CN111562600B - Precision calibration system and calibration method - Google Patents
Precision calibration system and calibration method Download PDFInfo
- Publication number
- CN111562600B CN111562600B CN202010436953.8A CN202010436953A CN111562600B CN 111562600 B CN111562600 B CN 111562600B CN 202010436953 A CN202010436953 A CN 202010436953A CN 111562600 B CN111562600 B CN 111562600B
- Authority
- CN
- China
- Prior art keywords
- precision
- accuracy
- speed
- satellite
- calibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 22
- 230000033001 locomotion Effects 0.000 claims abstract description 44
- 238000012360 testing method Methods 0.000 claims abstract description 36
- 238000004458 analytical method Methods 0.000 claims abstract description 13
- 238000004088 simulation Methods 0.000 claims abstract description 3
- 238000004422 calculation algorithm Methods 0.000 claims description 5
- 239000005436 troposphere Substances 0.000 claims 1
- 238000004364 calculation method Methods 0.000 description 3
- 230000001351 cycling effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/23—Testing, monitoring, correcting or calibrating of receiver elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/52—Determining velocity
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
Abstract
Description
技术领域technical field
本发明涉及卫星导航技术领域,尤其涉及一种精度校准系统及校准方法。The invention relates to the technical field of satellite navigation, in particular to an accuracy calibration system and a calibration method.
背景技术Background technique
自行车运动目前是人们探索自然和挑战自己的一项热门运动,记录自己的运动轨迹并且朋友分享也是骑行爱好者们所热衷的事情。Cycling is currently a popular sport for people to explore nature and challenge themselves. Recording one's own movement track and sharing it with friends is also something that cycling enthusiasts are passionate about.
运动者的骑行位置通常通过手机中附加的GNSS(Global Navigation SatelliteSystem,全球导航卫星系统)定位装置(GNSS码表)获取,而持续的获取可形成骑行轨迹。GNSS码表是利用全球卫星定位系统接收太空中的卫星信号,然后进行测算,从而得出速度、里程、时间、高度的数据;同时,通过连接外部传感器获得踏频、心率、功率的数据;最后经过综合计算得出直观、丰富的骑行数据的一种新型测量仪表。The athlete's riding position is usually acquired through a GNSS (Global Navigation Satellite System, Global Navigation Satellite System) positioning device (GNSS computer) attached to the mobile phone, and continuous acquisition can form a riding track. The GNSS code table uses the global satellite positioning system to receive satellite signals in space, and then performs calculations to obtain the data of speed, mileage, time, and altitude; at the same time, the data of cadence, heart rate, and power are obtained by connecting external sensors; finally A new type of measuring instrument that provides intuitive and rich riding data through comprehensive calculations.
目前占据比较主流地位的GNSS包括:美国研制的GPS(Global PositioningSystem,全球定位系统)、俄罗斯研制的GLONASS(GLOBAL NAVIGATION SATELLITE SYSTEM,全球卫星导航系统)、中国研制的北斗导航系统和欧盟研制的伽利略卫星导航系统(Galileo Satellite Navigation System)。GNSS currently occupying a relatively mainstream position includes: GPS (Global Positioning System, Global Positioning System) developed by the United States, GLONASS (GLOBAL NAVIGATION SATELLITE SYSTEM, Global Satellite Navigation System) developed by Russia, Beidou Navigation System developed by China and Galileo satellite developed by the European Union Navigation system (Galileo Satellite Navigation System).
如今GNSS码表已经非常流行了,它们的优势是可以记录轨迹和骑行数据,连接社交媒体,能够满足导航和健身训练等多种需求。但关于码表的速度、距离的准确性直接影响对于日益追求健康的人们最佳效果。目前大多数对于智能GNSS码表的测试往往通过与不同终端之间的相互评测进行,无法准备定量评估。而专用的测试需要在高精度的移动测试车上进行,通过实时的数据记录进行比对分析,对于高精度测试车需要高精度的标准器及在测试车上进行改装以达到测试要求。Nowadays, GNSS stopwatches are very popular. Their advantages are that they can record track and cycling data, connect to social media, and be able to meet various needs such as navigation and fitness training. But about the speed of stopwatch, the accuracy of distance directly affects the best effect for people who pursue health day by day. At present, most of the tests for smart GNSS code tables are often carried out through mutual evaluation with different terminals, and quantitative evaluation cannot be prepared. The special test needs to be carried out on a high-precision mobile test vehicle, and real-time data records are used for comparison and analysis. For a high-precision test vehicle, a high-precision standard device and refitting on the test vehicle are required to meet the test requirements.
发明内容Contents of the invention
本发明的目的在于提供一种精度校准系统及相应的校准方法,所述系统/方法能够解决不同终端之间相互评测所带来的无法定量评估的缺陷,也能够解决使用高精度测试车所带来的改造和使用成本较高的问题。The purpose of the present invention is to provide a precision calibration system and a corresponding calibration method. The system/method can solve the defects that cannot be quantitatively evaluated caused by the mutual evaluation between different terminals, and can also solve the problems caused by the use of high-precision test vehicles. The problem of high cost of transformation and use in the future.
本发明基于智能GNSS码表的工作原理,提出基于卫星信号模拟器场景化测试方法,通过建立正弦运动轨迹模型、圆周运动等模型测试场景,搭建高精度测试平台,形成具体化的测试方案,在模拟环境下检测和校准智能GNSS码表的速度和里程的精度。Based on the working principle of the intelligent GNSS code table, the present invention proposes a scene-based test method based on a satellite signal simulator, and builds a high-precision test platform by establishing a model test scene such as a sinusoidal motion trajectory model and a circular motion to form a specific test plan. Detect and calibrate the speed and mileage accuracy of the smart GNSS computer in a simulated environment.
首先,本发明提出了一种精度校准系统,用于在模拟环境下对智能GNSS码表进行精度校准,包括:First of all, the present invention proposes an accuracy calibration system for performing accuracy calibration on smart GNSS code tables in a simulated environment, including:
卫星信号模拟器,模拟卫星导航系统的导航数据,并提供相应的射频信号;Satellite signal simulator, which simulates the navigation data of the satellite navigation system and provides corresponding radio frequency signals;
参考频标,向所述卫星信号模拟器提供时基参考信号;A reference frequency standard, providing a time-base reference signal to the satellite signal simulator;
测试场景模块,提供预设的运动轨迹及限定条件选择;The test scene module provides preset motion trajectory and limited condition selection;
导航信号控制模块,控制所述卫星信号模拟器的输出,并控制所述测试场景模块的调用;The navigation signal control module controls the output of the satellite signal simulator, and controls the calling of the test scene module;
精度分析模块,分别从所述卫星信号模拟器和所述智能GNSS码表获取里程和速度信息,并计算所述智能GNSS码表的精度。The accuracy analysis module obtains mileage and speed information from the satellite signal simulator and the intelligent GNSS code table respectively, and calculates the accuracy of the intelligent GNSS code table.
上述的一种精度校准系统,其中,所述控制所述卫星信号模拟器的输出至少包括:选择所模拟的卫星系统以及选择射频频点。In the above-mentioned precision calibration system, wherein the controlling the output of the satellite signal simulator includes at least: selecting a simulated satellite system and selecting a radio frequency point.
上述的一种精度校准系统,其中,所述测试场景模块的限定条件至少包括:大气层延迟模型、对流层延迟模型、智能GNSS码表运动模型以及场景运动轨迹。In the above-mentioned precision calibration system, wherein, the limiting conditions of the test scene module include at least: an atmospheric delay model, a tropospheric delay model, an intelligent GNSS code table motion model, and a scene motion track.
上述的一种精度校准系统,其中,所述精度分析模块中,根据里程误差、速度误差、速度精度以及最大速度进行精度校准。The above-mentioned precision calibration system, wherein, in the precision analysis module, precision calibration is performed according to mileage error, speed error, speed precision and maximum speed.
上述的一种精度校准系统,其中,当所述速度误差、速度精度以及最大速度的更新率大于1Hz时,采用二次项或样条拟合插值算法进行补偿。The above-mentioned precision calibration system, wherein, when the update rate of the speed error, speed accuracy and maximum speed is greater than 1 Hz, a quadratic term or a spline fitting interpolation algorithm is used for compensation.
其次,本发明还提供了一种精度校准方法,用于在模拟环境下对智能GNSS码表进行精度校准,包括如下步骤:Secondly, the present invention also provides a kind of precision calibration method, is used for carrying out precision calibration to intelligent GNSS code table under simulation environment, comprises the following steps:
S1、选择运动轨迹场景;S1. Select a motion track scene;
S2、运行导航信号控制软件,采集智能GNSS码表的数据;S2, run the navigation signal control software, and collect the data of the intelligent GNSS code table;
S3、运行精度分析软件,校准所述智能GNSS码表的精度;S3, run the accuracy analysis software, and calibrate the accuracy of the smart GNSS code table;
S4、重复S1~S3,直至达到预定次数。S4. Repeat S1-S3 until the predetermined number of times is reached.
上述的一种精度校准方法,其中,在步骤S1前还包括:预热一提供模拟导航数据的卫星信号模拟器。The above-mentioned accuracy calibration method, wherein, before step S1, further includes: preheating a satellite signal simulator that provides simulated navigation data.
上述的一种精度校准方法,步骤S2中,包括:The above-mentioned precision calibration method, in step S2, includes:
控制一卫星信号模拟器至少输出:所模拟的卫星系统的频码、数据、功率以及射频频点;Controlling a satellite signal simulator to output at least: the frequency code, data, power and radio frequency point of the simulated satellite system;
限定所述测试场景模块中的大气层延迟模型、对流层延迟模型、智能GNSS码表运动模型以及场景运动轨迹。The atmospheric delay model, the tropospheric delay model, the intelligent GNSS code table motion model and the scene motion trajectory in the test scene module are defined.
上述的一种精度校准方法,步骤S3中,根据里程误差、速度误差、速度精度以及最大速度进行精度校准;当所述速度误差、速度精度以及最大速度的更新率大于1Hz时,采用二次项或样条拟合插值算法进行补偿。In the above-mentioned accuracy calibration method, in step S3, the accuracy calibration is performed according to the mileage error, speed error, speed accuracy and maximum speed; when the update rate of the speed error, speed accuracy and maximum speed is greater than 1Hz, the quadratic term is used Or spline fitting interpolation algorithm for compensation.
基于同一发明构思,本发明还提出了一种可读写存储介质,其上存储有可执行程序,所述可执行程序被调用时,实现上述的精度校准方法。Based on the same inventive concept, the present invention also proposes a readable and writable storage medium on which an executable program is stored, and when the executable program is invoked, the above precision calibration method is implemented.
与现有技术相比,本发明的技术方案通过一卫星信号模拟器给出卫星系统的数据,使得校准不需要在实际卫星系统中进行,提高了校准的便捷性和可靠性;其次本发明的技术方案通过设置标准的测试场景模块统一了校准时的路径、气候等测试条件,实现了校准的可重复性,多个码表的校准可基于同一标准实现,提高校准的可信度;本发明的技术方案还通过分析和控制软件实现数据采集和计算,可采用多种设定条件反复进行测试和分析,进一步提高校准的精确度和可信性。Compared with the prior art, the technical solution of the present invention provides the data of the satellite system through a satellite signal simulator, so that the calibration does not need to be carried out in the actual satellite system, which improves the convenience and reliability of the calibration; secondly, the present invention The technical solution unifies the test conditions such as path and climate during calibration by setting standard test scene modules, and realizes the repeatability of calibration, and the calibration of multiple code tables can be realized based on the same standard, which improves the reliability of calibration; the present invention The technical solution also realizes data collection and calculation through analysis and control software, which can be tested and analyzed repeatedly with various setting conditions, further improving the accuracy and reliability of calibration.
附图说明Description of drawings
本领域技术人员可知,以下的附图仅仅列举出本发明的一些实施例,在不付出创造性劳动的前提下,本领域技术人员还可以根据这些附图获得其他同一性质的实施例(附图)。Those skilled in the art know that the following drawings only illustrate some embodiments of the present invention, and those skilled in the art can also obtain other embodiments of the same nature according to these drawings (accompanying drawings) .
图1是本发明中校准系统的一个实施例的框图;Fig. 1 is a block diagram of an embodiment of the calibration system in the present invention;
图2是本发明中导航信号控制模块的功能框图;Fig. 2 is the functional block diagram of navigation signal control module in the present invention;
图3是本发明中精度分析模块的工作示意图;Fig. 3 is the working schematic diagram of precision analysis module in the present invention;
图4是本发明中校准方法的一个示意性流程图。Fig. 4 is a schematic flowchart of the calibration method in the present invention.
具体实施方式Detailed ways
为使本发明的目的、特征更明显易懂,下面结合附图对本发明的具体实施方式作进一步的说明。然而,本发明可以用不同的形式实现,不应只是局限在所述的实施例。且,在不冲突的情况下,本申请中的实施例及实施例中的特征允许相互组合或替换。结合以下的说明,本发明的优点和特征将更清楚。In order to make the purpose and features of the present invention more comprehensible, the specific implementation manners of the present invention will be further described below in conjunction with the accompanying drawings. However, the present invention can be implemented in different forms and should not be limited to the described embodiments. Moreover, in the case of no conflict, the embodiments in the present application and the features in the embodiments are allowed to be combined or replaced with each other. The advantages and features of the present invention will become clearer in conjunction with the following descriptions.
需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。It should be noted that all the drawings are in very simplified form and use inaccurate scales, and are only used to facilitate and clearly assist the purpose of illustrating the embodiments of the present invention.
还需声明的是,本发明中对步骤编号的目的在于便于引用,而非限定先后顺序。对于个别需强调顺序的步骤,文中将以专门文字进行特别说明。It should also be stated that the purpose of numbering the steps in the present invention is to facilitate reference, not to limit the sequence. For individual steps that need to be emphasized in order, special instructions will be given in special text in the text.
本发明构思的核心思想在于,根据卫星导航原理,提出基于卫星信号模拟器和场景化测试的方法。即预定若干标准场景或定制特殊场景用于模拟智能GNSS码表的运行轨迹(包括速度),结合速度及里程分析软件,分别计算速度精度和里程精度。该测试方法简单可行,测试结果稳定可靠,能够为智能GNSS码表的速度和里程精度的校准提供可靠技术依据。The core idea of the concept of the present invention is to propose a method based on satellite signal simulator and scene testing according to the principle of satellite navigation. That is, several standard scenes or customized special scenes are reserved to simulate the running track (including speed) of the smart GNSS computer, and combined with speed and mileage analysis software, the speed accuracy and mileage accuracy are calculated respectively. The test method is simple and feasible, and the test results are stable and reliable, which can provide a reliable technical basis for the calibration of the speed and mileage accuracy of the smart GNSS computer.
请参考图1,本实施例提出了一种用于在模拟环境下对智能GNSS码表进行精度校准的系统,主要包括卫星信号模拟器1、参考频标2、导航信号控制模块3、测试场景模块4和精度分析模块5。Please refer to Figure 1, this embodiment proposes a system for precision calibration of smart GNSS code tables in a simulated environment, mainly including a
卫星信号模拟器1用于模拟卫星导航系统的导航数据,并提供相应的射频信号。如背景技术所述,现存有多种全球卫星导航定位系统(GNSS),在我国,使用较多的是美国的GPS系统和中国的北斗系统。其中,GPS系统在全球布设有24颗导航卫星,北斗系统在全球布设有三十余颗卫星。在人们的实际生活中,定位设备往往是可以同时接受上述两种卫星系统的数据的。在本发明的卫星信号模拟器1中,也设置了多星多系统的选项,用户可以选择使用哪种定位系统以及模拟接收几颗卫星的信号。同时,卫星信号模拟器1也提供了常用的卫星通信频点,供用户选择。The
参考频标2用于向卫星信号模拟器1提供时基参考信号。时间与频率和导航定位技术密切相关。对于卫星导航定位系统,导航的基础是定位,定位的基础是测距,测距的基础是测量电波传输时延,而测时延的基础便是统一的时间频率基准。只有在相同的时基标准下得到的定位数据才基于可信性。The
测试场景模块4提供预设的运动轨迹及限定条件选择。所述预设的运动轨迹不仅仅包括运动的路径,还包括对其运动时的速度(加速度)的设定。优选的,所述预设的运动轨迹可包括:匀速直线运动轨迹、正弦运动轨迹和圆周运动轨迹。进一步的,还可将实际的真实路线的轨迹保存到测试场景模块4中。但是,所述真实路线需要对其路线的真值进行标定。标定该真值时可使用高精度组合导航接收机进行,但其精度需高于智能GNSS码表精度一个数量级。The
如图2所示,导航信号控制模块3控制卫星信号模拟器1的输出,并控制测试场景模块4的调用。所述控制卫星信号模拟器1的输出至少包括:选择所模拟的卫星系统以及选择射频频点。进一步地,选择所模拟的卫星系统包括选择和打开可见卫星扩频码和导航数据码、选择可见卫星信号功率。若智能GNSS码表接收灵敏度较低,还可进一步设置卫星信号模拟器1提高输出信号功率。As shown in FIG. 2 , the navigation
如图3所示,精度分析模块5分别从卫星信号模拟器1和智能GNSS码表6获取里程和速度信息,并以卫星信号模拟器1为标准值,计算智能GNSS码表6的精度。具体地,精度分析模块5根据里程误差、速度误差、速度精度以及最大速度进行精度校准。其中,当所述速度误差、速度精度、最大速度的更新率大于1Hz时,需配置相应的卫星信号模拟器1的更新率,如卫星信号模拟器1不支持高速更新率(更新率大于1Hz),精度分析模块5可采用二次项或样条拟合插值算法进行补偿。As shown in Figure 3, the
上述的精度校准系统采用统一的、可稳定反复实现的模拟卫星导航系统和标准的参考时基,为智能GNSS码表的测速和测距(记录轨迹)提供了标准的参照,将所有智能GNSS码表的数据测试放在了同一个尺度上,解决了现有技术中通过不同终端相互测评只能定性而不能定量的检测智能GNSS码表精度的缺陷。上述的精度校准系统提供的测试场景模块中,通过软件模拟了多种预设的运动轨迹,所述运动轨迹包括了运动的路径和运动的速度信息,解决了使用移动测试车带来了高成本、低效率、可重复性差等缺陷。综上,上述的精度校准系统简单可行,便携性强,测试结果稳定可靠,为智能GNSS码表的速度和里程的精度校准提供了可靠的技术依据。The above-mentioned precision calibration system adopts a unified, stable and repeatable analog satellite navigation system and a standard reference time base, which provides a standard reference for the speed measurement and distance measurement (recording track) of the smart GNSS code table, and integrates all smart GNSS codes The data test of the meter is placed on the same scale, which solves the defect in the prior art that the mutual evaluation of different terminals can only qualitatively but not quantitatively detect the accuracy of the smart GNSS code meter. In the test scene module provided by the above-mentioned precision calibration system, a variety of preset motion trajectories are simulated through software, and the motion trajectories include the path of motion and the speed information of motion, which solves the high cost caused by the use of mobile test vehicles. , low efficiency, poor repeatability and other defects. In summary, the above-mentioned accuracy calibration system is simple, feasible, highly portable, and the test results are stable and reliable, which provides a reliable technical basis for the accuracy calibration of the speed and mileage of the smart GNSS computer.
如图4所示,基于上述的精度校准系统,本发明还提供了一种用于在模拟环境下对智能GNSS码表进行精度校准的精度校准方法。具体包括如下步骤:As shown in FIG. 4 , based on the above-mentioned precision calibration system, the present invention also provides a precision calibration method for precision calibration of an intelligent GNSS code meter in a simulated environment. Specifically include the following steps:
S0、预热卫星信号模拟器,最好30分钟以上;S0. Preheat the satellite signal simulator, preferably more than 30 minutes;
S1、选择运动轨迹场景;S1. Select a motion track scene;
S2、运行导航信号控制软件,采集智能GNSS码表的数据;S2, run the navigation signal control software, and collect the data of the intelligent GNSS code table;
S3、运行精度分析软件,校准所述智能GNSS码表的精度;S3, run the accuracy analysis software, and calibrate the accuracy of the smart GNSS code table;
S4、重复S1~S3,直至达到预定次数。S4. Repeat S1-S3 until the predetermined number of times is reached.
步骤S0中,还需将所述卫星信号模拟器设置为多星多系统,并设置相应卫星信号频点。In step S0, it is also necessary to set the satellite signal simulator as multi-satellite multi-system, and set corresponding satellite signal frequency points.
步骤S1中,所述运动轨迹场景包括:In step S1, the motion track scene includes:
a)大气层模型及对流层延迟模型的选择。a) Selection of atmospheric model and tropospheric delay model.
b)编辑运动轨迹。具体的,所述运动轨迹包括匀速直线运动轨迹、正弦运动轨迹、圆周运动轨迹和运动时的速度值。进一步地,还可以包括根据实际路线编制的运动轨迹。b) Edit motion track. Specifically, the motion trajectory includes a uniform linear motion trajectory, a sinusoidal motion trajectory, a circular motion trajectory, and a velocity value during motion. Further, it may also include a motion trajectory compiled according to the actual route.
c)限定所述智能GNSS码表(接收机)的运动模型,所述运动模型包括静态和动态模型。在使用动态运动模型时,还需进行初始化静态场景配置,以充分定位(初始定位)智能GNSS码表。c) defining the motion model of the intelligent GNSS code table (receiver), the motion model including static and dynamic models. When using the dynamic motion model, it is also necessary to initialize the static scene configuration to fully position (initial position) the smart GNSS code table.
步骤S2中,由所述导航信号控制软件主导,载入上述运动轨迹场景,并打开可见卫星扩频码和导航数据码,设置可见卫星信号功率(一般设为-130dBm);若智能GNSS码表接收灵敏度较低,可进一步提高可见卫星信号功率的输出信号功率。In step S2, the above-mentioned motion trajectory scene is loaded by the navigation signal control software, and the visible satellite spreading code and navigation data code are opened, and the visible satellite signal power is set (generally set to -130dBm); if the intelligent GNSS code table The receiving sensitivity is low, which can further increase the output signal power of the visible satellite signal power.
步骤S3中,所述精度分析软件获取里程误差、速度误差、速度精度、最大速度,针对速度分析时,需严格对准UTC时间或当地时间。In step S3, the accuracy analysis software acquires the mileage error, speed error, speed accuracy, and maximum speed. For speed analysis, UTC time or local time must be strictly aligned.
上述的精度校准方法通过建立直线运动轨迹模型、正弦运动轨迹模型、圆周运动等模型测试场景,搭建高精度测试平台,形成了具体化的测试方案,可在模拟环境下检测智能GNSS码表的速度和里程的精度,该方法简便可靠,可重复性高,得到的数据可靠性高。The above precision calibration method builds a high-precision test platform by establishing model test scenarios such as linear motion trajectory model, sinusoidal motion trajectory model, and circular motion, and forms a specific test plan, which can detect the speed of the smart GNSS stopwatch in a simulated environment and mileage accuracy, the method is simple and reliable, with high repeatability and high reliability of the obtained data.
最后,本发明还提供了一种可读写存储介质,其上存储有可执行程序,所述可执行程序被调用时,可实现上述的精度校准方法。本领域技术人员应知,上述的方法、步骤可直接在硬件中(片上系统Soc)、在由处理器执行的软件模块中、或在这两者的组合中体现。软件模块可驻留在RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动盘、CD-ROM、或本领域中所知的任何其他形式的存储介质中。在替换方案中,存储介质可以被整合到处理器中,处理器和存储介质可驻留在ASIC中,ASIC可驻留在用户终端中。同理,在另一替换方案中,处理器和存储介质可作为分立组件驻留在用户终端中。Finally, the present invention also provides a readable and writable storage medium, on which an executable program is stored, and when the executable program is called, the above precision calibration method can be realized. Those skilled in the art should know that the above methods and steps can be directly embodied in hardware (system on chip Soc), in a software module executed by a processor, or in a combination of both. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. In an alternative, the storage medium may be integrated into the processor, the processor and storage medium may reside in an ASIC, and the ASIC may reside in a user terminal. Similarly, in another alternative, the processor and the storage medium may reside in the user terminal as discrete components.
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the invention without departing from the spirit and scope of the invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalent technologies, the present invention also intends to include these modifications and variations.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010436953.8A CN111562600B (en) | 2020-05-21 | 2020-05-21 | Precision calibration system and calibration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010436953.8A CN111562600B (en) | 2020-05-21 | 2020-05-21 | Precision calibration system and calibration method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111562600A CN111562600A (en) | 2020-08-21 |
CN111562600B true CN111562600B (en) | 2023-06-30 |
Family
ID=72072289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010436953.8A Active CN111562600B (en) | 2020-05-21 | 2020-05-21 | Precision calibration system and calibration method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111562600B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111459086B (en) * | 2020-03-30 | 2023-08-29 | 深圳市科楠科技开发有限公司 | System and method for realizing scaler control and data processing |
CN113532477B (en) * | 2021-07-15 | 2024-10-15 | 青岛迈金智能科技股份有限公司 | Riding stopwatch equipment and initial posture automatic calibration method of riding stopwatch |
CN115184966B (en) * | 2022-07-07 | 2024-08-02 | 山东省计量科学研究院 | Device and system for dynamic calibration of GNSS receiver |
CN117610316B (en) * | 2024-01-19 | 2024-05-14 | 灿芯技术(深圳)有限公司 | GNSS positioning performance simulation test model generation method, device, equipment and medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6127970A (en) * | 1998-09-25 | 2000-10-03 | Lin; Ching-Fang | Coupled real time emulation method for positioning and location system |
CN101975956A (en) * | 2010-10-10 | 2011-02-16 | 桂林电子科技大学 | CAPS (China Area Position System) satellite analog signal generator |
CN102841364A (en) * | 2012-09-06 | 2012-12-26 | 桂林电子科技大学 | GPS (global position system) velocity measurement implementation method and GPS velocity meter |
CN105738924A (en) * | 2016-03-03 | 2016-07-06 | 上海市计量测试技术研究院 | Calibration system and calibration method for satellite navigation signal simulator pseudo range control precision |
CN110196419A (en) * | 2019-06-11 | 2019-09-03 | 北京无线电计量测试研究所 | Pseudorange accuracy calibration method and system for GNSS signal acquisition playback apparatus |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6614395B2 (en) * | 1998-07-24 | 2003-09-02 | Trimble Navigation Limited | Self-calibrating electronic distance measurement instrument |
CN101261317A (en) * | 2008-04-25 | 2008-09-10 | 浙江大学 | High dynamic multi-mode satellite navigation signal source simulation method and device |
CN103842846B (en) * | 2011-07-29 | 2016-10-26 | 基带技术有限公司 | A kind of for low-power consumption with the system of low cost GNSS receiver, method and computer program |
CN204694269U (en) * | 2015-05-14 | 2015-10-07 | 深圳市家信信息科技开发有限公司 | There is the code table of antitheft positioning function and the antitheft positioning system based on this code table |
CN205691134U (en) * | 2016-06-28 | 2016-11-16 | 武汉齐物科技有限公司 | A kind of Novel GPS bicycle code table |
CN205691136U (en) * | 2016-06-28 | 2016-11-16 | 武汉齐物科技有限公司 | A kind of Novel GPS bicycle code table |
CN109489684A (en) * | 2018-11-18 | 2019-03-19 | 安徽大学 | A kind of multi-functional code table of riding based on the processing of cloud big data |
-
2020
- 2020-05-21 CN CN202010436953.8A patent/CN111562600B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6127970A (en) * | 1998-09-25 | 2000-10-03 | Lin; Ching-Fang | Coupled real time emulation method for positioning and location system |
CN101975956A (en) * | 2010-10-10 | 2011-02-16 | 桂林电子科技大学 | CAPS (China Area Position System) satellite analog signal generator |
CN102841364A (en) * | 2012-09-06 | 2012-12-26 | 桂林电子科技大学 | GPS (global position system) velocity measurement implementation method and GPS velocity meter |
CN105738924A (en) * | 2016-03-03 | 2016-07-06 | 上海市计量测试技术研究院 | Calibration system and calibration method for satellite navigation signal simulator pseudo range control precision |
CN110196419A (en) * | 2019-06-11 | 2019-09-03 | 北京无线电计量测试研究所 | Pseudorange accuracy calibration method and system for GNSS signal acquisition playback apparatus |
Non-Patent Citations (1)
Title |
---|
基于卫星导航信号模拟法的北斗接收机导航精度校准测试;叶剑峰;彭军;李娜娜;;计测技术(第06期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111562600A (en) | 2020-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111562600B (en) | Precision calibration system and calibration method | |
US9519063B2 (en) | System and method for testing real world A-GNSS performance of a device | |
CN107741593B (en) | Open type cloud test control system and method based on navigation signal typical scene library | |
CN106353778B (en) | A kind of precision test system and method for navigation terminal | |
CN105738924B (en) | The calibration system and method for satellite navigation signal simulator pseudorange control accuracy | |
CN102608624B (en) | GPS (global positioning system) simulator and receiver closed-loop testing method and system | |
CN110495224A (en) | Support creation radio map | |
CN108828640A (en) | A kind of satellite navigation and positioning observation weighs method and device surely | |
CN110196419B (en) | Pseudo range precision calibration method and system for GNSS signal acquisition playback equipment | |
CN102981170A (en) | Test method for multimode processing capacity of satellite navigation terminal | |
CN105785402B (en) | A kind of system and method for GNSS signal simulator time-delay calibration | |
CN104570012A (en) | System and method for time delay calibration of Beidou navigation signal hardware simulator | |
Schaefer et al. | Assessing absolute and relative accuracy of recreation‐grade and mobile phone GNSS devices: a method for informing device choice | |
CN111650614A (en) | Satellite positioning method, chip, module and electronic equipment | |
CN112985460A (en) | Intelligent center control positioning precision testing method and device, electronic equipment and storage medium | |
EP2988095B1 (en) | Altitude detecting unit and altitude detecting method | |
FI118275B (en) | Method and computer program for reconstructing at least one activity | |
CN109856648B (en) | Online taxi appointment, taxi and timing detection device and method | |
CN107037454B (en) | Navigation drive test automatic analysis method, mobile terminal and processing equipment | |
CN105157722B (en) | Geographic location monitoring method and equipment | |
CN108680934A (en) | The dynamic range detecting system and detection method of satellite navigation signals | |
CN104635246A (en) | System and method for detecting dynamic range of satellite navigation signal | |
Ventura et al. | Estimation of urban noise with the assimilation of observations crowdsensed by the mobile application Ambiciti | |
CN114519499B (en) | BIM model-based inspection batch positioning method and system | |
Silva et al. | Integrated and cost-effective simulation tool for GNSS space receiver algorithms development |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |