CN111521565B - Crack opening width detection system and method based on laser ultrasound - Google Patents
Crack opening width detection system and method based on laser ultrasound Download PDFInfo
- Publication number
- CN111521565B CN111521565B CN202010510664.8A CN202010510664A CN111521565B CN 111521565 B CN111521565 B CN 111521565B CN 202010510664 A CN202010510664 A CN 202010510664A CN 111521565 B CN111521565 B CN 111521565B
- Authority
- CN
- China
- Prior art keywords
- crack
- ultrasonic
- heating
- tested
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000002604 ultrasonography Methods 0.000 title claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 130
- 230000005284 excitation Effects 0.000 claims abstract description 43
- 230000008569 process Effects 0.000 claims abstract description 21
- 238000006073 displacement reaction Methods 0.000 claims abstract description 18
- 230000033001 locomotion Effects 0.000 claims abstract description 9
- 230000008646 thermal stress Effects 0.000 claims abstract description 9
- 229920006395 saturated elastomer Polymers 0.000 claims description 5
- 230000008859 change Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000009659 non-destructive testing Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000011343 solid material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000000960 laser cooling Methods 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/1702—Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/1717—Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/1702—Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
- G01N2021/1706—Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/1717—Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
- G01N2021/1731—Temperature modulation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
技术领域technical field
本发明属于材料无损检测技术领域,具体涉及激光超声检测技术领域,特别涉及一种基于激光超声的裂纹开口宽度检测系统及方法。The invention belongs to the technical field of non-destructive testing of materials, in particular to the technical field of laser ultrasonic testing, and in particular to a crack opening width detection system and method based on laser ultrasonic.
背景技术Background technique
激光超声技术是一种材料无损检测技术,它具有非接触、宽频带、多模态激发以及激发和探测光源便于移动等特点,适用于对复杂构件和大型构件的检测,并适用于高温、高压、高酸碱及辐射等恶劣环境下。书刊[魏坤霞.无损检测技术[M].中国石化出版社,2016.]中介绍,目前常用的激光超声检测方法采用激光束作为激励,在被测材料中激发超声波信号,使用压电换能器或测振仪等方法接收信号。Laser ultrasonic technology is a non-destructive testing technology for materials. It has the characteristics of non-contact, broadband, multi-mode excitation, and easy movement of excitation and detection light sources. It is suitable for the detection of complex components and large components, and is suitable for high temperature and high pressure. , high acid and alkali and radiation and other harsh environments. Books [Wei Kunxia. Non-destructive testing technology [M]. China Petrochemical Press, 2016.] introduced that the currently commonly used laser ultrasonic testing method uses laser beams as excitation to excite ultrasonic signals in the tested material, using piezoelectric transducers Or vibrometer and other methods to receive the signal.
裂纹检测是无损检测的一个重要方面,激光超声裂纹检测技术是裂纹检测方向的新兴研究热点。书刊[沈中华,袁玲,张宏超,等.固体中的激光超声[M].第1版.北京:人民邮电出版社,2015.]中介绍,线性激光超声裂纹检测方法通过探测超声波与裂纹作用产生的反射和散射信号来确定裂纹的存在,然而若裂纹的开口宽度进一步减小,表面波将直接穿过裂纹而不发生反射与散射,则其无法对这类微裂纹进行有效的检测。非线性激光超声裂纹检测方法利用裂纹闭合状态的变化以及由此引起的各种非线性声学现象对开口宽度很小的真实微裂纹进行检测,相比于传统的线性激光超声检测方法,其突出的优点是可以大幅度地改善和提高对真实微裂纹的检测灵敏度。Crack detection is an important aspect of nondestructive testing, and laser ultrasonic crack detection technology is an emerging research hotspot in the direction of crack detection. Books [Shen Zhonghua, Yuan Ling, Zhang Hongchao, etc. Laser Ultrasound in Solids [M]. 1st Edition. Beijing: People's Posts and Telecommunications Press, 2015.] Introduced that the linear laser ultrasonic crack detection method detects the interaction between ultrasonic waves and cracks. However, if the opening width of the crack is further reduced, the surface wave will directly pass through the crack without reflection and scattering, so it cannot effectively detect such micro-cracks. The nonlinear laser ultrasonic crack detection method uses the change of the crack closure state and various nonlinear acoustic phenomena caused by it to detect real micro-cracks with a small opening width. Compared with the traditional linear laser ultrasonic detection method, its outstanding The advantage is that the detection sensitivity to real micro-cracks can be greatly improved and enhanced.
利用非线性的激光超声方法也能对在施加载荷情况下裂纹闭合所发生的改变进行检测。中国专利201110185407.2公开了一种固体材料表面疲劳裂纹的无损检测方法。在扫查光源的每步扫查过程中,通过检测激发光源激发的声表面波信号在激光加热以及冷却两种情况下的变化,以实现微裂纹的检测。之前也有学者[吕锦超,沈中华,倪辰荫.光致裂纹闭合及改变的激光超声监测[J].无损检测,2017,39(6):19-23.]在黑玻璃样品上通过对透射情况下表面波和模式转换信号的检测,研究了光致裂纹闭合过程中裂纹的改变。该方案可对在施加载荷情况下裂纹闭合所发生的改变进行检测,并且过程简便,但仍然存在以下不足:采集系统中的数据偶然性大,而且难以实现对裂纹开口宽度的检测。Changes in crack closure under applied loads can also be detected using nonlinear laser ultrasonic methods. Chinese patent 201110185407.2 discloses a non-destructive detection method for fatigue cracks on the surface of solid materials. During each step of the scanning process of the scanning light source, the detection of micro-cracks is realized by detecting the change of the surface acoustic wave signal excited by the excitation light source under the conditions of laser heating and cooling. Previously, some scholars [Lv Jinchao, Shen Zhonghua, Ni Chenyin. Laser ultrasonic monitoring of photo-induced crack closure and change [J]. Nondestructive Testing, 2017,39(6):19-23.] passed through the black glass sample under the condition of transmission The detection of surface waves and mode conversion signals to study the crack modification during photo-induced crack closure. This scheme can detect the change of the crack closure under the applied load, and the process is simple, but there are still the following shortcomings: the data in the acquisition system is highly random, and it is difficult to detect the crack opening width.
发明内容Contents of the invention
本发明的目的在于针对上述现有技术存在的不足,提供一种基于激光超声的裂纹开口宽度检测系统及方法。The object of the present invention is to provide a crack opening width detection system and method based on laser ultrasound to address the above-mentioned deficiencies in the prior art.
实现本发明目的的技术解决方案为:一种基于激光超声的裂纹开口宽度检测系统,所述系统包括带有待测裂纹的样品、超声激发装置、加热装置、超声探测装置、信号采集装置、运动装置以及控制装置;The technical solution to realize the object of the present invention is: a crack opening width detection system based on laser ultrasound, the system includes a sample with a crack to be measured, an ultrasonic excitation device, a heating device, an ultrasonic detection device, a signal acquisition device, a moving devices and controls;
所述超声激发装置,用于作为带有待测裂纹的样品的超声信号激发源;The ultrasonic excitation device is used as an excitation source of ultrasonic signals for samples with cracks to be tested;
所述加热装置,用于加热所述样品上的待测裂纹,产生热应力以使裂纹闭合;The heating device is used to heat the crack to be tested on the sample to generate thermal stress to close the crack;
所述超声探测装置,用于接收超声信号;The ultrasonic detection device is used to receive ultrasonic signals;
所述信号采集装置,用于采集超声信号并传输至控制装置;The signal acquisition device is used to collect ultrasonic signals and transmit them to the control device;
所述运动装置,用于带动所述加热装置在待测裂纹上的加热点和待测裂纹同步运动;The moving device is used to drive the heating point of the heating device on the crack to be tested to move synchronously with the crack to be tested;
所述控制装置,用于调节所述加热装置的加热功率以及控制运动装置运动,还用于根据裂纹闭合产生的位移与加热功率的对应关系,求取样品上待测裂纹的开口宽度;The control device is used to adjust the heating power of the heating device and control the movement of the moving device, and is also used to obtain the opening width of the crack to be measured on the sample according to the corresponding relationship between the displacement generated by the crack closure and the heating power;
所述超声激发装置辐照至样品表面的激发点、加热装置辐照至待测裂纹上的加热点以及超声探测装置进行超声探测的探测点位于同一直线,且该直线与所述待测裂纹的走向垂直。The excitation point where the ultrasonic excitation device irradiates the surface of the sample, the heating point where the heating device irradiates the crack to be tested, and the detection point where the ultrasonic detection device performs ultrasonic detection are located on the same straight line, and the straight line is on the same line as the crack to be tested. Go vertical.
进一步地,所述加热装置具体采用连续激光器。Further, the heating device specifically adopts a continuous laser.
进一步地,所述系统还包括反射装置,该装置与样品均设置在运动装置上,所述连续激光器的出射光经所述反射装置反射后照射于所述样品上的待测裂纹。Further, the system further includes a reflection device, which is arranged on the moving device together with the sample, and the emitted light of the continuous laser is reflected by the reflection device and then irradiates the crack to be tested on the sample.
基于激光超声的裂纹开口宽度检测系统的检测方法,所述方法包括以下步骤:A detection method based on a laser ultrasonic crack opening width detection system, the method comprising the following steps:
步骤1,确定加热装置在待测裂纹上的加热区域;
步骤2,调节超声激发装置辐照至带有待测裂纹的样品表面的激发点、加热装置辐照至待测裂纹上的加热点以及超声探测装置进行超声探测的探测点位于同一直线,且该直线与所述待测裂纹的走向垂直,之后固定超声激发装置和超声探测装置;
步骤3,由运动装置带动所述加热装置在待测裂纹上的加热点和待测裂纹沿所述待测裂纹的走向同步运动,使超声激发装置和超声探测装置从所述加热区域的一侧移动至另一侧,由信号采集装置采集超声信号并传输至控制装置;
步骤4,设置加热装置的初始加热功率;
步骤5,开启加热装置,加热待测裂纹以通过热应力使裂纹闭合,达到热平衡状态后,按照步骤3的过程实现一次扫描和信号采集;关闭加热装置使待测裂纹恢复室温下的平衡状态,之后再次按照步骤3的过程实现一次扫描和信号采集;
步骤6,预设步长序列,依次按照该序列中的每一个步长逐步增大加热功率,并重复执行步骤5;
步骤7,获取经上述过程后使得处于扫描区域内的待测裂纹完全闭合时即超声信号饱和时加热装置的加热功率;
步骤8,根据裂纹闭合产生的位移与加热功率的对应关系,结合步骤7中的所述加热功率,利用控制装置求取所述扫描区域内的待测裂纹完全闭合时产生的位移,即扫描区域内待测裂纹的开口宽度。
进一步地,所述方法还包括在步骤7之前执行:提取每一次扫描中超声信号的峰峰值。Further, the method further includes performing before step 7: extracting the peak-to-peak value of the ultrasonic signal in each scan.
进一步地,步骤8中所述裂纹闭合产生的位移与加热功率的对应关系,具体为:Further, the corresponding relationship between the displacement generated by the crack closure described in
式中,Δd为裂纹闭合产生的位移,R为样品表面的反射系数,P为加热功率,β为样品的线性热膨胀系数,k为样品的热导率;对于加热装置具体采用连续激光器,f(t)为激光的时间调制函数。In the formula, Δd is the displacement caused by crack closure, R is the reflection coefficient of the sample surface, P is the heating power, β is the linear thermal expansion coefficient of the sample, and k is the thermal conductivity of the sample; for the heating device, a continuous laser is used, f( t) is the time modulation function of the laser.
本发明与现有技术相比,其显著优点为:1)传统非线性激光超声技术对在施加载荷情况下裂纹闭合所发生的改变进行检测的方法,获得的是裂纹闭合过程中加热区域内单个位置处的超声信号变化,本发明通过待测裂纹上的加热点和待测裂纹沿裂纹走向的同步运动,使超声激发装置和超声探测装置从加热区域的一侧移动至另一侧,获得的是裂纹闭合过程中加热区域内多个位置处的超声信号变化,能够实现对疲劳裂纹在施加载荷时开口宽度的检测;2)本发明采用激光超声技术达到检测裂纹开口宽度的目的,整个检测过程无损,不会影响被测样品;3)检测效率高,精度高;4)本发明通过获取使得处于扫描区域内的待测裂纹完全闭合时即超声信号饱和时加热装置的加热功率,根据裂纹闭合产生的位移与加热功率的对应关系,利用控制装置求取扫描区域内待测裂纹的开口宽度,操作简单,重复性好,结果稳定。Compared with the prior art, the present invention has the following significant advantages: 1) The traditional nonlinear laser ultrasonic technology detects the change of the crack closure under the applied load, and what is obtained is a single crack in the heating region during the crack closure process. The ultrasonic signal changes at the position, the invention makes the ultrasonic excitation device and the ultrasonic detection device move from one side of the heating area to the other side through the synchronous movement of the heating point on the crack to be tested and the crack to be tested along the direction of the crack, and the obtained It is the ultrasonic signal change at multiple positions in the heating region during the crack closure process, which can realize the detection of the opening width of the fatigue crack when the load is applied; 2) the present invention uses laser ultrasonic technology to achieve the purpose of detecting the crack opening width, and the entire detection process 3) the detection efficiency is high and the precision is high; 4) the present invention obtains the heating power of the heating device when the crack to be measured in the scanning area is completely closed, that is, when the ultrasonic signal is saturated, and according to the crack closure The corresponding relationship between the generated displacement and the heating power is obtained by using the control device to obtain the opening width of the crack to be tested in the scanning area. The operation is simple, the repeatability is good, and the result is stable.
下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
附图说明Description of drawings
图1为一个实施例中基于激光超声的裂纹开口宽度检测系统的结构示意图。Fig. 1 is a schematic structural diagram of a crack opening width detection system based on laser ultrasound in an embodiment.
图2为一个实施例中某一裂纹中部处于加热状态时所得到的透射表面波信号峰峰值的扫查结果图,横坐标代表激发—探测源的扫描步数,纵坐标代表加热功率,像素灰度值代表超声信号的峰峰值。Fig. 2 is a scanning result diagram of the peak-to-peak value of the transmitted surface wave signal obtained when the middle part of a certain crack is in a heated state in one embodiment, the abscissa represents the scanning steps of the excitation-detection source, the ordinate represents the heating power, and the pixels are gray The degree value represents the peak-to-peak value of the ultrasound signal.
图3为一个实施例中某一裂纹中部处于加热状态时所得到的透射模式转换波信号峰峰值的扫查结果图,横坐标代表激发—探测源的扫描步数,纵坐标代表加热功率,像素灰度值代表超声信号的峰峰值。Fig. 3 is a scan result diagram of the peak-to-peak value of the transmission mode conversion wave signal obtained when the middle part of a certain crack is in a heated state in one embodiment, the abscissa represents the number of scanning steps of the excitation-detection source, the ordinate represents the heating power, and the pixel The gray value represents the peak-to-peak value of the ultrasound signal.
图4为一个实施例中某一裂纹中部处的原子力显微镜(AFM)图。Fig. 4 is an atomic force microscope (AFM) image at the middle of a certain crack in one embodiment.
具体实施方式detailed description
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solution and advantages of the present application clearer, the present application will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application, not to limit the present application.
在一个实施例中,结合图1,提供了一种基于激光超声的裂纹开口宽度检测系统,该系统包括带有待测裂纹的样品4、超声激发装置1、加热装置2、超声探测装置3、信号采集装置5、运动装置6以及控制装置7;In one embodiment, with reference to Fig. 1, a crack opening width detection system based on laser ultrasound is provided, the system includes a
所述超声激发装置1,用于作为带有待测裂纹的样品4的超声信号激发源;The
所述加热装置2,用于加热所述样品4上的待测裂纹,产生热应力以使裂纹闭合;The
所述超声探测装置3,用于接收超声信号;The
所述信号采集装置5,用于采集超声信号并传输至控制装置7;The
所述运动装置6,用于带动所述加热装置2在待测裂纹上的加热点和待测裂纹同步运动;The moving
这里示例性地,运动装置6可以采用步进电机。Exemplarily here, the moving
所述控制装置7,用于调节所述加热装置2的加热功率以及控制运动装置6运动,还用于根据裂纹闭合产生的位移与加热功率的对应关系,求取样品4上待测裂纹的开口宽度;The
这里示例性地,控制装置7可以为计算机以及其他计算控制装置。Exemplarily here, the
所述超声激发装置1辐照至样品4表面的激发点、加热装置2辐照至待测裂纹上的加热点以及超声探测装置3进行超声探测的探测点位于同一直线,且该直线与所述待测裂纹的走向垂直。The excitation point irradiated by the
这里,所述超声激发装置1与超声探测装置3位于所述待测裂纹的同侧或异侧,所述超声探测装置3接收反射或透射超声信号。Here, the
本发明提出的系统能对固体材料样品上的任意宽度、任意类型(均匀宽度、不均匀宽度;对于均匀宽度,可以对某一裂纹区域进行检测即可;对于不均匀宽度,可以进行逐点扫描检测)的裂纹开口宽度进行检测,适用性广。The system proposed by the present invention can detect any width and any type (uniform width, uneven width) on solid material samples; for uniform width, a certain crack area can be detected; for uneven width, point-by-point scanning can be performed Detection) crack opening width for detection, wide applicability.
进一步地,在其中一个实施例中,所述加热装置2具体采用连续激光器。Further, in one of the embodiments, the
进一步地,在其中一个实施例中,所述系统还包括反射装置,该装置与样品4均设置在运动装置6上,所述连续激光器的出射光经所述反射装置反射后照射于所述样品4上的待测裂纹。Further, in one of the embodiments, the system also includes a reflection device, which is set on the moving
采用本实施例的方案,可以固定加热装置2,能够防止直接带动加热装置2运动造成的晃动,提高辐照光的稳定性,降低对加热装置2的损害,延长其使用寿命。Adopting the scheme of this embodiment, the
进一步地,在其中一个实施例中,所述连续激光器的出射光在待测裂纹上形成的光斑的中心,与待测裂纹沿裂纹宽度方向的中心重合。Further, in one of the embodiments, the center of the light spot formed on the crack to be tested by the emitted light of the continuous laser coincides with the center of the crack to be tested along the crack width direction.
采用本实施例的方案,能够充分利用连续激光器的光能,并能达到更好的辐照效果。By adopting the solution of this embodiment, the light energy of the continuous laser can be fully utilized, and a better irradiation effect can be achieved.
进一步地,在其中一个实施例中,所述超声激发装置1采用脉冲激光器,其发出的脉冲激光聚焦成点光源辐照在所述样品4的表面,激发超声。Further, in one of the embodiments, the
进一步地,在其中一个实施例中,所述超声探测装置3采用连续激光器或声换能器。Further, in one of the embodiments, the
在一个实施例中,提供了一种基于激光超声的裂纹开口宽度检测方法,该方法包括以下步骤:In one embodiment, a method for detecting crack opening width based on laser ultrasound is provided, the method comprising the following steps:
步骤1,确定加热装置2在待测裂纹上的加热区域;
步骤2,调节超声激发装置1辐照至带有待测裂纹的样品4表面的激发点、加热装置2辐照至待测裂纹上的加热点以及超声探测装置3进行超声探测的探测点位于同一直线,且该直线与所述待测裂纹的走向垂直,之后固定超声激发装置1和超声探测装置3;
步骤3,由运动装置6带动所述加热装置2在待测裂纹上的加热点和待测裂纹沿所述待测裂纹的走向同步运动,使超声激发装置1和超声探测装置3从所述加热区域的一侧移动至另一侧,由信号采集装置5采集超声信号并传输至控制装置7;
步骤4,设置加热装置2的初始加热功率;
步骤5,开启加热装置2,加热待测裂纹以通过热应力使裂纹闭合,达到热平衡状态后,按照步骤3的过程实现一次扫描和信号采集;关闭加热装置2使待测裂纹恢复室温下的平衡状态,之后再次按照步骤3的过程实现一次扫描和信号采集;
步骤6,预设步长序列,依次按照该序列中的每一个步长逐步增大加热功率,并重复执行步骤5;
步骤7,获取经上述过程后使得处于扫描区域内的待测裂纹完全闭合时即超声信号饱和时加热装置2的加热功率;
步骤8,根据裂纹闭合产生的位移与加热功率的对应关系,结合步骤7中的所述加热功率,利用控制装置7求取所述扫描区域内的待测裂纹完全闭合时产生的位移,即扫描区域内待测裂纹的开口宽度。
进一步地,在其中一个实施例中,所述方法还包括在步骤7之前执行:提取每一次扫描中超声信号的峰峰值。Further, in one of the embodiments, the method further includes performing before step 7: extracting the peak-to-peak value of the ultrasonic signal in each scan.
采用本实施例的方案,能够降低步骤7的计算量。By adopting the solution of this embodiment, the calculation amount of
进一步优选地,在其中一个实施例中,步骤6中所述步长序列中的步长值均相同。Further preferably, in one of the embodiments, the step values in the step sequence in
采用本实施例的方案,便于调节,降低复杂度。Adopting the solution of this embodiment facilitates adjustment and reduces complexity.
进一步地,在其中一个实施例中,步骤8中所述裂纹闭合产生的位移与加热功率的对应关系,具体为:Further, in one of the embodiments, the corresponding relationship between the displacement generated by the crack closure and the heating power in
式中,Δd为裂纹闭合产生的位移,R为样品表面的反射系数,P为加热功率,β为样品的线性热膨胀系数,k为样品的热导率;对于加热装置具体采用连续激光器,f(t)为激光的时间调制函数,若为其它加热源,f(t)为加热源的时间调制函数。In the formula, Δd is the displacement caused by crack closure, R is the reflection coefficient of the sample surface, P is the heating power, β is the linear thermal expansion coefficient of the sample, and k is the thermal conductivity of the sample; for the heating device, a continuous laser is used, f( t) is the time modulation function of the laser, if it is other heating sources, f(t) is the time modulation function of the heating source.
这里,对于上述检测方法每一步的其他具体限定可以参见上述对于基于激光超声的裂纹开口宽度检测系统的限定,在此不再赘述。Here, for other specific limitations on each step of the above-mentioned detection method, please refer to the above-mentioned limitations on the crack opening width detection system based on laser ultrasound, which will not be repeated here.
作为一种具体示例,在其中一个实施例中,对本发明基于激光超声的裂纹开口宽度检测系统及方法进行进一步验证说明。该实施例中,采用的带有裂纹的样品为黑玻璃样品,其材料参数近似如下:表面的反射系数R=0.04,热导率k=1.38W/m·K,线性热膨胀系数β=7.5×10-7/K。本实施例待测宽度的裂纹为黑玻璃样品上裂纹中部某处,对于黑玻璃样品,300mW的加热光功率足以完全闭合裂纹中部以及尖端处的裂纹,且20s足以让裂纹状态达到稳定。加热装置2采用波长为532nm的连续激光,超声激发装置1采用波长为1064nm的脉冲激光,超声探测装置3采用采用波长为638nm的连续激光,超声激发装置1和超声探测装置3位于待测裂纹的异侧。具体验证过程包括:As a specific example, in one of the embodiments, the laser ultrasonic-based crack opening width detection system and method of the present invention are further verified and described. In this embodiment, the sample with cracks used is a black glass sample, and its material parameters are approximately as follows: surface reflection coefficient R=0.04, thermal conductivity k=1.38W/m K, linear thermal expansion coefficient β=7.5× 10 -7 /K. The crack to be measured in this embodiment is somewhere in the middle of the crack on the black glass sample. For the black glass sample, the heating optical power of 300mW is enough to completely close the crack in the middle and the tip of the crack, and 20s is enough to stabilize the crack state. The
(1)确定加热装置2在待测裂纹上的加热区域。(1) Determine the heating area of the
(2)调节超声激发装置1辐照至带有待测裂纹的样品4表面的激发点、加热装置2辐照至待测裂纹上的加热点以及超声探测装置3进行超声探测的探测点位于同一直线,且该直线与所述待测裂纹的走向垂直,之后固定超声激发装置1和超声探测装置3。(2) Adjust the excitation point where the
(3)由运动装置6带动所述加热装置2在待测裂纹上的加热点和待测裂纹沿所述待测裂纹的走向同步运动,使超声激发装置1和超声探测装置3从所述加热区域的一侧移动至另一侧,由信号采集装置5采集无加热时的超声信号并传输至控制装置7;扫描开始时,加热源距离激发—探测源构成的直线约150μm,扫描步长为30μm,扫描范围为300μm。(3) Drive the heating point of the
(4)设置加热装置2的初始加热功率为10mW。(4) Set the initial heating power of the
(5)开启加热装置2,加热待测裂纹以通过热应力使裂纹闭合,达到热平衡状态后,按照上述过程3实现一次扫描和信号采集;关闭加热装置2使待测裂纹恢复室温下的平衡状态,之后再次按照上述过程3实现一次扫描和信号采集。(5) Turn on the
(6)预设步长序列,依次按照该序列中的每一个步长逐步增大加热功率,并重复执行上述过程5,通过热应力使裂纹闭合;其中,步长序列中的步长值均为10mW,加热功率最大增加至300mW。(6) Preset the step length sequence, gradually increase the heating power according to each step length in the sequence, and repeat the
(7)提取采集到的扫查超声信号峰峰值,绘制扫查图,获取经上述过程后使得处于扫描区域内的待测裂纹完全闭合时即超声信号饱和时加热装置2的加热功率。由图2、3可以看出,当加热光功率增大至约200mW之后,随着加热光功率增大,图2中透射表面波峰峰值基本不变且黑色区域逐渐消失,图3中模式转换波峰峰值近似为0,这表明在200mW这一加热光功率下开口宽度待测处的裂纹达到完全闭合状态。(7) Extracting the peak-to-peak value of the collected scanning ultrasonic signal, drawing a scanning map, and obtaining the heating power of the
(8)根据裂纹闭合产生的位移与加热功率的对应关系,结合上述过程7获得的加热功率,求取所述扫描区域内的待测裂纹完全闭合时产生的位移,即扫描区域内待测裂纹的开口宽度为:(8) According to the corresponding relationship between the displacement generated by the crack closure and the heating power, combined with the heating power obtained in the
利用原子力显微镜(Atomic Force Microscope,AFM)观测待测裂纹的宽度如图4所示。对比图4和本发明的计算结果可知,本发明测得的裂纹宽度与实际测量的宽度基本一致。The width of the crack to be measured is observed by an atomic force microscope (AFM), as shown in Fig. 4 . Comparing Fig. 4 with the calculation results of the present invention, it can be seen that the crack width measured by the present invention is basically consistent with the actual measured width.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, they should be It is considered to be within the range described in this specification.
以上显示和描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles, main features and advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned embodiments. What are described in the above-mentioned embodiments and the description only illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will also have Variations and improvements are possible, which fall within the scope of the claimed invention. The protection scope of the present invention is defined by the appended claims and their equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010510664.8A CN111521565B (en) | 2020-06-08 | 2020-06-08 | Crack opening width detection system and method based on laser ultrasound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010510664.8A CN111521565B (en) | 2020-06-08 | 2020-06-08 | Crack opening width detection system and method based on laser ultrasound |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111521565A CN111521565A (en) | 2020-08-11 |
CN111521565B true CN111521565B (en) | 2023-01-13 |
Family
ID=71909559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010510664.8A Active CN111521565B (en) | 2020-06-08 | 2020-06-08 | Crack opening width detection system and method based on laser ultrasound |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111521565B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112986152A (en) * | 2021-02-07 | 2021-06-18 | 上海工程技术大学 | Laser ultrasonic real-time detection system and method |
CN113075298B (en) * | 2021-03-29 | 2024-03-29 | 重庆交通大学 | Concrete microcrack detection method based on laser ultrasonic technology |
CN115406384B (en) * | 2022-09-05 | 2024-03-12 | 天津大学 | Machining surface crack opening width measuring method based on laser surface acoustic waves |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5585921A (en) * | 1995-03-15 | 1996-12-17 | Hughes Aircraft Company | Laser-ultrasonic non-destructive, non-contacting inspection system |
US5587532A (en) * | 1995-01-12 | 1996-12-24 | The United States Of America As Represented By The Secretary Of The Army | Method of measuring crack propagation in opaque materials |
US5894345A (en) * | 1996-05-22 | 1999-04-13 | Matsushita Electric Industrial Co., Ltd. | Optical method of detecting defect and apparatus used therein |
CN102866144A (en) * | 2011-07-04 | 2013-01-09 | 南京理工大学 | Nondestructive testing method for fatigue crack on solid material surface |
CN111122700A (en) * | 2019-12-16 | 2020-05-08 | 南京理工大学 | Method for improving laser ultrasonic SAFT defect positioning speed |
-
2020
- 2020-06-08 CN CN202010510664.8A patent/CN111521565B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5587532A (en) * | 1995-01-12 | 1996-12-24 | The United States Of America As Represented By The Secretary Of The Army | Method of measuring crack propagation in opaque materials |
US5585921A (en) * | 1995-03-15 | 1996-12-17 | Hughes Aircraft Company | Laser-ultrasonic non-destructive, non-contacting inspection system |
US5894345A (en) * | 1996-05-22 | 1999-04-13 | Matsushita Electric Industrial Co., Ltd. | Optical method of detecting defect and apparatus used therein |
CN102866144A (en) * | 2011-07-04 | 2013-01-09 | 南京理工大学 | Nondestructive testing method for fatigue crack on solid material surface |
CN111122700A (en) * | 2019-12-16 | 2020-05-08 | 南京理工大学 | Method for improving laser ultrasonic SAFT defect positioning speed |
Non-Patent Citations (3)
Title |
---|
Probing of laser-induced crack modulation by laser-monitored surface waves and surface skimming bulk waves;Chen-Yin Ni 等;《Acoustical society of america》;20120216;第 EL251- EL257页 * |
光热调制裂纹闭合可逆/不可逆变化的激光超声监测;张月影 等;《中国激光》;20201231;第1204006-1-9页"实验方法" * |
光热调制裂纹闭合的激光超声实时监测;尤博文 等;《中国激光》;20190228;第0204009-1-11页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111521565A (en) | 2020-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111521565B (en) | Crack opening width detection system and method based on laser ultrasound | |
CN107747922B (en) | Method for measuring subsurface defect buried depth based on laser ultrasound | |
CN102866144B (en) | Nondestructive testing method for fatigue crack on solid material surface | |
CN102297898B (en) | Laser Ultrasonic Determination Method of Metal Third-Order Elastic Constant | |
US20090000382A1 (en) | Non-contact acousto-thermal method and apparatus for detecting incipient damage in materials | |
AU2007275719C1 (en) | Fiber laser for ultrasonic laser testing | |
Dyrwal et al. | Nonlinear air-coupled thermosonics for fatigue micro-damage detection and localisation | |
CN101281172A (en) | Laser Surface Acoustic Wave Stress Testing System | |
CN110763764A (en) | A New Ultrasonic Detection System for Metal Internal Defects | |
CN105572049B (en) | Optoacoustic quantifies elastograph imaging method and device | |
CN104345092A (en) | Scanning type laser ultrasonic detection method and system | |
CN110672047A (en) | Laser ultrasonic measurement method for thickness of high-temperature metal material | |
CN107688051A (en) | A kind of measuring method of the subsurface defect width based on Laser thermo-elastic generated surface acoustic waves | |
CN211179651U (en) | A New Ultrasonic Detection System for Metal Internal Defects | |
CN105116054A (en) | Method and device for detecting surface defect of steel rail based on photoacoustic signals | |
CN113406009B (en) | Metal material thermal diffusivity measuring method based on photoacoustic signal matched filtering | |
CN109283046B (en) | Non-contact automatic measuring system for elastic stress and strain of material | |
KR101039593B1 (en) | Defect Detection Device and Method for Detecting Objects Using Ultrasonic Excited Thermal Image with Improved Inspection Reliability | |
CN103822877B (en) | A portable nonlinear photoacoustic imaging system and photoacoustic imaging method | |
CN110261315A (en) | A kind of scanning near-field opto-acoustic microscopic imaging instrument | |
CN109612940A (en) | A non-destructive testing system and non-destructive testing method for rapid control of ultrasonic generation by laser array | |
JP4595117B2 (en) | Ultrasound propagation imaging method and apparatus | |
CN113607652B (en) | Workpiece superficial layered imaging method based on photoacoustic spectrum | |
CN109164046B (en) | Picosecond ultrasonic cell imaging device and method | |
CN205607883U (en) | Formation of image detecting system is received a little to compound three -dimensional of optoacoustic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |