[go: up one dir, main page]

CN111524796A - A silicon carbide epitaxial wafer in the preparation of a silicon carbide power device and a processing method thereof - Google Patents

A silicon carbide epitaxial wafer in the preparation of a silicon carbide power device and a processing method thereof Download PDF

Info

Publication number
CN111524796A
CN111524796A CN202010238731.5A CN202010238731A CN111524796A CN 111524796 A CN111524796 A CN 111524796A CN 202010238731 A CN202010238731 A CN 202010238731A CN 111524796 A CN111524796 A CN 111524796A
Authority
CN
China
Prior art keywords
silicon carbide
epitaxial wafer
carbide epitaxial
dielectric layer
front side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010238731.5A
Other languages
Chinese (zh)
Inventor
张红丹
焦倩倩
刘瑞
吴昊
李玲
赛朝阳
吴军民
金锐
汤广福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Global Energy Interconnection Research Institute
State Grid Beijing Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Global Energy Interconnection Research Institute
State Grid Beijing Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Global Energy Interconnection Research Institute, State Grid Beijing Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202010238731.5A priority Critical patent/CN111524796A/en
Publication of CN111524796A publication Critical patent/CN111524796A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/045Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide passivating silicon carbide surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种碳化硅功率器件制备中碳化硅外延片及其的处理方法,在所述碳化硅外延片正面和背面分别淀积介质层;对碳化硅外延片正面的介质层进行刻蚀,之后去除碳化硅外延片背面的介质层;对刻蚀完的碳化硅外延片正面进行离子注入。本发明大大减小了碳化硅外延片的翘曲度,且降低了拒片率,提高了光刻工艺精度和离子注入加工精度,降低了离子注入的拒片率和碎片率,大大提高了碳化硅外延片的精度和合格率;在碳化硅外延片正面和背面分步形成各自的介质层,抵消了碳化硅外延片正面直接淀积介质层带来的材料应力,为碳化硅外延片的翘曲度的改善提供基础;成本低,效率高,适用于多种规格的碳化硅外延片。

Figure 202010238731

The invention provides a silicon carbide epitaxial wafer in the preparation of a silicon carbide power device and a processing method thereof. A dielectric layer is deposited on the front and back of the silicon carbide epitaxial wafer respectively; and the dielectric layer on the front surface of the silicon carbide epitaxial wafer is etched, Then, the dielectric layer on the backside of the silicon carbide epitaxial wafer is removed; and ion implantation is performed on the front side of the etched silicon carbide epitaxial wafer. The invention greatly reduces the warpage of the silicon carbide epitaxial wafer, reduces the wafer rejection rate, improves the photolithography process precision and the ion implantation processing precision, reduces the ion implantation wafer rejection rate and the fragmentation rate, and greatly improves the carbonization rate. Accuracy and pass rate of silicon epitaxial wafers; separate dielectric layers are formed on the front and back of the silicon carbide epitaxial wafer step by step, which offsets the material stress caused by the direct deposition of the dielectric layer on the front surface of the silicon carbide epitaxial wafer, which is the cause of the warping of the silicon carbide epitaxial wafer. The improvement of the curvature provides the basis; the cost is low, the efficiency is high, and it is suitable for silicon carbide epitaxial wafers of various specifications.

Figure 202010238731

Description

一种碳化硅功率器件制备中碳化硅外延片及其处理方法A silicon carbide epitaxial wafer in the preparation of a silicon carbide power device and a processing method thereof

技术领域technical field

本发明涉及功率半导体器件技术领域,具体涉及一种碳化硅功率器件制备中碳化硅外延片及其处理方法。The invention relates to the technical field of power semiconductor devices, in particular to a silicon carbide epitaxial wafer in the preparation of silicon carbide power devices and a processing method thereof.

背景技术Background technique

第三代半导体碳化硅(SiC)材料和传统的硅(Si)基半导体衬底材料电学参数差异极大。SiC材料具有较大的热导率、较宽的禁带间隙、很高的电子饱和速度和击穿电压、较低的介电常数,这些特性决定了其在高温、高频、大功率半导体器件等方面的应用潜力,当前半导体领域研发重点逐渐转移到碳化硅材料上。碳化硅材料和硅材料的物理参数差别较大,由于SiC材料本身的扩散系数很低,传统的离子扩散工艺使得碳化硅材料在高温掺杂后浓度并不会出现较大变化,在实际工艺中,无法通过热扩散方法对SiC材料进行选择性掺杂,即使使用离子注入工艺,碳化硅材料也需要在高温下进行注入,这样有利于获得较高电离率,同时也可以修复晶格损伤。因此,高温离子注入就成为了在SiC上进行选择性掺杂的优选手段。The electrical parameters of the third-generation semiconductor silicon carbide (SiC) materials and traditional silicon (Si)-based semiconductor substrate materials are very different. SiC material has large thermal conductivity, wide band gap, high electron saturation velocity and breakdown voltage, low dielectric constant, these characteristics determine its high temperature, high frequency, high power semiconductor devices. Due to the application potential in such aspects, the current research and development focus in the semiconductor field has gradually shifted to silicon carbide materials. The physical parameters of silicon carbide material and silicon material are quite different. Because the diffusion coefficient of SiC material itself is very low, the traditional ion diffusion process makes the concentration of silicon carbide material do not change greatly after high temperature doping. In the actual process , the SiC material cannot be selectively doped by thermal diffusion. Even if the ion implantation process is used, the SiC material needs to be implanted at a high temperature, which is beneficial to obtain a higher ionization rate and can also repair the lattice damage. Therefore, high temperature ion implantation has become the preferred method for selective doping on SiC.

在SiC器件制备中,SiC元素掺杂即离子注入工艺是:通过等离子增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)方法在SiC外延片表面沉积一层SiO2薄膜,然后采用光刻方法形成台面图形,通过刻蚀将图形转移到SiO2掩膜上,去除光刻胶后,以SiO2图形作为掩膜对SiC外延片进行高温离子注入。通过上述工艺制备碳化硅功率器件需要使用较厚外延层的碳化硅外延片,使用较厚的介质薄膜作为掩蔽层,但是,厚掩膜具有较大的应力,容易引起外延片翘曲,影响光刻工艺传片及加工精度;此外,高温高能离子注入过程容易引入应力,进而引起离子注入过程外延片翘曲,导致加工精度降低,面临碎片风险。In the preparation of SiC devices, the SiC element doping or ion implantation process is: deposit a layer of SiO 2 film on the surface of the SiC epitaxial wafer by plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) method, and then use photolithography to form For the mesa pattern, the pattern is transferred to the SiO 2 mask by etching. After removing the photoresist, high temperature ion implantation is performed on the SiC epitaxial wafer with the SiO 2 pattern as the mask. The preparation of silicon carbide power devices by the above process requires the use of a thicker epitaxial layer of silicon carbide epitaxial wafers and a thicker dielectric film as a masking layer. However, the thick mask has a large stress, which is easy to cause the warpage of the epitaxial wafer and affect the light In addition, the high-temperature and high-energy ion implantation process easily introduces stress, which in turn causes the warpage of the epitaxial wafer during the ion implantation process, resulting in reduced machining accuracy and the risk of debris.

现有技术通常将准备好的碳化硅外延片放入反应室,在650-1050℃下保温10-30min,接着用10-15分钟降温至≤300℃,将硅外延片取出反应室,这样通过高温退火的方式降低碳化硅外延片的翘曲度,但是碳化硅外延片的翘曲度仍然很大,拒片率高。In the prior art, the prepared silicon carbide epitaxial wafer is usually put into the reaction chamber, kept at 650-1050 ° C for 10-30 minutes, and then cooled to ≤300 ° C for 10-15 minutes, and the silicon epitaxial wafer is taken out of the reaction chamber. The high-temperature annealing method reduces the warpage of the silicon carbide epitaxial wafer, but the warpage of the silicon carbide epitaxial wafer is still very large and the rejection rate is high.

发明内容SUMMARY OF THE INVENTION

为了克服上述现有技术中碳化硅外延片的翘曲度大且拒片率高的不足,本发明提供一种碳化硅功率器件制备中碳化硅外延片的处理方法,包括:In order to overcome the deficiencies of high warpage and high rejection rate of silicon carbide epitaxial wafers in the prior art, the present invention provides a processing method for silicon carbide epitaxial wafers in the preparation of silicon carbide power devices, including:

在所述碳化硅外延片正面和背面分别淀积介质层;respectively depositing dielectric layers on the front side and the back side of the silicon carbide epitaxial wafer;

对碳化硅外延片正面的介质层进行刻蚀,之后去除碳化硅外延片背面的介质层;The dielectric layer on the front side of the silicon carbide epitaxial wafer is etched, and then the dielectric layer on the back side of the silicon carbide epitaxial wafer is removed;

对刻蚀完的碳化硅外延片正面进行离子注入。Ion implantation is performed on the front side of the etched silicon carbide epitaxial wafer.

所述在碳化硅外延片正面和背面分别淀积介质层,包括:The deposition of dielectric layers on the front and back of the silicon carbide epitaxial wafer, respectively, includes:

在所述碳化硅外延片正面淀积第一介质层;depositing a first dielectric layer on the front side of the silicon carbide epitaxial wafer;

所述第一介质层形成后预设时间后,在所述碳化硅外延片背面淀积第二介质层;depositing a second dielectric layer on the backside of the silicon carbide epitaxial wafer after a preset time after the formation of the first dielectric layer;

所述第一介质层形成后预设时间后,在所述碳化硅外延片正面淀积第三介质层。A third dielectric layer is deposited on the front surface of the silicon carbide epitaxial wafer after a predetermined time after the formation of the first dielectric layer.

所述对碳化硅外延片正面的介质层进行刻蚀,之后去除碳化硅外延片背面的介质层,包括:The method of etching the dielectric layer on the front side of the silicon carbide epitaxial wafer, and then removing the dielectric layer on the back side of the silicon carbide epitaxial wafer, includes:

在所述碳化硅外延片正面第三介质层外涂覆光刻胶,并对所述光刻胶进行图形化处理;Coating photoresist on the third dielectric layer on the front side of the silicon carbide epitaxial wafer, and patterning the photoresist;

以图形化后的光刻胶作为掩膜对所述碳化硅外延片正面进行刻蚀,并去除光刻胶;Etching the front surface of the silicon carbide epitaxial wafer by using the patterned photoresist as a mask, and removing the photoresist;

在所述碳化硅外延片正面涂覆光刻胶;Coating photoresist on the front side of the silicon carbide epitaxial wafer;

对所述碳化硅外延片背面的第二介质层进行湿法腐蚀。Wet etching is performed on the second dielectric layer on the backside of the silicon carbide epitaxial wafer.

所述去除背面的介质层之后,还包括:After the removal of the dielectric layer on the backside, the method further includes:

去除碳化硅外延片正面的光刻胶。Remove the photoresist from the front side of the SiC epitaxial wafer.

所述对刻蚀完的碳化硅外延片正面进行离子注入,包括:The ion implantation on the front side of the etched silicon carbide epitaxial wafer includes:

确定离子注入剂量和离子注入温度;Determine ion implantation dose and ion implantation temperature;

基于所述剂量和温度对刻蚀完的碳化硅外延片正面进行离子注入。Ion implantation is performed on the front side of the etched silicon carbide epitaxial wafer based on the dose and temperature.

所述对刻蚀完的碳化硅外延片正面进行离子注入之后,还包括:After the ion implantation is performed on the front side of the etched silicon carbide epitaxial wafer, the method further includes:

去除所述第三介质层和第一介质层。The third dielectric layer and the first dielectric layer are removed.

所述淀积采用等离子体增强化学气相沉积方法或低压力化学气相沉积方法。The deposition adopts plasma enhanced chemical vapor deposition method or low pressure chemical vapor deposition method.

所述第一介质层、第二介质层和第三介质层均为二氧化硅、氮化硅、多晶硅中的一种或至少两种的组合。The first dielectric layer, the second dielectric layer and the third dielectric layer are all one or a combination of at least two of silicon dioxide, silicon nitride, and polysilicon.

所述第一介质层的厚度为0.2μm~10μm;The thickness of the first dielectric layer is 0.2 μm˜10 μm;

所述第二介质层的厚度为0.2μm~10μm;The thickness of the second dielectric layer is 0.2 μm˜10 μm;

所述第三介质层的厚度为0.2μm~6μm。The thickness of the third dielectric layer is 0.2 μm˜6 μm.

所述离子注入剂量为1E11cm-2~1E18cm-2The ion implantation dose is 1E11cm -2 to 1E18cm -2 ;

所述离子注入温度为25℃~600℃。The ion implantation temperature is 25°C˜600°C.

所述在所述碳化硅外延片正面和背面分别淀积介质层之前,包括:Before depositing the dielectric layers on the front and back surfaces of the silicon carbide epitaxial wafer, respectively, it includes:

采用RCA标准清洗方法对所述碳化硅外延片进行清洗,以去除碳化硅外延片表面的金属、有机物和污染物。The silicon carbide epitaxial wafer is cleaned by using the RCA standard cleaning method to remove metals, organic substances and contaminants on the surface of the silicon carbide epitaxial wafer.

本发明还提供一种碳化硅功率器件制备中碳化硅外延片,包括:碳化硅外延片正面和碳化硅外延片背面;The invention also provides a silicon carbide epitaxial wafer in the preparation of a silicon carbide power device, comprising: a front surface of the silicon carbide epitaxial wafer and a back surface of the silicon carbide epitaxial wafer;

所述碳化硅外延片正面和碳化硅外延片背面分别按照处理方法得到。The front surface of the silicon carbide epitaxial wafer and the back surface of the silicon carbide epitaxial wafer are respectively obtained according to the processing method.

与最接近的现有技术相比,本发明提供的技术方案具有以下有益效果:Compared with the closest prior art, the technical solution provided by the present invention has the following beneficial effects:

本发明提供的碳化硅功率器件制备中碳化硅外延片的处理方法中,在所述碳化硅外延片正面和背面分别淀积介质层;对碳化硅外延片正面的介质层进行刻蚀,之后去除碳化硅外延片背面的介质层;对刻蚀完的碳化硅外延片正面进行离子注入,大大减小了碳化硅外延片的翘曲度,且降低了拒片率;In the method for processing silicon carbide epitaxial wafers in the preparation of silicon carbide power devices provided by the present invention, dielectric layers are respectively deposited on the front and back of the silicon carbide epitaxial wafer; the dielectric layer on the front surface of the silicon carbide epitaxial wafer is etched, and then removed. The dielectric layer on the back of the silicon carbide epitaxial wafer; the ion implantation on the front side of the etched silicon carbide epitaxial wafer greatly reduces the warpage of the silicon carbide epitaxial wafer and reduces the rejection rate;

本发明提供的处理方法提高了光刻工艺精度和离子注入加工精度,降低了离子注入的拒片率和碎片率,大大提高了碳化硅外延片的精度和合格率;The processing method provided by the invention improves the photolithography process precision and the ion implantation process precision, reduces the rejection rate and the fragmentation rate of the ion implantation, and greatly improves the precision and the qualified rate of the silicon carbide epitaxial wafer;

本发明提供的处理方法在碳化硅外延片正面和背面分步形成各自的介质层,即先在碳化硅外延片正面淀积第一介质层,之后在碳化硅外延片背面淀积第二介质层,最后在碳化硅外延片正面淀积第三介质层,抵消了正面直接淀积介质层带来的材料应力,为碳化硅外延片的翘曲度的改善提供基础;The processing method provided by the present invention forms respective dielectric layers on the front and back of the silicon carbide epitaxial wafer step by step, that is, firstly depositing a first dielectric layer on the front side of the silicon carbide epitaxial wafer, and then depositing a second dielectric layer on the back side of the silicon carbide epitaxial wafer Finally, a third dielectric layer is deposited on the front side of the silicon carbide epitaxial wafer, which offsets the material stress caused by the direct deposition of the dielectric layer on the front side, and provides a basis for improving the warpage of the silicon carbide epitaxial wafer;

本发明提供的技术方案对第三介质层和第一介质层进行刻蚀后,碳化硅外延片正面应力得到释放,背面的第二介质层成为引起碳化硅外延片翘曲的主要因素,通过在碳化硅外延片正面涂覆光刻胶对碳化硅外延片正面进行保护,防止碳化硅外延片正面被腐蚀,并对碳化硅外延片背面的第二介质层进行湿法腐蚀,有效降低了碳化硅外延片的翘曲度;After etching the third dielectric layer and the first dielectric layer according to the technical solution provided by the present invention, the stress on the front side of the silicon carbide epitaxial wafer is released, and the second dielectric layer on the back side becomes the main factor causing the warpage of the silicon carbide epitaxial wafer. The front side of the silicon carbide epitaxial wafer is coated with photoresist to protect the front side of the silicon carbide epitaxial wafer to prevent the front side of the silicon carbide epitaxial wafer from being corroded, and the second dielectric layer on the back of the silicon carbide epitaxial wafer is wet-etched, which effectively reduces the amount of silicon carbide. The warpage of the epitaxial wafer;

本发明提供的成本低,效率高,适用于多种规格的碳化硅外延片。The invention provides low cost and high efficiency, and is suitable for silicon carbide epitaxial wafers of various specifications.

附图说明Description of drawings

图1是本发明实施例中碳化硅功率器件制备中碳化硅外延片的处理方法流程图;1 is a flowchart of a processing method for a silicon carbide epitaxial wafer in the preparation of a silicon carbide power device according to an embodiment of the present invention;

图2是本发明实施例中在碳化硅外延片正面淀积第一介质层示意图;2 is a schematic diagram of depositing a first dielectric layer on the front side of a silicon carbide epitaxial wafer in an embodiment of the present invention;

图3是本发明实施例中在碳化硅外延片背面淀积第二介质层示意图;3 is a schematic diagram of depositing a second dielectric layer on the backside of a silicon carbide epitaxial wafer in an embodiment of the present invention;

图4是本发明实施例中在碳化硅外延片正面淀积第三介质层示意图;4 is a schematic diagram of depositing a third dielectric layer on the front side of a silicon carbide epitaxial wafer in an embodiment of the present invention;

图5是本发明实施例中在第三介质层正面涂覆光刻胶示意图;5 is a schematic diagram of coating photoresist on the front side of the third dielectric layer in an embodiment of the present invention;

图6是本发明实施例中对光刻胶进行图形化处理示意图;6 is a schematic diagram of patterning processing of photoresist in an embodiment of the present invention;

图7是本发明实施例中以图形化后的光刻胶作为掩膜对碳化硅外延片正面进行刻蚀示意图;7 is a schematic diagram of etching the front surface of a silicon carbide epitaxial wafer by using the patterned photoresist as a mask in an embodiment of the present invention;

图8是本发明实施例中对碳化硅外延片正面进行刻蚀后去除光刻胶示意图;8 is a schematic diagram of removing the photoresist after etching the front surface of the silicon carbide epitaxial wafer in an embodiment of the present invention;

图9是本发明实施例中在碳化硅外延片正面涂覆光刻胶示意图;9 is a schematic diagram of coating photoresist on the front side of a silicon carbide epitaxial wafer in an embodiment of the present invention;

图10是本发明实施例中对第二介质层进行湿法腐蚀示意图;10 is a schematic diagram of wet etching the second dielectric layer in an embodiment of the present invention;

图11是本发明实施例中对第二介质层进行湿法腐蚀后去除光刻胶示意图;11 is a schematic diagram of removing the photoresist after wet etching the second dielectric layer in the embodiment of the present invention;

图12是本发明实施例中对刻蚀完的碳化硅外延片正面进行离子注入示意图;12 is a schematic diagram of ion implantation on the front side of the etched silicon carbide epitaxial wafer according to an embodiment of the present invention;

图13是本发明实施例中去除第三介质层和第一介质层后得到的碳化硅外延片示意图;13 is a schematic diagram of a silicon carbide epitaxial wafer obtained after removing the third dielectric layer and the first dielectric layer in an embodiment of the present invention;

图中,1、碳化硅外延片,2、第一介质层,3、涂覆完第一介质层得到的样品,4、第二介质层,5、涂覆完第二介质层得到的样品,6、第三介质层,7、涂覆完第三介质层得到的样品,8、样品7上涂覆的光刻胶,9、图形化处理光刻胶8后得到的样品,10、以图形化后的光刻胶作为掩膜对碳化硅外延片正面进行刻蚀后得到的样品,11、去除光刻胶8得到的样品,12、去除背面的介质层之前涂覆在碳化硅外延片正面的光刻胶,13、涂覆完光刻胶12后的样品,14、对第二介质层进行湿法腐蚀得到的样品,15、去除光刻胶12得到的样品,16、对刻蚀完的碳化硅外延片正面进行离子注入得到的样品。In the figure, 1. Silicon carbide epitaxial wafer, 2. The first dielectric layer, 3. The sample obtained after coating the first dielectric layer, 4. The second dielectric layer, 5. The sample obtained after coating the second dielectric layer, 6. The third dielectric layer, 7. The sample obtained by coating the third dielectric layer, 8. The photoresist coated on the sample 7, 9. The sample obtained after patterning the photoresist 8, 10. The sample obtained by etching the front side of the silicon carbide epitaxial wafer with the photoresist after photoresist as a mask, 11. The sample obtained by removing the photoresist 8, 12. Coating on the front side of the silicon carbide epitaxial wafer before removing the dielectric layer on the back side 13. The sample after coating the photoresist 12, 14. The sample obtained by wet etching the second dielectric layer, 15. The sample obtained by removing the photoresist 12, 16. After the etching The sample obtained by ion implantation on the front side of the silicon carbide epitaxial wafer.

具体实施方式Detailed ways

下面结合附图对本发明作进一步详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.

本发明实施例提供了一种碳化硅功率器件制备中碳化硅外延片的处理方法,具体流程图如图1所示,具体过程如下:The embodiment of the present invention provides a method for processing silicon carbide epitaxial wafers in the preparation of silicon carbide power devices. The specific flowchart is shown in FIG. 1 , and the specific process is as follows:

S101:在碳化硅外延片1正面和背面分别淀积介质层;S101: depositing a dielectric layer on the front and back of the silicon carbide epitaxial wafer 1 respectively;

S102:对碳化硅外延片1正面的介质层进行刻蚀,之后去除碳化硅外延片1背面的介质层;S102: etching the dielectric layer on the front side of the silicon carbide epitaxial wafer 1, and then removing the dielectric layer on the back side of the silicon carbide epitaxial wafer 1;

S103:对刻蚀完的碳化硅外延片1正面进行离子注入。S103 : performing ion implantation on the front surface of the etched silicon carbide epitaxial wafer 1 .

在碳化硅外延片1正面和背面分别淀积介质层之前,需要采用RCA标准清洗方法对碳化硅外延片1进行清洗,以去除碳化硅外延片1表面的金属、有机物和污染物。具体清洗过程如下:Before the dielectric layers are deposited on the front and the back of the silicon carbide epitaxial wafer 1 respectively, the silicon carbide epitaxial wafer 1 needs to be cleaned by the RCA standard cleaning method to remove metals, organics and contaminants on the surface of the silicon carbide epitaxial wafer 1 . The specific cleaning process is as follows:

将碳化硅外延片1浸泡于SC1清洗液中,先配制氢氟酸溶液(HF:H2O=1:10),然后将样品支架清洗、吹干,并将样品3放于支架上。Soak the silicon carbide epitaxial wafer 1 in SC1 cleaning solution, first prepare a hydrofluoric acid solution (HF:H 2 O=1:10), then clean and dry the sample holder, and place the sample 3 on the holder.

配制3#液(硫酸:H2O2=3:1)。需要注意的是:硫酸最后加,同时用另一容器煮水。3#液配液完成后,将样品3放入3#液中煮洗,时间大约为15min,取出;加热样品3至250℃,拎起装有样品3的支架稍凉片刻,然后将支架放到热水中,进行冲水。3# solution (sulfuric acid: H 2 O 2 =3:1) was prepared. It should be noted that the sulfuric acid is added last, and another container is used to boil the water at the same time. After the 3# solution is completed, put the sample 3 into the 3# solution, boil and wash it for about 15 minutes, and take it out; heat the sample 3 to 250 ℃, pick up the support with the sample 3 and cool it for a while, and then put the support into hot water to flush.

配制1#液(氨水:H2O2:H2O=1:1:5-1:1:7):将前两者倒入热水中,加热到75~85℃,时间大约为10~20min;然后将装有样品3的支架放入1#液,时间大约15min,再将支架取出放到热水中,进行冲水。Prepare 1# solution (ammonia: H 2 O 2 : H 2 O=1:1:5-1:1:7): Pour the first two into hot water, heat to 75-85°C, and the time is about 10 ~20min; then put the bracket with sample 3 into 1# solution for about 15min, then take out the bracket and put it in hot water for flushing.

配制2#液(HCl:H2O2:H2O=1:1:5):前两者倒入热水中。配制完成后,将装有样品3的支架取出并放入2#液,时间大约15min。然后将支架取出,放热水中并进行冲水。Prepare 2# solution (HCl: H 2 O 2 : H 2 O=1:1:5): pour the first two into hot water. After the preparation is completed, the holder with sample 3 is taken out and placed in solution 2# for about 15 minutes. The stand is then removed, placed in hot water and flushed.

采用10%的氢氟酸冲洗样品3,冲洗时间大约5~30s,去除样品3表面氧化层。然后采用去离子水冲洗,冲洗时间大约20min。Sample 3 was rinsed with 10% hydrofluoric acid for about 5 to 30s to remove the oxide layer on the surface of sample 3. Then rinse with deionized water for about 20 minutes.

将样品采用RCA清洗方法清洗完成后,在碳化硅外延片1正面和背面分别淀积介质层,具体包括:After the sample is cleaned by the RCA cleaning method, a dielectric layer is deposited on the front and back of the silicon carbide epitaxial wafer 1 respectively, which specifically includes:

在碳化硅外延片1正面淀积第一介质层2,如图2所示,得到图2中的样品3,第一介质层2的厚度为0.2μm~10μm;本发明实施例中正面淀积的第一介质层2为1.5μmSiO2薄膜;碳化硅外延片1正面沉积的第一介质层2能够对碳化硅外延片1的正面进行保护,防止沾污划伤等对外延的影响;而且通过多次成膜可避免直接生长厚膜的应力影响,有效控制碳化硅外延片1翘曲度。A first dielectric layer 2 is deposited on the front side of the silicon carbide epitaxial wafer 1, as shown in FIG. 2, to obtain the sample 3 in FIG. 2, the thickness of the first dielectric layer 2 is 0.2 μm to 10 μm; in the embodiment of the present invention, the front side deposition The first dielectric layer 2 is a 1.5 μm SiO 2 film; the first dielectric layer 2 deposited on the front side of the silicon carbide epitaxial wafer 1 can protect the front side of the silicon carbide epitaxial wafer 1 to prevent contamination and scratches. Multiple film formation can avoid the influence of the stress of the direct growth of the thick film, and effectively control the warpage of the silicon carbide epitaxial wafer 1 .

第一介质层2形成后预设时间后,在碳化硅外延片1背面淀积第二介质层4,如图3所示,得到图3中的样品5;正面的第一介质层2形成后,需要尽快在在碳化硅外延片1背面淀积第二介质层4,本实施例中在第一介质层2形成后15分钟内,在碳化硅外延片1背面淀积第二介质层4,第二介质层4的厚度为0.2μm~10μm,本发明实施例中第二介质层4为2.5μm的SiO2薄膜;After a preset time after the first dielectric layer 2 is formed, a second dielectric layer 4 is deposited on the back of the silicon carbide epitaxial wafer 1, as shown in FIG. 3, to obtain the sample 5 in FIG. 3; after the first dielectric layer 2 on the front is formed , it is necessary to deposit the second dielectric layer 4 on the back of the silicon carbide epitaxial wafer 1 as soon as possible. In this embodiment, within 15 minutes after the first dielectric layer 2 is formed, the second dielectric layer 4 is deposited on the back of the silicon carbide epitaxial wafer 1. The thickness of the second dielectric layer 4 is 0.2 μm˜10 μm, and in the embodiment of the present invention, the second dielectric layer 4 is a 2.5 μm SiO 2 film;

第一介质层2形成后预设时间后,在碳化硅外延片1正面淀积第三介质层6,如图4所示,得到图4中的样品7,第三介质层6的厚度为0.2μm~6μm,本实施例中第三介质层6为1μm的SiO2薄膜。After a preset time after the formation of the first dielectric layer 2, a third dielectric layer 6 is deposited on the front side of the silicon carbide epitaxial wafer 1, as shown in FIG. 4, to obtain the sample 7 in FIG. 4, and the thickness of the third dielectric layer 6 is 0.2 μm˜6 μm, in this embodiment, the third dielectric layer 6 is a 1 μm SiO 2 film.

上述淀积介质层可以采用等离子体增强化学气相沉积方法(Plasma EnhancedChemical Vapor Deposition,PECVD)或低压力化学气相沉积方法(Low PressureChemical Vapor Deposition,LPCVD),本发明实施例采用PECVD方法淀积第一介质层2、第二介质层4和第三介质层6。第三介质层6的淀积满足高温高能离子注入薄膜掩蔽的要求。The above-mentioned deposition medium layer can adopt plasma enhanced chemical vapor deposition method (Plasma Enhanced Chemical Vapor Deposition, PECVD) or low pressure chemical vapor deposition method (Low Pressure Chemical Vapor Deposition, LPCVD), the embodiment of the present invention adopts PECVD method to deposit the first medium Layer 2 , second dielectric layer 4 and third dielectric layer 6 . The deposition of the third dielectric layer 6 meets the masking requirements of the high temperature and high energy ion implantation film.

上述S101在正面分两次形成两层介质层,还可以通过在正面淀积一层较厚的介质层,然后再背面再淀积一层介质层,正面和背面分别淀积一层介质层时,正面淀积的介质层厚度可以为0.2μm~3μm,背面淀积的介质层厚度为0.2μm~10μm。不管正面的介质层一次淀积还是分两次淀积,背面淀积的介质层都用于平衡正面介质层淀积引起的碳化硅片翘曲。The above S101 is divided into two layers of dielectric layers on the front side. It is also possible to deposit a thicker dielectric layer on the front side, and then deposit another layer of dielectric layers on the back side. When depositing a layer of dielectric layers on the front side and the back side , the thickness of the dielectric layer deposited on the front side may be 0.2 μm˜3 μm, and the thickness of the dielectric layer deposited on the back side may be 0.2 μm˜10 μm. Regardless of whether the front-side dielectric layer is deposited once or in two separate depositions, the backside-deposited dielectric layer is used to balance the warpage of the silicon carbide wafer caused by the front-side dielectric layer deposition.

对碳化硅外延片1正面的介质层进行刻蚀,之后去除碳化硅外延片1背面的介质层,包括:The dielectric layer on the front side of the silicon carbide epitaxial wafer 1 is etched, and then the dielectric layer on the back side of the silicon carbide epitaxial wafer 1 is removed, including:

在碳化硅外延片1正面第三介质层6外涂覆光刻胶8,如图5所示;之后对光刻胶8进行图形化处理,如图6所示,得到图6中的样品9;本发明实施例在第三介质层6正面涂覆光刻胶8之前,在样品正面涂覆一层HMDS(即六甲基二硅氮烷)增粘剂,光刻胶8的型号为AZ703,还可以采用其他任何正性光刻胶,采用全自动涂胶方式或人工涂胶方式涂覆光刻胶8。图形化处理工艺包括气相成底膜(HMDS)、涂胶、前烘、曝光、后烘、显影、坚膜及显影检验。A photoresist 8 is coated on the third dielectric layer 6 on the front side of the silicon carbide epitaxial wafer 1, as shown in FIG. 5; after that, the photoresist 8 is patterned, as shown in FIG. 6, to obtain the sample 9 in FIG. 6 ; In the embodiment of the present invention, before the front side of the third dielectric layer 6 is coated with photoresist 8, a layer of HMDS (ie hexamethyldisilazane) tackifier is applied on the front side of the sample, and the model of the photoresist 8 is AZ703 , any other positive photoresist can also be used, and the photoresist 8 can be coated by an automatic gluing method or a manual gluing method. The patterning process includes vapor phase base film formation (HMDS), glue coating, pre-bake, exposure, post-bake, development, hardening and development inspection.

以图形化后的光刻胶作为掩膜对所述碳化硅外延片1正面进行刻蚀,如图7所示,得到图7中的样品10,并去除光刻胶,如图8所示,得到样品11;以图形化后的光刻胶作为掩膜对所述碳化硅外延片1正面进行干法刻蚀或者湿法腐蚀,获得离子注入掩蔽图形,同时降低正面介质层应力对碳化硅外延片翘曲度的影响。Using the patterned photoresist as a mask, the front side of the silicon carbide epitaxial wafer 1 is etched, as shown in FIG. 7, to obtain the sample 10 in FIG. 7, and the photoresist is removed, as shown in FIG. 8, Sample 11 is obtained; dry etching or wet etching is performed on the front surface of the silicon carbide epitaxial wafer 1 by using the patterned photoresist as a mask to obtain an ion implantation mask pattern, and at the same time, the stress of the front dielectric layer is reduced on the silicon carbide epitaxy. The effect of sheet warpage.

在碳化硅外延片1正面涂覆光刻胶12,如图9所示,得到样品13;A photoresist 12 is coated on the front side of the silicon carbide epitaxial wafer 1, as shown in FIG. 9, to obtain a sample 13;

对碳化硅外延片1背面的第二介质层4进行湿法腐蚀,如图10所示,得到样品14,之后去除光刻胶12,如图11所示,得到样品15。本发明实施例在样品11正面涂覆一层HMDS(即六甲基二硅氮烷)增粘剂,然后在碳化硅外延片1正面涂覆光刻胶12。本发明实施例采用BOE腐蚀液对第二介质层4进行湿法腐蚀,即采用BOE腐蚀液去除背面的第二介质层4。The second dielectric layer 4 on the backside of the silicon carbide epitaxial wafer 1 is wet-etched, as shown in FIG. 10 , to obtain a sample 14, and then the photoresist 12 is removed, as shown in FIG. In the embodiment of the present invention, a layer of HMDS (ie, hexamethyldisilazane) tackifier is coated on the front side of the sample 11 , and then a photoresist 12 is coated on the front side of the silicon carbide epitaxial wafer 1 . In the embodiment of the present invention, the BOE etching solution is used to perform wet etching on the second dielectric layer 4, that is, the BOE etching solution is used to remove the second dielectric layer 4 on the backside.

对刻蚀完的碳化硅外延片1正面进行离子注入,包括:Ion implantation is performed on the front side of the etched silicon carbide epitaxial wafer 1, including:

确定离子注入剂量和离子注入温度;Determine ion implantation dose and ion implantation temperature;

基于剂量和温度对刻蚀完的碳化硅外延片1正面进行离子注入,如图12所示,得到样品16;离子注入剂量为1E11cm-2~1E18cm-2;离子注入温度为25℃~600℃,注入离子的类型不限;Based on the dose and temperature, ion implantation is performed on the front side of the etched silicon carbide epitaxial wafer 1, as shown in FIG. 12, to obtain sample 16; , the type of implanted ions is not limited;

对刻蚀完的碳化硅外延片1正面进行离子注入之后,去除第三介质层6和第一介质层2,得到处理后的碳化硅外延片1,如图13所示。After ion implantation is performed on the front surface of the etched silicon carbide epitaxial wafer 1 , the third dielectric layer 6 and the first dielectric layer 2 are removed to obtain the processed silicon carbide epitaxial wafer 1 , as shown in FIG. 13 .

上述第一介质层2、第二介质层4和第三介质层6均为二氧化硅、氮化硅、多晶硅中的一种或至少两种的组合。The first dielectric layer 2 , the second dielectric layer 4 and the third dielectric layer 6 are all one or a combination of at least two of silicon dioxide, silicon nitride, and polysilicon.

本发明实施例实用的碳化硅外延片直径为100mm、150mm、200mm或以上,其厚度为0~200μm。采用本发明实施例提供的碳化硅功率器件制备中碳化硅外延片1的处理方法对碳化硅外延片1进行处理,得到的碳化硅外延片正面和碳化硅外延片背面;处理后的碳化硅外延片翘曲度大大降低,且拒片率低。The practical silicon carbide epitaxial wafer in the embodiment of the present invention has a diameter of 100 mm, 150 mm, 200 mm or more, and a thickness of 0-200 μm. The silicon carbide epitaxial wafer 1 is processed by using the processing method for the silicon carbide epitaxial wafer 1 in the preparation of the silicon carbide power device provided by the embodiment of the present invention, and the front side of the silicon carbide epitaxial wafer and the back side of the silicon carbide epitaxial wafer are obtained; Sheet warpage is greatly reduced, and sheet rejection is low.

为了描述的方便,以上装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本申请时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。For the convenience of description, each part of the above device is divided into various modules or units by function and described respectively. Of course, when implementing the present application, the functions of each module or unit may be implemented in one or more software or hardware.

本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.

最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,所属领域的普通技术人员参照上述实施例依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Those of ordinary skill in the art can still modify or equivalently replace the specific embodiments of the present invention with reference to the above embodiments. Any modifications or equivalent replacements that depart from the spirit and scope of the present invention fall within the protection scope of the present invention for which the application is pending.

Claims (12)

1.一种碳化硅功率器件制备中碳化硅外延片的处理方法,其特征在于,包括:1. a processing method of silicon carbide epitaxial wafer in the preparation of silicon carbide power device, is characterized in that, comprises: 在所述碳化硅外延片正面和背面分别淀积介质层;respectively depositing dielectric layers on the front side and the back side of the silicon carbide epitaxial wafer; 对碳化硅外延片正面的介质层进行刻蚀,之后去除碳化硅外延片背面的介质层;The dielectric layer on the front side of the silicon carbide epitaxial wafer is etched, and then the dielectric layer on the back side of the silicon carbide epitaxial wafer is removed; 对刻蚀完的碳化硅外延片正面进行离子注入。Ion implantation is performed on the front side of the etched silicon carbide epitaxial wafer. 2.根据权利要求1所述的碳化硅功率器件制备中碳化硅外延片的处理方法,其特征在于,所述在碳化硅外延片正面和背面分别淀积介质层,包括:2. The method for processing a silicon carbide epitaxial wafer in the preparation of a silicon carbide power device according to claim 1, wherein the deposition of a dielectric layer on the front side and the back side of the silicon carbide epitaxial wafer, respectively, comprises: 在所述碳化硅外延片正面淀积第一介质层;depositing a first dielectric layer on the front side of the silicon carbide epitaxial wafer; 所述第一介质层形成后预设时间后,在所述碳化硅外延片背面淀积第二介质层;depositing a second dielectric layer on the backside of the silicon carbide epitaxial wafer after a preset time after the formation of the first dielectric layer; 所述第一介质层形成后预设时间后,在所述碳化硅外延片正面淀积第三介质层。A third dielectric layer is deposited on the front surface of the silicon carbide epitaxial wafer after a predetermined time after the formation of the first dielectric layer. 3.根据权利要求2所述的碳化硅功率器件制备中碳化硅外延片的处理方法,其特征在于,所述对碳化硅外延片正面的介质层进行刻蚀,之后去除碳化硅外延片背面的介质层,包括:3. The processing method of silicon carbide epitaxial wafer in the preparation of silicon carbide power device according to claim 2, characterized in that, the dielectric layer on the front side of the silicon carbide epitaxial wafer is etched, and then the back surface of the silicon carbide epitaxial wafer is removed. Dielectric layers, including: 在所述碳化硅外延片正面第三介质层外涂覆光刻胶,并对所述光刻胶进行图形化处理;Coating photoresist on the third dielectric layer on the front side of the silicon carbide epitaxial wafer, and patterning the photoresist; 以图形化后的光刻胶作为掩膜对所述碳化硅外延片正面进行刻蚀,并去除光刻胶;Etching the front surface of the silicon carbide epitaxial wafer by using the patterned photoresist as a mask, and removing the photoresist; 在所述碳化硅外延片正面涂覆光刻胶;Coating photoresist on the front side of the silicon carbide epitaxial wafer; 对所述碳化硅外延片背面的第二介质层进行湿法腐蚀。Wet etching is performed on the second dielectric layer on the backside of the silicon carbide epitaxial wafer. 4.根据权利要求3所述的碳化硅功率器件制备中碳化硅外延片的处理方法,其特征在于,所述去除背面的介质层之后,还包括:4. The method for processing silicon carbide epitaxial wafers in the preparation of silicon carbide power devices according to claim 3, wherein after removing the dielectric layer on the backside, the method further comprises: 去除碳化硅外延片正面的光刻胶。Remove the photoresist from the front side of the SiC epitaxial wafer. 5.根据权利要求3所述的碳化硅功率器件制备中碳化硅外延片的处理方法,其特征在于,所述对刻蚀完的碳化硅外延片正面进行离子注入,包括:5. The method for processing silicon carbide epitaxial wafers in the preparation of silicon carbide power devices according to claim 3, wherein the ion implantation on the front side of the etched silicon carbide epitaxial wafers comprises: 确定离子注入剂量和离子注入温度;Determine ion implantation dose and ion implantation temperature; 基于所述剂量和温度对刻蚀完的碳化硅外延片正面进行离子注入。Ion implantation is performed on the front side of the etched silicon carbide epitaxial wafer based on the dose and temperature. 6.根据权利要求5所述的碳化硅功率器件制备中碳化硅外延片的处理方法,其特征在于,所述对刻蚀完的碳化硅外延片正面进行离子注入之后,还包括:6. The method for processing a silicon carbide epitaxial wafer in the preparation of a silicon carbide power device according to claim 5, wherein after the ion implantation is performed on the front side of the etched silicon carbide epitaxial wafer, the method further comprises: 去除所述第三介质层和第一介质层。The third dielectric layer and the first dielectric layer are removed. 7.根据权利要求2所述的碳化硅功率器件制备中碳化硅外延片的处理方法,其特征在于,所述淀积采用等离子体增强化学气相沉积方法或低压力化学气相沉积方法。7 . The method for processing silicon carbide epitaxial wafers in the preparation of silicon carbide power devices according to claim 2 , wherein the deposition adopts a plasma enhanced chemical vapor deposition method or a low pressure chemical vapor deposition method. 8 . 8.根据权利要求2所述的碳化硅功率器件制备中碳化硅外延片的处理方法,其特征在于,所述第一介质层、第二介质层和第三介质层均为二氧化硅、氮化硅、多晶硅中的一种或至少两种的组合。8. The method for processing silicon carbide epitaxial wafers in the preparation of silicon carbide power devices according to claim 2, wherein the first dielectric layer, the second dielectric layer and the third dielectric layer are silicon dioxide, nitrogen One or a combination of at least two of silicon carbide and polysilicon. 9.根据权利要求2所述的碳化硅功率器件制备中碳化硅外延片的处理方法,其特征在于,所述第一介质层的厚度为0.2μm~10μm;9 . The method for processing silicon carbide epitaxial wafers in the preparation of silicon carbide power devices according to claim 2 , wherein the thickness of the first dielectric layer is 0.2 μm˜10 μm; 10 . 所述第二介质层的厚度为0.2μm~10μm;The thickness of the second dielectric layer is 0.2 μm˜10 μm; 所述第三介质层的厚度为0.2μm~6μm。The thickness of the third dielectric layer is 0.2 μm˜6 μm. 10.根据权利要求5所述的碳化硅功率器件制备中碳化硅外延片的处理方法,其特征在于,所述离子注入剂量为1E11cm-2~1E18cm-210 . The method for processing silicon carbide epitaxial wafers in the preparation of silicon carbide power devices according to claim 5 , wherein the ion implantation dose is 1E11 cm −2 to 1E18 cm −2 ; 11 . 所述离子注入温度为25℃~600℃。The ion implantation temperature is 25°C˜600°C. 11.根据权利要求1所述的碳化硅功率器件制备中碳化硅外延片的处理方法,其特征在于,所述在所述碳化硅外延片正面和背面分别淀积介质层之前,包括:11 . The method for processing a silicon carbide epitaxial wafer in the preparation of a silicon carbide power device according to claim 1 , wherein, before respectively depositing a dielectric layer on the front side and the back side of the silicon carbide epitaxial wafer, the method comprises: 采用RCA标准清洗方法对所述碳化硅外延片进行清洗,以去除碳化硅外延片表面的金属、有机物和污染物。The silicon carbide epitaxial wafer is cleaned by using the RCA standard cleaning method to remove metals, organic substances and contaminants on the surface of the silicon carbide epitaxial wafer. 12.一种碳化硅功率器件制备中碳化硅外延片,其特征在于,包括:碳化硅外延片正面和碳化硅外延片背面;12. A silicon carbide epitaxial wafer in the preparation of a silicon carbide power device, characterized in that it comprises: a front surface of the silicon carbide epitaxial wafer and a back surface of the silicon carbide epitaxial wafer; 所述碳化硅外延片正面和碳化硅外延片背面分别按照如权利要求1-9任一项所述的处理方法得到。The front surface of the silicon carbide epitaxial wafer and the back surface of the silicon carbide epitaxial wafer are respectively obtained according to the processing method according to any one of claims 1-9.
CN202010238731.5A 2020-03-30 2020-03-30 A silicon carbide epitaxial wafer in the preparation of a silicon carbide power device and a processing method thereof Pending CN111524796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010238731.5A CN111524796A (en) 2020-03-30 2020-03-30 A silicon carbide epitaxial wafer in the preparation of a silicon carbide power device and a processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010238731.5A CN111524796A (en) 2020-03-30 2020-03-30 A silicon carbide epitaxial wafer in the preparation of a silicon carbide power device and a processing method thereof

Publications (1)

Publication Number Publication Date
CN111524796A true CN111524796A (en) 2020-08-11

Family

ID=71900999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010238731.5A Pending CN111524796A (en) 2020-03-30 2020-03-30 A silicon carbide epitaxial wafer in the preparation of a silicon carbide power device and a processing method thereof

Country Status (1)

Country Link
CN (1) CN111524796A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020193A (en) * 2022-05-27 2022-09-06 东莞市天域半导体科技有限公司 Method for processing silicon carbide epitaxial wafer
CN115110153A (en) * 2022-06-24 2022-09-27 东莞市天域半导体科技有限公司 Method for reducing warping degree of semiconductor epitaxial wafer
CN115110147A (en) * 2022-06-24 2022-09-27 东莞市天域半导体科技有限公司 Method for growing low-warpage semiconductor substrate wafer

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153862A (en) * 1994-11-28 1996-06-11 Matsushita Electric Works Ltd Manufacture of dielectric isolation substrate and dielectric isolation substrate
JP2002175985A (en) * 2000-12-05 2002-06-21 Hitachi Cable Ltd Method for manufacturing nitride semiconductor epitaxial wafer and nitride semiconductor epitaxial wafer
JP2007221093A (en) * 2006-01-23 2007-08-30 Ngk Spark Plug Co Ltd Dielectric laminate structure, and wiring substrate
JP2008147142A (en) * 2006-12-13 2008-06-26 Ulvac Japan Ltd Ion implanting device
US20080299733A1 (en) * 2007-05-31 2008-12-04 Patrick Press Method of forming a semiconductor structure comprising an implantation of ions in a material layer to be etched
WO2011016392A1 (en) * 2009-08-04 2011-02-10 昭和電工株式会社 Method for manufacturing silicon carbide semiconductor device
US20110079820A1 (en) * 2009-10-02 2011-04-07 Taiwan Semiconductor Manufacturing Co., Ltd. Device with self aligned stressor and method of making same
CN105448762A (en) * 2014-08-28 2016-03-30 中国科学院微电子研究所 Method for adjusting warping degree of substrate
CN106783719A (en) * 2017-02-07 2017-05-31 成都海威华芯科技有限公司 A kind of on-deformable silicon carbide-based chip back technique
US20180082960A1 (en) * 2016-09-16 2018-03-22 Ii-Vi Optoelectronic Devices, Inc. Metallic, tunable thin film stress compensation for epitaxial wafers
CN108183065A (en) * 2017-12-29 2018-06-19 北京品捷电子科技有限公司 A kind of method and compound substrate for eliminating silicon wafer warpage
CN109473345A (en) * 2018-11-21 2019-03-15 中国电子科技集团公司第十三研究所 A kind of ion injection method of silicon carbide device
CN110212031A (en) * 2019-05-24 2019-09-06 华中科技大学 A kind of carbide MOS devices and preparation method thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153862A (en) * 1994-11-28 1996-06-11 Matsushita Electric Works Ltd Manufacture of dielectric isolation substrate and dielectric isolation substrate
JP2002175985A (en) * 2000-12-05 2002-06-21 Hitachi Cable Ltd Method for manufacturing nitride semiconductor epitaxial wafer and nitride semiconductor epitaxial wafer
JP2007221093A (en) * 2006-01-23 2007-08-30 Ngk Spark Plug Co Ltd Dielectric laminate structure, and wiring substrate
JP2008147142A (en) * 2006-12-13 2008-06-26 Ulvac Japan Ltd Ion implanting device
US20080299733A1 (en) * 2007-05-31 2008-12-04 Patrick Press Method of forming a semiconductor structure comprising an implantation of ions in a material layer to be etched
WO2011016392A1 (en) * 2009-08-04 2011-02-10 昭和電工株式会社 Method for manufacturing silicon carbide semiconductor device
US20110079820A1 (en) * 2009-10-02 2011-04-07 Taiwan Semiconductor Manufacturing Co., Ltd. Device with self aligned stressor and method of making same
CN105448762A (en) * 2014-08-28 2016-03-30 中国科学院微电子研究所 Method for adjusting warping degree of substrate
US20180082960A1 (en) * 2016-09-16 2018-03-22 Ii-Vi Optoelectronic Devices, Inc. Metallic, tunable thin film stress compensation for epitaxial wafers
CN106783719A (en) * 2017-02-07 2017-05-31 成都海威华芯科技有限公司 A kind of on-deformable silicon carbide-based chip back technique
CN108183065A (en) * 2017-12-29 2018-06-19 北京品捷电子科技有限公司 A kind of method and compound substrate for eliminating silicon wafer warpage
CN109473345A (en) * 2018-11-21 2019-03-15 中国电子科技集团公司第十三研究所 A kind of ion injection method of silicon carbide device
CN110212031A (en) * 2019-05-24 2019-09-06 华中科技大学 A kind of carbide MOS devices and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020193A (en) * 2022-05-27 2022-09-06 东莞市天域半导体科技有限公司 Method for processing silicon carbide epitaxial wafer
CN115110153A (en) * 2022-06-24 2022-09-27 东莞市天域半导体科技有限公司 Method for reducing warping degree of semiconductor epitaxial wafer
CN115110147A (en) * 2022-06-24 2022-09-27 东莞市天域半导体科技有限公司 Method for growing low-warpage semiconductor substrate wafer
CN115110147B (en) * 2022-06-24 2024-01-02 广东天域半导体股份有限公司 Method for growing low-warpage semiconductor substrate wafer
CN115110153B (en) * 2022-06-24 2024-01-02 广东天域半导体股份有限公司 Method for reducing warping degree of semiconductor epitaxial wafer

Similar Documents

Publication Publication Date Title
CN111524796A (en) A silicon carbide epitaxial wafer in the preparation of a silicon carbide power device and a processing method thereof
CN103606521A (en) Manufacturing process of transient voltage suppression diode chip
CN104966665B (en) A kind of improvement SiC and SiO2The method of interface state density
CN104393047A (en) 4H-SiC metal semiconductor field effect transistor with step buffer layer structure
CN109979829A (en) Silicon carbide activates method for annealing
CN107706093A (en) A kind of manufacture method of aluminium pad
CN102723265A (en) Aluminum doping method for silicon wafer
CN105355554B (en) A kind of 100V Schottky diode manufacture of that platform
CN104952936A (en) Fast recovery diode and manufacturing method thereof
WO2015172505A1 (en) Ion implantation method
CN104867826A (en) Method for preventing thin film at edge of silicon chip from being peeled off
CN104143503A (en) doping method
CN114496721A (en) Method and device for protecting front structure of silicon carbide device
CN109494150B (en) Manufacturing method of silicon carbide high-temperature annealing surface protection and silicon carbide power device
CN116206958A (en) Semiconductor device manufacturing method
CN109557774A (en) Photoresist minimizing technology and aluminum manufacturing procedure process
CN110600538B (en) Application of ionic gel in graphene transfer and preparation of graphene transistor, graphene transistor and preparation method of graphene transistor
CN118039472A (en) Etching method for preparing small-angle SiC gentle mesa and terminal structure
CN105845616A (en) Manufacturing method for wafer level uniaxial strain GeOI based on silicon nitride stress membrane and scale effect
CN1307707C (en) Metal-isolation layer-semiconductor structure xontaining magnesiam-zinc-oxygen and preparing process
CN114188213B (en) Method for solving problem of transmission failure of silicon carbide wafer
TWI845160B (en) Silicon Wafer Processing Methods
CN105161531A (en) 4h-sic metal semiconductor field effect transistor and manufacturing method thereof
CN115083959B (en) A method for monitoring temperature of annealing chamber
CN106206284B (en) Improved etching process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination