行合束,实现双波长的光的复合利用。其中,第一波长可大于等于1260nm且小于等于1280nm,第二波长可大于等于1300nm且小于等于1320nm,第四波长可大于等于1480nm且小于等于1500nm,第三波长可大于等于1574nm且小于等于1580nm。In this embodiment, the
值得指出的是,光纤适配器11可同时发送和接收光信号,即光纤适配器11发送光信号到第一透镜12再到第一滤光片21的同时,第一光发射装置41和第二光发射装置44也可以向第五滤光片42发送光信号,因为第三波长大于第四波长,第四波长大于第二波长,第二波长大于第一波长,第一光发射装置41发出的第三波长的光和第二光发射装置44发出的第四波长的光会直接透过第二滤光片31和第一滤光片21进入光纤适配器11中,而光纤适配器11发出的第一波长的光在第一滤光处被截止和反射,第二波长的光在第二滤光片31处被截止和反射,不会继续向前传播,因此本光路结构中第一波长至第四波长的光的传播互不干扰,以此实现本光路结构的波分复用功能。It is worth noting that the
本发明还提出一种光器件,该光器件包括上述实施例中的光路结构和管壳5,管壳5设有安装腔51,光路结构设于管壳5,并部分位于安装腔51内。The present invention also provides an optical device, which includes the optical path structure in the above-mentioned embodiment and a
在本实施例中,第一光接收装置23、第二光接收装置32、第一光发射装置41以及第二光发射装置44可设置于壳体,并部分位于安装腔51内。第一滤光片21、全反射镜片22、第二滤光片31、第三滤光片24、第四滤光片33、第五滤光片42以及第二透镜43设置于安装腔51内,并可通过卡接、粘接等方式与管壳5固定连接。管壳5用于安装固定上述光路结构,使光路结构中的各光学器件之间的相对位置稳定,保持光在光路结构中的准确和可靠传播。In this embodiment, the first
该光路结构的具体结构参照上述实施例,由于本光器件采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。The specific structure of the optical path structure refers to the above-mentioned embodiments. Since the optical device adopts all the technical solutions of all the above-mentioned embodiments, it has at least all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, which will not be repeated here. .
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。The above descriptions are only the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Under the inventive concept of the present invention, the equivalent structural transformations made by the contents of the description and drawings of the present invention, or the direct/indirect application Other related technical fields are included in the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010617193.0A CN111624714B (en) | 2020-06-30 | 2020-06-30 | Optical path structure and optical devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010617193.0A CN111624714B (en) | 2020-06-30 | 2020-06-30 | Optical path structure and optical devices |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111624714A true CN111624714A (en) | 2020-09-04 |
CN111624714B CN111624714B (en) | 2024-12-13 |
Family
ID=72259430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010617193.0A Active CN111624714B (en) | 2020-06-30 | 2020-06-30 | Optical path structure and optical devices |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111624714B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024114148A1 (en) * | 2022-12-01 | 2024-06-06 | 华为技术有限公司 | Optical communication device, and optical device and assembling method therefor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016107499A1 (en) * | 2015-01-04 | 2016-07-07 | 武汉电信器件有限公司 | External otdr optical assembly structure |
CN109254355A (en) * | 2018-10-15 | 2019-01-22 | 深圳市亚派光电器件有限公司 | Light receiving element |
CN110673278A (en) * | 2019-11-15 | 2020-01-10 | 深圳市亚派光电器件有限公司 | Optical transceiver |
CN110806623A (en) * | 2019-11-15 | 2020-02-18 | 深圳市亚派光电器件有限公司 | Optical transceiver |
CN111007602A (en) * | 2019-12-24 | 2020-04-14 | 深圳市亚派光电器件有限公司 | Optical transceiver |
CN213182126U (en) * | 2020-06-30 | 2021-05-11 | 深圳市亚派光电器件有限公司 | Optical path structure and optical device |
-
2020
- 2020-06-30 CN CN202010617193.0A patent/CN111624714B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016107499A1 (en) * | 2015-01-04 | 2016-07-07 | 武汉电信器件有限公司 | External otdr optical assembly structure |
CN109254355A (en) * | 2018-10-15 | 2019-01-22 | 深圳市亚派光电器件有限公司 | Light receiving element |
CN110673278A (en) * | 2019-11-15 | 2020-01-10 | 深圳市亚派光电器件有限公司 | Optical transceiver |
CN110806623A (en) * | 2019-11-15 | 2020-02-18 | 深圳市亚派光电器件有限公司 | Optical transceiver |
CN111007602A (en) * | 2019-12-24 | 2020-04-14 | 深圳市亚派光电器件有限公司 | Optical transceiver |
CN213182126U (en) * | 2020-06-30 | 2021-05-11 | 深圳市亚派光电器件有限公司 | Optical path structure and optical device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024114148A1 (en) * | 2022-12-01 | 2024-06-06 | 华为技术有限公司 | Optical communication device, and optical device and assembling method therefor |
Also Published As
Publication number | Publication date |
---|---|
CN111624714B (en) | 2024-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN203981926U (en) | Optical module | |
US9391709B2 (en) | Optical transmitter module | |
US6295393B1 (en) | Polarized light synthesizing apparatus, a polarized light splitting apparatus and a pump light outputting apparatus | |
JPH0233109A (en) | Double wavelength optical communication former | |
US8805191B2 (en) | Optical transceiver including optical fiber coupling assembly to increase usable channel wavelengths | |
CN110673278A (en) | Optical transceiver | |
WO2022057352A1 (en) | Single-fiber bidirectional multi-channel transmission optical module system | |
WO2019173998A1 (en) | Optical receiving assembly, combined transceiver assembly, combined optical module, olt and pon system | |
US9383528B2 (en) | Light-receiving module | |
WO2004019091A1 (en) | Pseudo slant fiber bragg grating, multiple series fiber bragg grating, optical fiber type coupler and optical connector | |
CN102723996B (en) | Single fiber bi-directional optical component, optical module and optical network device | |
US20050036730A1 (en) | COB package type bi-directional transceiver module | |
CN109917523B (en) | A 50G single-fiber bidirectional optical module with a wavelength interval less than 20nm | |
CN111624714A (en) | Optical path structure and optical device | |
CN113296199A (en) | Single-fiber bidirectional optical assembly and optical module | |
CN213182126U (en) | Optical path structure and optical device | |
WO2021135968A1 (en) | High-speed transceiving module for 5g middlehaul | |
CN116346238A (en) | 50G passive optical network receiving end assembly | |
CN116088100A (en) | 50GPON wavelength division multiplexing passive optical device | |
CN210431438U (en) | Light emitting assembly and small-sized packaged hot-pluggable optical module with same | |
CN210666094U (en) | Multi-wavelength splitting receiving module | |
CN209281016U (en) | A kind of composite photoelectric detector | |
CN210720821U (en) | Optical transceiver | |
CN222599906U (en) | Coaxial single-fiber bidirectional optical transceiver | |
CN111077615A (en) | Hybrid optoelectronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |