CN111620673A - 一种高强度低密度陶粒支撑剂及其制备方法 - Google Patents
一种高强度低密度陶粒支撑剂及其制备方法 Download PDFInfo
- Publication number
- CN111620673A CN111620673A CN202010299091.9A CN202010299091A CN111620673A CN 111620673 A CN111620673 A CN 111620673A CN 202010299091 A CN202010299091 A CN 202010299091A CN 111620673 A CN111620673 A CN 111620673A
- Authority
- CN
- China
- Prior art keywords
- ceramsite proppant
- density
- low
- ceramsite
- proppant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62204—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/009—Porous or hollow ceramic granular materials, e.g. microballoons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/80—Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3409—Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3463—Alumino-silicates other than clay, e.g. mullite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/349—Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种高强度低密度陶粒支撑剂及其制备方法。所述陶粒支撑剂包括以下质量分数的组分:低品位铝矾土47‑60%,瓷石25‑40%,陶粒支撑剂生产废品5‑15%,工业硼酸0.3‑0.5%,镁质粘土3‑10%,硅灰2.5‑3.6%。所述陶粒支撑剂采用的原材料价格普遍较低,大大降低了生产成本;同时得到的陶粒支撑剂体积密度为1.42‑1.50g/cm3,视密度为2.61‑2.68g/cm3,闭合压力为52Mpa下破碎率低于5%,有利于降低压裂成本,还有利于油气田增产。
Description
技术领域
本发明属于石油化工技术领域,具体涉及一种高强度低密度陶粒支撑剂及其制备方法。
背景技术
在石油、天然气深井开采的压裂工艺中需要用到陶粒支撑剂,高闭合压力低渗透性矿床经压裂处理后,使含油气岩层裂开,油气从裂缝形成的通道中汇集而出,用陶粒支撑剂材料随同高压溶液进入地层填充在岩石裂缝中,起到支撑裂缝不因应力释放而闭合的作用,从而保持高导流能力,使油气畅通,增加产量。我国石油行业一般把体积密度不大于1.65g/cm3,视密度不大于3.00g/cm3,闭合压力为52MPa下破碎率不大于9.0%的陶粒支撑剂称为低密度陶粒支撑剂。在压裂工艺中采用低密度陶粒支撑剂,具有用量少,施工方便,成本低的特点。
专利申请文件CN200910102878.5公开了一种低密度陶粒支撑剂。该低密度陶粒支撑剂由下列重量百分比的原料按常规方法制成:高岭土62-75%,Al2O3含量为80-85%的铝钒土 17-30%,二氧化锰1-6%,氧化镁0.5-2%。专利申请文件CN01108604.1公开了一种高强度陶粒支撑剂的制造方法,以100重量份铝钒土(三氧化二铝含量75%)为基料,加入如下辅料,膨润土2-15份,镧系金属氧化物1-10份,二氧化锰0.3-3份,氧化镁0.1-3份;基、辅料混合后共磨成细粉,然后加水松解后在成球机制成球粒,再送入窑炉按烧结温度 1100-1500℃,烧结时间0.5-5小时,烧制得成品。
可见,目前制备高强度低密度陶粒支撑剂的方法主要是使用三氧化二铝含量较高的优质高岭土或铝钒土为主要原料(三氧化二铝含量一般在70重量%以上),通过添加氧化镁或氧化锰等添加剂进行配料来生产,但是由于优质高岭土或铝钒土资源分布有限,以及需要添加氧化镁或氧化锰等添加剂,使得制得的高强度低密度陶粒支撑剂的成本较高。如何在获得高强度低密度陶粒支撑剂的同时,降低生产成本,成为本领域亟待解决的问题。
发明内容
本发明的目的在于:针对现有技术中存在的高强度低密度陶粒支撑剂原材料成本较高的问题,本发明提供了一种高强度低密度陶粒支撑剂及其制备方法。
本发明采用的技术方案如下:
一种高强度低密度陶粒支撑剂。所述陶粒支撑剂包括以下质量分数的组分:
本发明技术方案中,采用Al2O3含量为55-65%的低品位铝钒土,资源储量大,价格便宜,相较高品位铝钒土(如Al2O3含量在73%以上),能大大降低原材料成本。同时,采用比铝矾土价格更低的瓷石代替部分铝矾土,再次降低生产原料成本。本发明对所采用的瓷石的种类没有特别的限制,其化学成分一般包含以下质量分数的组分:Al2O312-17%,SiO270-75%,K2O+Na2O 3-7%,Fe2O3<1%。另外,本发明的陶粒支撑剂还将生产废品作为原料重新加入,实现了废料的循环利用,所述陶粒支撑剂生产废品包含以下质量分数的组分:Al2O3 70-75%,SiO220-25%,Fe2O32-3%,TiO22-3.5%。
所述工业硼酸为白色粉末状结晶或三斜轴面鳞片状光泽结晶,有滑腻手感,无臭味, 0.3-0.5%的所述工业硼酸在本发明中能够降低陶粒支撑剂的烧成温度,当所述工业硼酸含量高于0.5%时,并不能进一步降低烧成温度。所述镁质粘土包含以下质量分数的组分:SiO2 59-63%,MgO 21-25%,Al2O32-3.5%,CaO 1-2.4%,Fe2O30.8-1.2%,TiO20.1-0.5%,所述镁质粘土的作用在于粘结成型。所述硅灰又叫硅微粉、微硅粉或二氧化硅超细粉,所述硅灰是在冶炼硅铁合金和工业硅时产生的SiO2和Si气体与空气中的氧气迅速氧化并冷凝而形成的一种超细硅质粉体材料,包含75-96%的SiO2,在本发明技术方案中能够提高各物料活性,降低陶粒支撑剂的体积密度和视密度。
在油气开采压裂施工中,陶粒支撑剂的使用设计是按立方计算,而采购按吨计算,体积密度越大,单位体积的采用成本就越高;而视密度是配制压裂液的主要参考数据,视密度越大配制压裂液的成本就越高,且在压裂液向油气井地层注入的过程中不便于携带;而破碎率越高,压裂产生的破碎颗粒越多,提高导流能力的效果越差,相反的,破碎率越低,越有利于压裂增产。本发明的陶粒支撑剂的体积密度为1.42-1.50g/cm3,视密度为 2.61-2.68g/cm3,在闭合压力为52Mpa下破碎率低于5%,在油气开采压裂施工中,不仅便于携带,且能降低压裂液配制成本,节约资源,符合国家节能降耗的政策。
另外,本发明还提供了一种高强度低密度陶粒支撑剂的制备方法。所述制备方法包括以下步骤:
(1)按质量百分含量称取各组分,混匀后球磨成细粉备用;
(2)将水雾化后与步骤(1)得到的细粉混合制成球状颗粒;
(3)将步骤(2)得到的球状颗粒投入回转窑,在1120-1250℃条件下烧结后冷却,得到所述陶粒支撑剂。
进一步,步骤(1)中所述细粉的粒度为380-420目,可以提高产品的外观光洁度。
进一步,步骤(2)中所述球状颗粒的粒径为0.425-0.85mm,当制备的陶粒支撑剂具有该范围的粒径时,可以获得52MPa闭合压力下保持低破碎率的压裂支撑效果。
相较于现有技术,本发明的有益效果是:
(1)所述陶粒支撑剂的体积密度为1.42-1.50g/cm3,视密度为2.61-2.68g/cm3,闭合压力为52Mpa下破碎率低于5%,有利于降低压裂成本,还有利于油气田增产;
(2)所述陶粒支撑剂采用低品位铝矾土、瓷石和陶粒支撑剂生产废品作为主要原料,大大降低了陶粒支撑剂的生产成本;
(3)所述陶粒支撑剂添加工业硼酸,降低了烧结温度,减少了能耗。
具体实施方式
以下示出实施例以及比较例更详细地说明本发明。本发明不限于以下的实施例。
实施例1
陶粒支撑剂包括以下质量分数的组分:低品位铝矾土49%,瓷石30%,陶粒支撑剂生产废品10.5%,工业硼酸0.5%,镁质粘土7%,硅灰3%。
陶粒支撑剂的制备包括以下步骤:
(1)将低品位铝钒土、瓷石、陶粒支撑剂生产废品分别经鄂式破碎机破碎成30mm的颗粒后装入配料仓,按比例设定好各仓配比,再将工业硼酸、镁质粘土、硅灰装入配料仓后设定配比,各仓按设定的比例给料至球磨机,磨成粒度达400目的细粉备用;
(2)将步骤(1)磨成的细粉送至成球机,再将水雾化后加入成球机,边加水边加细粉, 直至颗粒达到要求粒径0.425-0.85mm,然后经滚筒筛筛分即可完成成型工序;
(3)将步骤(2)成型好的颗粒半成品经给料系统送入回转窑中进行烧结,烧结温度为1120℃,烧结时间为1.5小时,出窑的烧成料经冷却窑冷却后采用直线振动筛筛分,即得陶粒支撑剂成品。
实施例2
陶粒支撑剂包括以下质量分数的组分:低品位铝矾土54%,瓷石25%,陶粒支撑剂生产废品15%,工业硼酸0.5%,镁质粘土3%,硅灰2.5%。
陶粒支撑剂的制备包括以下步骤:
(1)将低品位铝钒土、瓷石、陶粒支撑剂生产废品分别经鄂式破碎机破碎成30mm的颗粒后装入配料仓,按比例设定好各仓配比,再将工业硼酸、镁质粘土、硅灰装入配料仓后设定配比,各仓按设定的比例给料至球磨机,磨成粒度达400目的细粉备用;
(2)将步骤(1)磨成的细粉送至成球机,再将水雾化后加入成球机,边加水边加细粉, 直至颗粒达到要求粒径0.425-0.85mm,然后经滚筒筛筛分即可完成成型工序;
(3)将步骤(2)成型好的颗粒半成品经给料系统送入回转窑中进行烧结,烧结温度为1120℃,烧结时间为1.5小时,出窑的烧成料经冷却窑冷却后采用直线振动筛筛分,即得陶粒支撑剂成品。
实施例3
陶粒支撑剂包括以下质量分数的组分:低品位铝矾土48.1%,瓷石40%,陶粒支撑剂生产废品5%,工业硼酸0.3%,镁质粘土3%,硅灰3.6%。
陶粒支撑剂的制备包括以下步骤:
(1)将低品位铝钒土、瓷石、陶粒支撑剂生产废品分别经鄂式破碎机破碎成30mm的颗粒后装入配料仓,按比例设定好各仓配比,再将工业硼酸、镁质粘土、硅灰装入配料仓后设定配比,各仓按设定的比例给料至球磨机,磨成粒度达400目的细粉备用;
(2)将步骤(1)磨成的细粉送至成球机,再将水雾化后加入成球机,边加水边加细粉, 直至颗粒达到要求粒径0.425-0.85mm,然后经滚筒筛筛分即可完成成型工序;
(3)将步骤(2)成型好的颗粒半成品经给料系统送入回转窑中进行烧结,烧结温度为1250℃,烧结时间为1.5小时,出窑的烧成料经冷却窑冷却后采用直线振动筛筛分,即得陶粒支撑剂成品。
实施例4
陶粒支撑剂包括以下质量分数的组分:低品位铝矾土59.8%,瓷石26%,陶粒支撑剂生产废品7%,工业硼酸0.4%,镁质粘土4%,硅灰2.8%。
陶粒支撑剂的制备包括以下步骤:
(1)将低品位铝钒土、瓷石、陶粒支撑剂生产废品分别经鄂式破碎机破碎成30mm的颗粒后装入配料仓,按比例设定好各仓配比,再将工业硼酸、镁质粘土、硅灰装入配料仓后设定配比,各仓按设定的比例给料至球磨机,磨成粒度达400目的细粉备用;
(2)将步骤(1)磨成的细粉送至成球机,再将水雾化后加入成球机,边加水边加细粉, 直至颗粒达到要求粒径0.425-0.85mm,然后经滚筒筛筛分即可完成成型工序;
(3)将步骤(2)成型好的颗粒半成品经给料系统送入回转窑中进行烧结,烧结温度为1180℃,烧结时间为1.5小时,出窑的烧成料经冷却窑冷却后采用直线振动筛筛分,即得陶粒支撑剂成品。
对比例1
陶粒支撑剂包括以下质量分数的组分:低品位铝矾土50.2%,瓷石30%,陶粒支撑剂生产废品10.5%,工业硼酸0.5%,镁质粘土7%,硅灰1.8%。
陶粒支撑剂的制备包括以下步骤:
(1)将低品位铝钒土、瓷石、陶粒支撑剂生产废品分别经鄂式破碎机破碎成30mm的颗粒后装入配料仓,按比例设定好各仓配比,再将工业硼酸、镁质粘土、硅灰装入配料仓后设定配比,各仓按设定的比例给料至球磨机,磨成粒度达400目的细粉备用;
(2)将步骤(1)磨成的细粉送至成球机,再将水雾化后加入成球机,边加水边加细粉, 直至颗粒达到要求粒径0.425-0.85mm,然后经滚筒筛筛分即可完成成型工序;
(3)将步骤(2)成型好的颗粒半成品经给料系统送入回转窑中进行烧结,烧结温度为1120℃,烧结时间为1.5小时,出窑的烧成料经冷却窑冷却后采用直线振动筛筛分,即得陶粒支撑剂成品。
对比例2
陶粒支撑剂包括以下质量分数的组分:低品位铝矾土51.1%,瓷石30%,陶粒支撑剂生产废品10.5%,工业硼酸0.5%,镁质粘土7%,硅灰0.9%。
陶粒支撑剂的制备包括以下步骤:
(1)将低品位铝钒土、瓷石、陶粒支撑剂生产废品分别经鄂式破碎机破碎成30mm的颗粒后装入配料仓,按比例设定好各仓配比,再将工业硼酸、镁质粘土、硅灰装入配料仓后设定配比,各仓按设定的比例给料至球磨机,磨成粒度达400目的细粉备用;
(2)将步骤(1)磨成的细粉送至成球机,再将水雾化后加入成球机,边加水边加细粉, 直至颗粒达到要求粒径0.425-0.85mm,然后经滚筒筛筛分即可完成成型工序;
(3)将步骤(2)成型好的颗粒半成品经给料系统送入回转窑中进行烧结,烧结温度为1120℃,烧结时间为1.5小时,出窑的烧成料经冷却窑冷却后采用直线振动筛筛分,即得陶粒支撑剂成品。
对比例3
陶粒支撑剂包括以下质量分数的组分:低品位铝矾土34%,瓷石45%,陶粒支撑剂生产废品10.5%,工业硼酸0.5%,镁质粘土7%,硅灰3%。
陶粒支撑剂的制备包括以下步骤:
(1)将低品位铝钒土、瓷石、陶粒支撑剂生产废品分别经鄂式破碎机破碎成30mm的颗粒后装入配料仓,按比例设定好各仓配比,再将工业硼酸、镁质粘土、硅灰装入配料仓后设定配比,各仓按设定的比例给料至球磨机,磨成粒度达400目的细粉备用;
(2)将步骤(1)磨成的细粉送至成球机,再将水雾化后加入成球机,边加水边加细粉, 直至颗粒达到要求粒径0.425-0.85mm,然后经滚筒筛筛分即可完成成型工序;
(3)将步骤(2)成型好的颗粒半成品经给料系统送入回转窑中进行烧结,烧结温度为1120℃,烧结时间为1.5小时,出窑的烧成料经冷却窑冷却后采用直线振动筛筛分,即得陶粒支撑剂成品。
对比例4
陶粒支撑剂包括以下质量分数的组分:低品位铝矾土49.5%,瓷石30%,陶粒支撑剂生产废品10.5%,镁质粘土7%,硅灰3%。
陶粒支撑剂的制备包括以下步骤:
(1)将低品位铝钒土、瓷石、陶粒支撑剂生产废品分别经鄂式破碎机破碎成30mm的颗粒后装入配料仓,按比例设定好各仓配比,再将工业硼酸、镁质粘土、硅灰装入配料仓后设定配比,各仓按设定的比例给料至球磨机,磨成粒度达400目的细粉备用;
(2)将步骤(1)磨成的细粉送至成球机,再将水雾化后加入成球机,边加水边加细粉, 直至颗粒达到要求粒径0.425-0.85mm,然后经滚筒筛筛分即可完成成型工序;
(3)将步骤(2)成型好的颗粒半成品经给料系统送入回转窑中进行烧结,烧结温度为1420℃,烧结时间为1.5小时,出窑的烧成料经冷却窑冷却后采用直线振动筛筛分,即得陶粒支撑剂成品。
将实施例1-4和对比例1-4制备的陶粒支撑剂按照中华人民共和国石油天然气行业标准SY/T5108-2014《水力压裂和砾石充填作业用支撑剂性能测试方法》进行检测,性能参数详见下表1和表2。
表1.实施例1-4的陶粒支撑剂的性能参数
项目 | 行业标准 | 实施例1 | 实施例2 | 实施例3 | 实施例4 |
烧成温度(℃) | / | 1120 | 1120 | 1250 | 1180 |
体积密度(g/cm<sup>3</sup>) | ≤1.65 | 1.42 | 1.49 | 1.50 | 1.45 |
视密度(g/cm<sup>3</sup>) | ≤3.00 | 2.61 | 2.66 | 2.68 | 2.64 |
圆度 | ≥0.7 | 0.8 | 0.8 | 0.8 | 0.8 |
球度 | ≥0.7 | 0.8 | 0.8 | 0.8 | 0.8 |
浊度(FTU) | ≤100 | 70 | 73 | 78 | 74 |
酸溶解度(%) | ≤7 | 4.2 | 4.4 | 4.5 | 4.3 |
破碎率(%) | ≤9 | 4.4 | 4.5 | 5.0 | 4.3 |
表2.对比例1-4的陶粒支撑剂的性能参数
项目 | 行业标准 | 对比例1 | 对比例2 | 对比例3 | 对比例4 |
烧成温度(℃) | / | 1120 | 1120 | 1120 | 1420 |
体积密度(g/cm<sup>3</sup>) | ≤1.65 | 1.68 | 1.71 | 1.73 | 1.42 |
视密度(g/cm<sup>3</sup>) | ≤3.00 | 3.1 | 3.3 | 3.4 | 2.61 |
圆度 | ≥0.7 | 0.8 | 0.8 | 0.8 | 0.8 |
球度 | ≥0.7 | 0.8 | 0.8 | 0.8 | 0.8 |
浊度(FTU) | ≤100 | 70 | 71 | 78 | 70 |
酸溶解度(%) | ≤7 | 4.3 | 4.4 | 4.5 | 4.2 |
破碎率(%) | ≤9 | 4.5 | 4.5 | 6.7 | 4.4 |
由表1和表2中的陶粒支撑剂的性能参数对比情况可以看出,对比例1和对比例2中硅灰含量低于本发明要求的含量,导致制得的陶粒支撑剂的体积密度和视密度都比较高,不符合行业标准;对比例3中瓷石含量高于本发明要求的含量,低品位铝矾土含量低于本发明要求的含量,导致制得的陶粒支撑剂的体积密度和视密度都比较高,不符合行业标准,且破碎率也明显增大;对比例4中缺乏工业硼酸,导致陶粒支撑剂的烧成温度较高。
Claims (9)
2.根据权利要求1所述的高强度低密度陶粒支撑剂,其特征在于,所述低品位铝矾土中Al2O3含量为55-65%。
3.根据权利要求1所述的高强度低密度陶粒支撑剂,其特征在于,所述陶粒支撑剂生产废品包含以下质量分数的组分:Al2O370-75%,SiO220-25%,Fe2O32-3%,TiO22-3.5%。
4.根据权利要求1所述的高强度低密度陶粒支撑剂,其特征在于,所述陶粒支撑剂的体积密度为1.42-1.50g/cm3。
5.根据权利要求1所述的高强度低密度陶粒支撑剂,其特征在于,所述陶粒支撑剂的视密度为2.61-2.68g/cm3。
6.根据权利要求1所述的高强度低密度陶粒支撑剂,其特征在于,所述陶粒支撑剂在闭合压力为52MPa下的破碎率低于5%。
7.根据权利要求1-6任一项所述的高强度低密度陶粒支撑剂的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)按质量百分含量称取各组分,混匀后球磨成细粉备用;
(2)将水雾化后与步骤(1)得到的细粉混合制成球状颗粒;
(3)将步骤(2)得到的球状颗粒投入回转窑,在1120-1250℃条件下烧结后冷却,得到所述陶粒支撑剂。
8.根据权利要求7所述的高强度低密度陶粒支撑剂的制备方法,其特征在于,步骤(1)中所述细粉的粒度为380-420目。
9.根据权利要求7所述的高强度低密度陶粒支撑剂的制备方法,其特征在于,步骤(2)中所述球状颗粒的粒径为0.425-0.85mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010299091.9A CN111620673A (zh) | 2020-04-16 | 2020-04-16 | 一种高强度低密度陶粒支撑剂及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010299091.9A CN111620673A (zh) | 2020-04-16 | 2020-04-16 | 一种高强度低密度陶粒支撑剂及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111620673A true CN111620673A (zh) | 2020-09-04 |
Family
ID=72269048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010299091.9A Pending CN111620673A (zh) | 2020-04-16 | 2020-04-16 | 一种高强度低密度陶粒支撑剂及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111620673A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114315407A (zh) * | 2022-01-12 | 2022-04-12 | 湖南大学 | 一种利用铝矾土尾矿制备小粒径多孔陶砂的方法 |
CN114426436A (zh) * | 2022-01-25 | 2022-05-03 | 湖南大学 | 一种高吸水率的内养护材料及其应用 |
CN116536039A (zh) * | 2023-05-06 | 2023-08-04 | 郑州德赛尔陶粒有限公司 | 一种轻质耐酸的高强度压裂支撑剂及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101717628A (zh) * | 2009-11-20 | 2010-06-02 | 渑池县方圆实业有限责任公司 | 低密度陶粒支撑剂及其制备方法 |
CN102942916A (zh) * | 2012-11-13 | 2013-02-27 | 垣曲县刚玉陶粒有限责任公司 | 一种超低密度陶粒支撑剂及其制备方法 |
CN104130764A (zh) * | 2013-08-07 | 2014-11-05 | 郑州市润宝耐火材料有限公司 | 一种压裂支撑剂用添加剂、压裂支撑剂及制备方法 |
CN106947458A (zh) * | 2017-05-10 | 2017-07-14 | 郑州市润宝耐火材料有限公司 | 镁橄榄石支撑剂及其制备方法 |
CN106967409A (zh) * | 2017-05-10 | 2017-07-21 | 郑州市润宝耐火材料有限公司 | 压裂支撑剂及其制备方法 |
CN107011887A (zh) * | 2017-05-10 | 2017-08-04 | 郑州市润宝耐火材料有限公司 | 压裂支撑剂用添加剂、压裂支撑剂及其制备方法 |
CN107056267A (zh) * | 2017-05-10 | 2017-08-18 | 郑州市润宝耐火材料有限公司 | 压裂支撑剂及其制备方法 |
CN109293346A (zh) * | 2018-11-29 | 2019-02-01 | 江苏华普泰克石油装备有限公司 | 一种低密度石油压裂支撑剂及其制备方法 |
-
2020
- 2020-04-16 CN CN202010299091.9A patent/CN111620673A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101717628A (zh) * | 2009-11-20 | 2010-06-02 | 渑池县方圆实业有限责任公司 | 低密度陶粒支撑剂及其制备方法 |
CN102942916A (zh) * | 2012-11-13 | 2013-02-27 | 垣曲县刚玉陶粒有限责任公司 | 一种超低密度陶粒支撑剂及其制备方法 |
CN104130764A (zh) * | 2013-08-07 | 2014-11-05 | 郑州市润宝耐火材料有限公司 | 一种压裂支撑剂用添加剂、压裂支撑剂及制备方法 |
CN106947458A (zh) * | 2017-05-10 | 2017-07-14 | 郑州市润宝耐火材料有限公司 | 镁橄榄石支撑剂及其制备方法 |
CN106967409A (zh) * | 2017-05-10 | 2017-07-21 | 郑州市润宝耐火材料有限公司 | 压裂支撑剂及其制备方法 |
CN107011887A (zh) * | 2017-05-10 | 2017-08-04 | 郑州市润宝耐火材料有限公司 | 压裂支撑剂用添加剂、压裂支撑剂及其制备方法 |
CN107056267A (zh) * | 2017-05-10 | 2017-08-18 | 郑州市润宝耐火材料有限公司 | 压裂支撑剂及其制备方法 |
CN109293346A (zh) * | 2018-11-29 | 2019-02-01 | 江苏华普泰克石油装备有限公司 | 一种低密度石油压裂支撑剂及其制备方法 |
Non-Patent Citations (1)
Title |
---|
万仁溥等: "《采油技术手册 第9分册 压裂酸化工艺技术》", 31 January 1998, 石油工业出版社 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114315407A (zh) * | 2022-01-12 | 2022-04-12 | 湖南大学 | 一种利用铝矾土尾矿制备小粒径多孔陶砂的方法 |
CN114426436A (zh) * | 2022-01-25 | 2022-05-03 | 湖南大学 | 一种高吸水率的内养护材料及其应用 |
CN116536039A (zh) * | 2023-05-06 | 2023-08-04 | 郑州德赛尔陶粒有限公司 | 一种轻质耐酸的高强度压裂支撑剂及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100569897C (zh) | 一种油气井用压裂支撑剂及其制备方法 | |
CN111620673A (zh) | 一种高强度低密度陶粒支撑剂及其制备方法 | |
CN101914374B (zh) | 高强度陶粒支撑剂及其生产方法 | |
CN105925257B (zh) | 一种低密度陶粒支撑剂及其制备方法 | |
CN101629075A (zh) | 一种加煤矸石的石油压裂支撑剂 | |
CN105778886A (zh) | 一种低密高强陶粒支撑剂及其制备工艺 | |
CN101774800B (zh) | 含硬质碳化物的陶瓷颗粒及其制造方法 | |
CN101435020B (zh) | 利用钛精矿生产富钛料的方法 | |
CN104130764B (zh) | 一种压裂支撑剂用添加剂、压裂支撑剂及制备方法 | |
CN104893706B (zh) | 利用铝土矿废矿渣制备高密度高强度的陶粒砂 | |
CN113969160A (zh) | 利用矿山尾矿生产的高强度陶粒支撑剂及其制备方法 | |
CN108102638A (zh) | 一种陶粒砂石油支撑剂 | |
CN108046756B (zh) | 利用钒钛磁铁矿预选抛尾渣制备压裂陶粒支撑剂的方法 | |
CN105567214A (zh) | 一种超低密度石油压裂支撑剂及其制备方法 | |
CN109652055B (zh) | 含假蓝宝石晶体的复相陶粒石油压裂支撑剂及其制备方法 | |
CN106190092A (zh) | 以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂及其制备方法 | |
CN107011887A (zh) | 压裂支撑剂用添加剂、压裂支撑剂及其制备方法 | |
CN109825278A (zh) | 一种轻质高强煤层气支撑剂及其制备方法 | |
CN109439312A (zh) | 一种基于尾矿利用的石油压裂支撑剂及生产工艺与用途 | |
CN112430460B (zh) | 石油压裂支撑剂及其制备方法和应用 | |
CN107056267A (zh) | 压裂支撑剂及其制备方法 | |
CN115572084A (zh) | 一种多钢渣协同全固废胶凝材料及其制备方法 | |
CN102899017B (zh) | 一种超低密度陶粒支撑剂及其制备方法 | |
CN107011886B (zh) | 一种铝土矿选尾矿制备陶粒支撑剂的方法 | |
CN110343517A (zh) | 一种硅灰陶粒支撑剂及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |