CN111518183B - Application of SiMYB61 protein and related biomaterial thereof in regulation and control of plant stress resistance - Google Patents
Application of SiMYB61 protein and related biomaterial thereof in regulation and control of plant stress resistance Download PDFInfo
- Publication number
- CN111518183B CN111518183B CN202010401862.0A CN202010401862A CN111518183B CN 111518183 B CN111518183 B CN 111518183B CN 202010401862 A CN202010401862 A CN 202010401862A CN 111518183 B CN111518183 B CN 111518183B
- Authority
- CN
- China
- Prior art keywords
- simyb61
- protein
- plant
- stress
- rice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Botany (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域technical field
本发明涉及SiMYB61蛋白及其相关生物材料在调控植物抗逆性中的应用。The present invention relates to the application of SiMYB61 protein and related biological materials in regulating plant stress resistance.
背景技术Background technique
我国是世界上单位化肥投入粮食产出最低的国家之一,氮肥利用率仅为30~35%(发达国家为45%),磷肥利用率仅在10~20%。按目前用量如节省10%的氮肥、20%的磷肥,每年可节省241亿元的资金。氮、磷化肥的低效利用,使农业面源污染成为水系富营养化、土壤酸化与重金属污染最重要的因素,威胁生态安全与可持续发展。因此,我国迫切需要培育养分高效利用的农作物新品种,从而大幅度提高我国氮、磷化肥的利用效率。my country is one of the countries with the lowest grain output per unit of fertilizer input in the world. The utilization rate of nitrogen fertilizer is only 30-35% (45% in developed countries), and the utilization rate of phosphate fertilizer is only 10-20%. According to the current consumption, such as saving 10% of nitrogen fertilizer and 20% of phosphate fertilizer, 24.1 billion yuan can be saved every year. The inefficient use of nitrogen and phosphorus fertilizers makes agricultural non-point source pollution the most important factor in water eutrophication, soil acidification and heavy metal pollution, threatening ecological security and sustainable development. Therefore, our country urgently needs to cultivate new crop varieties with efficient nutrient utilization, so as to greatly improve the utilization efficiency of nitrogen and phosphorus fertilizers in our country.
培育抗逆性的水稻新品种,提高其自身的抗逆性,是在减少化肥施用量、干旱缺水条件下提高水稻产量水平的重要措施。Cultivating new varieties of rice with resistance to stress and improving its own resistance to stress are important measures to improve the yield level of rice under conditions of reducing fertilizer application and drought and water shortages.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种与植物抗逆性相关的SiMYB61蛋白及其相关生物材料与应用。The purpose of the present invention is to provide a SiMYB61 protein related to plant stress resistance and its related biological materials and applications.
第一方面,本发明首先保护SiMYB61蛋白或其相关生物材料在如下(a1)和/或(a2)中的应用:In the first aspect, the present invention first protects the application of SiMYB61 protein or its related biological materials in the following (a1) and/or (a2):
(a1)调控植物产量相关性状;(a1) regulating plant yield-related traits;
(a2)调控植物抗逆性;(a2) regulating plant stress resistance;
所述相关生物材料为能够表达所述SiMYB61蛋白的核酸分子或含有所述核酸分子的表达盒、重组载体、重组菌或转基因细胞系;The relevant biological material is a nucleic acid molecule capable of expressing the SiMYB61 protein or an expression cassette, a recombinant vector, a recombinant bacteria or a transgenic cell line containing the nucleic acid molecule;
所述SiMYB61蛋白为如下任一所示蛋白质:The SiMYB61 protein is any one of the following proteins:
(A1)氨基酸序列为SEQ ID No.4的蛋白质;(A1) protein whose amino acid sequence is SEQ ID No.4;
(A2)将SEQ ID No.4所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;(A2) The amino acid sequence shown in SEQ ID No. 4 is subjected to substitution and/or deletion and/or addition of one or several amino acid residues and has the same function;
(A3)与(A1)-(A2)中任一所限定的氨基酸序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同一性且具有相同功能的蛋白质;(A3) A protein that has 99% or more, 95% or more, 90% or more, 85% or more, or 80% or more identity with the amino acid sequence defined in any one of (A1)-(A2) and has the same function;
(A4)在(A1)-(A3)中任一所限定的蛋白质的N端和/或C端连接蛋白标签后得到的融合蛋白。(A4) A fusion protein obtained by attaching a protein tag to the N-terminus and/or C-terminus of the protein as defined in any of (A1)-(A3).
上述蛋白质可人工合成,也可先合成其编码基因,再进行生物表达得到。The above proteins can be artificially synthesized or obtained by first synthesizing their coding genes and then carrying out biological expression.
上述蛋白质中,所述标签可为Flag标签、His标签、MBP标签、HA标签、myc标签、GST标签和/或SUMO标签等。Among the above proteins, the tag can be a Flag tag, His tag, MBP tag, HA tag, myc tag, GST tag and/or SUMO tag, and the like.
所述核酸分子具体可为SiMYB61蛋白的编码基因。所述SiMYB61蛋白的编码基因是如下任一所述的DNA分子:The nucleic acid molecule can specifically be the gene encoding SiMYB61 protein. The gene encoding the SiMYB61 protein is any of the following DNA molecules:
(B1)SEQ ID No.1所示的DNA分子;(B1) the DNA molecule shown in SEQ ID No.1;
(B2)SEQ ID No.2所示的DNA分子;(B2) the DNA molecule shown in SEQ ID No.2;
(B3)SEQ ID No.3所示的DNA分子;(B3) the DNA molecule shown in SEQ ID No.3;
(B4)在严格条件下与(B1)或(B2)或(B3)限定的DNA分子杂交且编码所述SiMYB61蛋白的DNA分子;(B4) a DNA molecule that hybridizes to the DNA molecule defined in (B1) or (B2) or (B3) under stringent conditions and encodes the SiMYB61 protein;
(B3)与(B1)或(B2)或(B3)限定的DNA序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同一性且编码所述SiMYB61蛋白的DNA分子。(B3) A DNA molecule that is 99% or more, 95% or more, 90% or more, 85% or more, or 80% or more identical to the DNA sequence defined in (B1) or (B2) or (B3) and encodes the SiMYB61 protein .
所述严格条件可为如下:50℃,在7%十二烷基硫酸钠(SDS)、0.5M NaPO4和1mMEDTA的混合溶液中杂交,在50℃,2×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5MNaPO4和1mM EDTA的混合溶液中杂交,在50℃,1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,0.5×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,0.1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在65℃,0.1×SSC,0.1%SDS中漂洗;也可为:在6×SSC,0.5%SDS的溶液中,在65℃下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次。The stringent conditions may be as follows: 50°C, hybridization in a mixed solution of 7% sodium dodecyl sulfate (SDS), 0.5M NaPO 4 and 1 mM EDTA, rinsing at 50°C, 2×SSC, 0.1% SDS; It can also be: 50°C, hybridize in a mixed solution of 7% SDS, 0.5M NaPO 4 and 1mM EDTA, and rinse in 1×SSC, 0.1% SDS at 50°C; it can also be: 50°C, in 7% SDS, Hybridization in a mixed solution of 0.5M NaPO 4 and 1 mM EDTA, rinsed at 50°C, 0.5×SSC, 0.1% SDS; also: 50°C, in a mixed solution of 7% SDS, 0.5M NaPO 4 and 1 mM EDTA Hybridization, rinsed in 0.1×SSC, 0.1% SDS at 50°C; alternatively: 50°C, hybridization in a mixture of 7% SDS, 0.5M NaPO 4 and 1 mM EDTA, at 65°C, 0.1×SSC, 0.1 Rinse in % SDS; alternatively: hybridize in 6×SSC, 0.5% SDS solution at 65°C, then wash the membrane once with 2×SSC, 0.1% SDS and 1×SSC, 0.1% SDS each.
所述表达盒具体可为由ubiquitin组成型启动子、上述SiMYB61蛋白的编码基因和终止子nos 3’组成的表达盒。所述表达盒具体可为将重组载体采用HindⅢ和EcoRⅠ双酶切得到的。所述重组载体具体可为SEQ ID NO.3克隆到载体LP0471118-Bar-ubi-EDLL的BamHI和SpeI位点得到的重组载体。Specifically, the expression cassette may be an expression cassette consisting of a ubiquitin constitutive promoter, the coding gene of the above-mentioned SiMYB61 protein, and the terminator nos 3'. Specifically, the expression cassette can be obtained by double digestion of the recombinant vector with HindIII and EcoRI. Specifically, the recombinant vector can be a recombinant vector obtained by cloning SEQ ID NO. 3 into the BamHI and SpeI sites of the vector LP0471118-Bar-ubi-EDLL.
所述重组菌可为将上述表达盒或重组载体导入农杆菌菌株中得到的。所述农杆菌菌株具体可为农杆菌菌株EHA105。The recombinant bacteria can be obtained by introducing the above-mentioned expression cassettes or recombinant vectors into Agrobacterium strains. The Agrobacterium strain can be specifically Agrobacterium strain EHA105.
所述应用中,所述植物产量相关性状包括穗数、穗长、每穗粒数和/或生物量;所述生物量包括稻草重和/或稻谷重。In the application, the plant yield-related traits include ear number, ear length, grain number per ear and/or biomass; and the biomass includes straw weight and/or rice weight.
所述植物抗逆性为植物对于低氮胁迫的抗性。The plant stress resistance is the resistance of the plant to low nitrogen stress.
所述调控为正向调控。The regulation is positive regulation.
第二方面,本发明保护SiMYB61蛋白或其相关生物材料在植物育种中的应用;In the second aspect, the present invention protects the application of SiMYB61 protein or its related biological materials in plant breeding;
所述相关生物材料为能够表达所述SiMYB61蛋白的核酸分子或含有所述核酸分子的表达盒、重组载体、重组菌或转基因细胞系;The relevant biological material is a nucleic acid molecule capable of expressing the SiMYB61 protein or an expression cassette, a recombinant vector, a recombinant bacteria or a transgenic cell line containing the nucleic acid molecule;
所述SiMYB61蛋白如前文所示。The SiMYB61 protein is as previously described.
所述应用中,所述育种的目的是为了选育产量高和/或抗逆性高的植物。所述产量高具体可体现为穗数多和/或穗长高和/或每穗粒数多和/或生物量高。所述生物量包括稻草重和/或稻谷重。所述耐逆性具体为对低氮胁迫的抗性。所述低氮胁迫的抗性高体现为低氮胁迫下产量高和/或株高高。所述低氮胁迫的抗性高体现为含氮量高。In the application, the purpose of the breeding is to select plants with high yield and/or high stress resistance. The high yield can be embodied by the number of panicles and/or the height of the panicle and/or the number of grains per panicle and/or the high biomass. The biomass includes straw weight and/or rice weight. The stress tolerance is specifically resistance to low nitrogen stress. The high resistance to low nitrogen stress is reflected in high yield and/or high plant height under low nitrogen stress. The high resistance to the low nitrogen stress is reflected in the high nitrogen content.
第三方面,本发明保护一种提高植物产量和/或提高植物耐逆性的方法,包括使受体植物中SiMYB61蛋白的表达量和/或活性提高的步骤。In a third aspect, the present invention protects a method for increasing plant yield and/or increasing plant stress tolerance, comprising the step of increasing the expression and/or activity of SiMYB61 protein in recipient plants.
所述产量具体为穗数、穗长、每穗粒数、粒重和/或生物量。The yield is specifically ear number, ear length, grain number per ear, grain weight and/or biomass.
所述生物量包括稻草重和/或稻谷重。The biomass includes straw weight and/or rice weight.
所述耐逆性具体为对低氮胁迫的抗性。The stress tolerance is specifically resistance to low nitrogen stress.
所述耐逆性提高具体可体现为低氮胁迫下产量提高和/或株高提高。The improvement of stress tolerance can specifically be embodied as an increase in yield and/or an increase in plant height under low nitrogen stress.
所述低氮胁迫的抗性高体现为含氮量高。The high resistance to the low nitrogen stress is reflected in the high nitrogen content.
所述SiMYB61蛋白如前文所示。The SiMYB61 protein is as previously described.
第四方面,本发明保护一种培育转基因植物的方法,包括如下步骤:向受体植物中导入能够表达SiMYB61蛋白的核酸分子,得到所述SiMYB61蛋白表达量提高的转基因植物;所述转基因植物与所述受体植物相比产量和/或抗逆性提高。In a fourth aspect, the present invention protects a method for cultivating a transgenic plant, comprising the steps of: introducing a nucleic acid molecule capable of expressing SiMYB61 protein into a recipient plant to obtain a transgenic plant with increased expression of the SiMYB61 protein; The recipient plants have improved yield and/or stress tolerance compared to the recipient plants.
所述产量具体为穗数、穗长、每穗粒数、粒重和/或生物量。The yield is specifically ear number, ear length, grain number per ear, grain weight and/or biomass.
所述生物量包括稻草重和/或稻谷重。The biomass includes straw weight and/or rice weight.
所述耐逆性具体为对低氮胁迫的抗性。The stress tolerance is specifically resistance to low nitrogen stress.
所述耐逆性提高具体可体现为低氮胁迫下产量提高和/或株高提高。The improvement of stress tolerance can specifically be embodied as an increase in yield and/or an increase in plant height under low nitrogen stress.
所述低氮胁迫的抗性高体现为含氮量高。The high resistance to the low nitrogen stress is reflected in the high nitrogen content.
所述“向受体植物中导入能够表达SiMYB61蛋白的核酸分子”是通过向所述受体植物中导入含有所述SiMYB61蛋白的编码基因的表达盒实现的。The "introducing a nucleic acid molecule capable of expressing SiMYB61 protein into a recipient plant" is achieved by introducing an expression cassette containing the gene encoding the SiMYB61 protein into the recipient plant.
所述SiMYB61蛋白的编码基因如前文所示。The gene encoding the SiMYB61 protein is shown above.
所述表达盒具体可为由ubiquitin组成型启动子、上述SiMYB61蛋白的编码基因和终止子nos 3’组成的表达盒。所述表达盒具体可为将重组载体采用HindⅢ和EcoRⅠ双酶切得到的。所述重组载体具体可为SEQ ID NO.3克隆到载体LP0471118-Bar-ubi-EDLL的BamHI和SpeI位点得到的重组载体。Specifically, the expression cassette may be an expression cassette consisting of a ubiquitin constitutive promoter, the coding gene of the above-mentioned SiMYB61 protein, and the terminator nos 3'. Specifically, the expression cassette can be obtained by double digestion of the recombinant vector with HindIII and EcoRI. Specifically, the recombinant vector can be a recombinant vector obtained by cloning SEQ ID NO. 3 into the BamHI and SpeI sites of the vector LP0471118-Bar-ubi-EDLL.
以上任一所述每穗粒数为每穗实粒和/或每穗总粒。Any of the above mentioned number of grains per panicle refers to real grains per panicle and/or total grains per panicle.
以上任一所述植物为双子叶植物或单子叶植物;Any of the above-mentioned plants is a dicotyledonous plant or a monocotyledonous plant;
进一步地,所述单子叶植物为禾本科植物;Further, the monocotyledonous plant is a grass;
更进一步地,所述禾本科植物为水稻或谷子。Further, the grasses are rice or millet.
所述水稻具体可为水稻品种Kitaake。The rice can be specifically the rice variety Kitaake.
所述谷子具体可为豫谷一号。The millet can be specifically Yugu No. 1.
本发明为水稻逆境基因工程提供了新的基因,同时通过遗传转化导入粳稻优良品种,培育抗逆转基因新品种,可以有效地提高水稻的抗逆性,减少逆境胁迫对水稻生产的影响,将有重要的经济效益和社会效益。The invention provides a new gene for rice stress genetic engineering, and at the same time, through genetic transformation to introduce an excellent variety of japonica rice, and cultivating a new anti-reversion gene variety, the stress resistance of rice can be effectively improved, and the impact of stress on rice production can be reduced. important economic and social benefits.
附图说明Description of drawings
图1为转SiMYB61基因抗逆水稻的SSR检测结果。Marker:DL1000 Marker;阴性对照:Kitaake;阳性对照:植物表达载体psSiMYB61。Figure 1 shows the SSR detection results of the transgenic SiMYB61 gene resistant rice. Marker: DL1000 Marker; negative control: Kitaake; positive control: plant expression vector psSiMYB61.
图2为18年田间检测数据统计结果。Figure 2 shows the statistical results of field testing data in 18 years.
图3为转基因植株与野生型表型对比。Figure 3 is a comparison of the phenotypes of transgenic plants and wild type.
图4为19年田间正常处理条件下检测数据统计结果。Figure 4 shows the statistical results of the detection data under normal treatment conditions in the field for 19 years.
图5为19年田间低氮胁迫条件下检测数据统计结果。Figure 5 shows the statistical results of the detection data under the condition of low nitrogen stress in the field for 19 years.
图6为19年田间稻草及稻谷重量检测数据统计结果。Figure 6 shows the statistical results of the 19-year field straw and paddy weight detection data.
具体实施方式Detailed ways
以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。The following examples facilitate a better understanding of the present invention, but do not limit the present invention. The experimental methods in the following examples are conventional methods unless otherwise specified. The test materials used in the following examples were purchased from conventional biochemical reagent stores unless otherwise specified. The quantitative tests in the following examples are all set to repeat the experiments three times, and the results are averaged.
LP0471118-Bar-ubi-EDLL载体:记载于文献:宁蕾,王曙光,琚鹏举,柏星轩,葛林豪,齐欣,姜奇彦,孙现军,陈明,孙黛珍.过表达谷子SiANT1对水稻耐盐性的影响[J].中国农业科学,2018,51(10):1830-1841.公众可以从中国农业科学院作物科学研究所获得。LP0471118-Bar-ubi-EDLL vector: documented in the literature: Ning Lei, Wang Shuguang, Ju Pengju, Bai Xingxuan, Ge Linhao, Qi Xin, Jiang Qiyan, Sun Xianjun, Chen Ming, Sun Daizhen. Effects of overexpression of SiANT1 in millet on the salinity tolerance of rice[ J]. Chinese Agricultural Sciences, 2018, 51(10): 1830-1841. The public can obtain from the Institute of Crop Science, Chinese Academy of Agricultural Sciences.
豫谷一号:记载于文献:宁蕾,王曙光,琚鹏举,柏星轩,葛林豪,齐欣,姜奇彦,孙现军,陈明,孙黛珍.过表达谷子SiANT1对水稻耐盐性的影响[J].中国农业科学,2018,51(10):1830-1841.;公众可以从中国农业科学院作物科学研究所获得。Yugu No. 1: Recorded in the literature: Ning Lei, Wang Shuguang, Ju Pengju, Bai Xingxuan, Ge Linhao, Qi Xin, Jiang Qiyan, Sun Xianjun, Chen Ming, Sun Daizhen. Effects of overexpression of SiANT1 in millet on salt tolerance of rice[J]. Chinese Agriculture Science, 2018, 51(10): 1830-1841.; Publicly available from the Institute of Crop Science, Chinese Academy of Agricultural Sciences.
bar基因表达载体pSBAR:记载于文献:苏瑞波.利用改进的最小表达框技术获得抗旱转基因小麦[D].内蒙古农业大学,2012.;公众可以从中国农业科学院作物科学研究所获得。The bar gene expression vector pSBAR: recorded in the literature: Su Ruibo. The use of improved minimal expression cassette technology to obtain drought-resistant transgenic wheat [D]. Inner Mongolia Agricultural University, 2012.; Publicly available from the Institute of Crop Science, Chinese Academy of Agricultural Sciences.
农杆菌菌株EHA105:北京擎科新业生物技术有限公司。Agrobacterium strain EHA105: Beijing Qingke Xinye Biotechnology Co., Ltd.
水稻品种Kitaake:记载于文献:宁蕾,王曙光,琚鹏举,柏星轩,葛林豪,齐欣,姜奇彦,孙现军,陈明,孙黛珍.过表达谷子SiANT1对水稻耐盐性的影响[J].中国农业科学,2018,51(10):1830-1841.;公众可以从中国农业科学院作物科学研究所获得。Rice variety Kitaake: documented in the literature: Ning Lei, Wang Shuguang, Ju Pengju, Bai Xingxuan, Ge Linhao, Qi Xin, Jiang Qiyan, Sun Xianjun, Chen Ming, Sun Daizhen. Effects of overexpression of SiANT1 in millet on salt tolerance of rice[J]. Chinese Agriculture Science, 2018, 51(10): 1830-1841.; Publicly available from the Institute of Crop Science, Chinese Academy of Agricultural Sciences.
实施例1、SiMYB61蛋白及其编码基因的获得Example 1. Acquisition of SiMYB61 protein and its encoding gene
从逆性谷子豫谷一号确认中克隆得到一个抗逆相关基因,命名为SiMYB61基因,其基因组序列如SEQ ID NO.1所示,转录序列如SEQ ID NO.2所示,CDS如SEQ ID NO.3所示。SiMYB61基因编码的蛋白质(SiMYB61蛋白)如SEQ ID NO.4所示。A resistance-related gene was cloned from the confirmation of retrograde foxtail millet Yugu No. 1 and named as SiMYB61 gene. Its genome sequence is shown in SEQ ID NO.1, its transcription sequence is shown in SEQ ID NO.2, and its CDS is shown in SEQ ID NO. .3 shown. The protein encoded by the SiMYB61 gene (SiMYB61 protein) is shown in SEQ ID NO.4.
实施例2、SiMYB61蛋白及其编码基因在水稻育种中的应用Example 2. Application of SiMYB61 protein and its encoding gene in rice breeding
一、线性最小表达框的制备1. Preparation of linear minimal expression cassettes
1、植物表达载体psSiMYB61的获得1. Obtaining the plant expression vector psSiMYB61
提取豫谷一号的总RNA,并反转录为cDNA。以所述cDNA为模板,采用引物F和引物R进行PCR扩增,利用Clotech公司的无缝克隆试剂盒(货号:639649)按照说明书步骤将SiMYB61的CDS序列(SEQ ID NO.3)克隆到载体LP0471118-Bar-ubi-EDLL的BamHI和SpeI位点,得到植物表达载体psSiMYB61(已经测序验证)。Total RNA from Yugu No. 1 was extracted and reverse transcribed into cDNA. Using the cDNA as a template, primer F and primer R were used for PCR amplification, and the CDS sequence (SEQ ID NO. 3) of SiMYB61 was cloned into the vector using the seamless cloning kit of Clotech company (catalog number: 639649) according to the instructions. The BamHI and SpeI sites of LP0471118-Bar-ubi-EDLL were used to obtain the plant expression vector psSiMYB61 (which has been verified by sequencing).
引物F:5’-AGACCGATCTGGATCATGGGGAAGCACTCCTGC-3’;Primer F: 5'-AGACCGATCTGGATCATGGGGAAGCACTCCTGC-3';
引物R:5’-CGATCGATCCACTAGCTAGATATTCTCGAAAGACAAGGACATTCTCTG-3’。Primer R: 5'-CGATCGATCCACTAGCTAGATATTCTCGAAAGACAAGGACATTCTCTG-3'.
2、线性最小表达框的制备2. Preparation of linear minimal expression cassettes
采用HindⅢ和EcoRⅠ双酶切步骤1得到的植物表达载体psSiMYB61,回收约3500bp的片段,得到SiMYB61基因线性最小表达框,线性最小表框由ubiquitin组成型启动子(1800bp)、SiMYB61基因(1275bp)和终止子nos 3’(300bp)组成。最小表达框转化法可以去除载体骨架序列,不带有氨苄青霉素抗性基因,转基因水稻与受体没有显著差异,没有致病性,降低了插入植物基因组外源片段的安全风险。The plant expression vector psSiMYB61 obtained in step 1 was digested with HindIII and EcoRI, and a fragment of about 3500 bp was recovered to obtain a linear minimal expression frame of the SiMYB61 gene. The terminator nos 3' (300bp) is composed. The minimal expression cassette transformation method can remove the vector backbone sequence, without ampicillin resistance gene, transgenic rice is not significantly different from the receptor, and has no pathogenicity, which reduces the safety risk of inserting exogenous fragments into the plant genome.
采用bar基因作为标记基因,制备标记基因表达框:采用Hind III酶切bar基因表达载体pSBAR,回收酶切产物,即为标记基因表达框;所述标记基因表达框由玉米ubiquitin启动子、标记基因bar和nos终止子组成。The bar gene was used as the marker gene to prepare the marker gene expression frame: the bar gene expression vector pSBAR was digested with Hind III enzyme, and the digested product was recovered, which was the marker gene expression frame; the marker gene expression frame was composed of the maize ubiquitin promoter and marker gene. bar and nos terminator.
二、水稻转化The transformation of rice
1、将步骤一制备的SiMYB61基因线性最小表达框和标记基因表达框转化农杆菌菌株EHA105,得到重组农杆菌。1. The linear minimal expression cassette and marker gene expression cassette of the SiMYB61 gene prepared in step 1 were transformed into Agrobacterium strain EHA105 to obtain a recombinant Agrobacterium.
2、取授粉后12~14天的水稻品种Kitaake的未成熟胚,70%乙醇中浸泡1分钟,然后用10%的次氯酸钠消毒15分钟,经无菌水3~5次冲洗后,超净台上取出幼胚,接种于SD2培养基(MS基本培养基(不含维生素)+2mg/L 2,4-D+1mg/LVB1+150mg/LAsn天冬酰胺+30g/L蔗糖+2.4g/L植物凝胶,pH=5.8)上诱导幼胚愈伤组织7天,然后将诱导的愈伤组织转到高渗培养基(MS基本培养基+5mg/L 2,4-D+0.4mol/L甘露醇+3g/L植物凝胶)上高渗处理4~6小时。2. Take the immature embryos of the
3、完成步骤2后,将愈伤组织进行农杆菌侵染,将愈伤组织浸泡于OD600=0.8的重组农杆菌菌液中,180r/min振荡侵染30min左右。3. After step 2 is completed, the callus is infected with Agrobacterium, and the callus is immersed in the recombinant Agrobacterium solution with OD 600 = 0.8, and the callus is oscillated at 180 r/min for about 30 minutes.
4、完成步骤3后,将愈伤组织在高渗培养基上继续培养16~18小时,然后将侵染后的愈伤组织转到SD2培养基上暗培养两星期。4. After completing step 3, the callus was cultured on the hypertonic medium for 16-18 hours, and then the infected callus was transferred to SD 2 medium for two weeks in the dark.
5、完成步骤4后,将愈伤组织转接至含有2~3毫克/升的除草剂Bialaphos的选择培养基上(MS基本培养基(不含维生素)+2mg/L 2,4-D+1mg/LVB1+150mg/LAsn天冬酰胺+30g/L蔗糖+2.4g/L植物凝胶+2-3mg/L的除草剂Bialaphos,pH=5.8)进行愈伤组织筛选、分化和壮苗,得到T0代的转基因水稻植株。5. After completing step 4, transfer the callus to a selective medium containing 2-3 mg/L of the herbicide Bialaphos (MS minimal medium (without vitamins) + 2 mg/L 2,4-D+ 1mg/LVB1+150mg/LAsn asparagine+30g/L sucrose+2.4g/L phytogel+2-3mg/L herbicide Bialaphos, pH=5.8) to screen callus, differentiate and strengthen seedlings to obtain Transgenic rice plants of the T0 generation.
三、转基因阳性水稻的鉴定3. Identification of transgenic positive rice
采用SDS方法提取待测T0代水稻叶片DNA,以所述DNA为模板,根据SiMYB61基因序列设计扩增部分序列的引物进行PCR扩增,采用引物F和引物R进行PCR扩增,将PCR扩增产物通过0.8%的琼脂糖胶检测,紫外拍照。采用水稻品种Kitaake替代T0代水稻进行上述操作,作为阴性对照;采用植物表达载体psSiMYB61作为阳性对照。The SDS method was used to extract the DNA of the rice leaves of the T0 generation to be tested. Using the DNA as a template, primers for amplifying part of the sequence were designed according to the SiMYB61 gene sequence for PCR amplification, and primer F and primer R were used for PCR amplification. The product was detected by 0.8% agarose gel and photographed by UV light. The rice variety Kitaake was used to replace the T0 generation rice for the above operation as a negative control; the plant expression vector psSiMYB61 was used as a positive control.
F:5’-TGGCAACTTGAGCCATCTCC-3’;F: 5'-TGGCAACTTGAGCCATCTCC-3';
R:5’-GTTGATGTTGAGAGAGTT-3’。R: 5'-GTTGATGTTGAGAGAGTT-3'.
PCR反应体系见表1。PCR反应条件:94℃变性5min;94℃50sec,62℃50sec,72℃1min,35个循环;72℃延伸10min。The PCR reaction system is shown in Table 1. PCR reaction conditions: denaturation at 94°C for 5 min; 35 cycles of 94°C for 50 sec, 62°C for 50 sec, 72°C for 1 min; extension at 72°C for 10 min.
表1Table 1
结果如图1所示。经过PCR检测中,获得5株阳性植株,阳性率为2%。经过温室加代、筛选和鉴定,选择选择转SiMYB61水稻纯合株系,依次命名为OE21、OE44用于下述实验。The results are shown in Figure 1. After PCR detection, 5 positive plants were obtained, and the positive rate was 2%. After generation, screening and identification in the greenhouse, the homozygous lines of SiMYB61 transgenic rice were selected and named as OE21 and OE44 for the following experiments.
四、转基因水稻表型检测4. Phenotypic detection of transgenic rice
1、2018年田间表型检测1. Field phenotype detection in 2018
待测植株:水稻品种Kitaake(WT)、转基因株系OE21、转基因株系OE44。Plants to be tested: rice variety Kitaake (WT), transgenic line OE21, and transgenic line OE44.
试验地点:江西省高安江西省农业科学院水稻研究所转基因试验基地。Test site: Gao'an, Jiangxi Province, Jiangxi Academy of Agricultural Sciences, Rice Research Institute, Transgenic Test Base.
秧田管理与大田生产相同(不添加氮肥),各试验材料能够正常生长。Seedling management was the same as field production (no nitrogen fertilizer was added), and each test material could grow normally.
每份材料分别收获8株,三次重复,分别测定各材料的生物产量、稻谷产量。8 plants were harvested from each material, repeated three times, and the biological yield and rice yield of each material were determined respectively.
利用凯氏定氮法分别测定参试材料的稻谷含N量、稻草含N量。检测方法具体参考文献“杨亚丽,蔡顺林.流动分析法与凯氏定氮法测定植物全氮的比较[J].玉溪师范学院学报,2016,32(08):51-54.”和“戴宏林,吴小骏.用凯氏定氮法测定植物干样品中的氮含量[J].江苏农学院学报,1995(03):70.”中的方法。The Kjeldahl method was used to determine the N content of rice and straw of the test materials respectively. The specific reference for the detection method is "Yang Yali, Cai Shunlin. Comparison of flow analysis method and Kjeldahl method for determination of total nitrogen in plants [J]. Journal of Yuxi Normal University, 2016, 32(08): 51-54." and "Dai Honglin, Wu Xiaojun. Determination of nitrogen content in plant dry samples by Kjeldahl method [J]. Journal of Jiangsu Agricultural University, 1995(03):70.” Method in.
各材料分别取3株进行室内考种,考察其单株有效穗数(单穗在5粒以上为有效穗)、每穗实粒、每穗总粒、结实率等。Three plants of each material were selected for indoor seed testing, and the number of effective panicles per plant (more than 5 per panicle was considered effective panicle), the number of grains per panicle, the total grains per panicle, and the seed setting rate were investigated.
结果如图2所示。图2中,稻谷含氮量、稻草含氮量的单位为g/8株,为8株稻谷/稻草重的氮含量。稻草全氮含量的单位为百分数(%),是指稻草含氮量/此8株稻草的重量。The results are shown in Figure 2. In Fig. 2, the unit of nitrogen content of rice and nitrogen content of rice straw is g/8 plants, which is the nitrogen content of 8 rice plants/straw weight. The unit of the total nitrogen content of the straw is percentage (%), which means the nitrogen content of the straw/the weight of the 8 straws.
结果显示,在不施氮肥的处理下,与对照水稻品种Kitaake相比,转基因水稻株系的干谷重、稻草干重均高于对照。单株有效穗数、每穗实粒数、每穗总粒数均高于对照。稻谷含N量、稻草含N量也均高于对照。The results showed that the dry grain weight and straw dry weight of the transgenic rice lines were higher than those of the control rice variety Kitaake without nitrogen fertilizer. The number of effective panicles per plant, the number of real grains per panicle and the total number of grains per panicle were higher than those of the control. The N content of rice and the N content of rice straw were also higher than those of the control.
2、2019田间数据2. 2019 field data
待测植株:水稻品种Kitaake(WT)、转基因株系OE44。Plants to be tested: rice variety Kitaake (WT), transgenic line OE44.
试验地点:江西省高安江西省农业科学院水稻研究所转基因试验基地。Test site: Gao'an, Jiangxi Province, Jiangxi Academy of Agricultural Sciences, Rice Research Institute, Transgenic Test Base.
秧田管理与大田生产相同。各试验材料能够正常生长。Seedling management is the same as field production. Each test material can grow normally.
试验设每亩施纯氮12公斤和不施氮肥两个处理,每个处理设两个重复。The test set up two treatments with 12 kg of pure nitrogen per mu and no nitrogen fertilizer, and each treatment set up two replicates.
每份材料栽6行,每行8兜,行株距5×6寸,单本栽插。Each material is planted in 6 rows, 8 pockets in each row, and the row spacing is 5 × 6 inches. Single planting.
试验面积4.0亩。大田其它肥水管理与当地生产相同。The test area is 4.0 mu. The management of other fertilizers and water in the field is the same as that of local production.
每份材料每个处理分别收获20株,三次重复,分别测定各材料稻草重、稻谷重。20 plants were harvested for each material and each treatment, repeated three times, and the weights of straw and rice were determined for each material.
各材料每个处理每份材料分别收获8株,三次重复,分别测定各材料的生物产量、稻谷产量。Eight plants were harvested from each treatment and each material was repeated three times, and the biological yield and rice yield of each material were determined respectively.
各材料每个处理分别取3株进行室内考种,考察其单株有效穗数、每穗实粒、每穗总粒等。Three plants of each treatment were selected for indoor seed testing, and the number of effective panicles per plant, the number of grains per panicle, and the total grains per panicle were investigated.
表型观察结果如图3所示。The phenotypic observations are shown in Figure 3.
统计结果如图4(正常处理)、图5(低氮处理)和图6所示。The statistical results are shown in Figure 4 (normal treatment), Figure 5 (low nitrogen treatment) and Figure 6.
上述结果显示,在正常施氮肥条件下,转基因植株的生物量(稻草重、稻谷重)、穗长、每穗总粒明显高于受体植株。在低氮胁迫下,转基因植株的生物量(稻草重、稻谷重)、株高、穗数、穗长、每穗实粒、每穗总粒也高于受体植株。The above results showed that the biomass (straw weight, rice weight), ear length and total grains per ear of the transgenic plants were significantly higher than those of the recipient plants under normal nitrogen fertilization conditions. Under low nitrogen stress, the biomass (straw weight, paddy weight), plant height, ear number, ear length, grains per ear, and total grains per ear of transgenic plants were also higher than those of recipient plants.
序列表sequence listing
<110> 中国农业科学院作物科学研究所<110> Institute of Crop Science, Chinese Academy of Agricultural Sciences
山西农业大学Shanxi Agricultural University
<120> SiMYB61蛋白及其相关生物材料在调控植物抗逆性中的应用<120> Application of SiMYB61 protein and related biomaterials in regulating plant stress resistance
<160> 4<160> 4
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 2271<211> 2271
<212> DNA<212> DNA
<213> 谷子(Setaria italica)<213> Millet (Setaria italica)
<400> 1<400> 1
tgataggaca taaggacaca cacgcttaca gagaagcaac aaagggaagg gctaagagcc 60tgataggaca taaggacaca cacgcttaca gagaagcaac aaagggaagg gctaagagcc 60
tgaggctccc acaaccacca gctttaaaag aaggggggca attggggagg gaggcctgca 120tgaggctccc acaaccacca gctttaaaag aaggggggca attggggagg gaggcctgca 120
aagaaaagga gaagagtgcc cttaagccta ccagtgcctt cctccaaatc ctgatattag 180aagaaaagga gaagagtgcc cttaagccta ccagtgcctt cctccaaatc ctgatattag 180
tagccactag ttgctgccgt tctcccacaa gctctactct atcagacacc actatatgag 240tagccactag ttgctgccgt tctcccacaa gctctactct atcagacacc actatatgag 240
cccgtataag cagttcatcc acaataatcc cacccttgaa ccacaaattg ttgagaggtg 300cccgtataag cagttcatcc acaataatcc cacccttgaa ccacaaattg ttgagaggtg 300
ttcttagaac cagaggatta cctgtgaaga attctgtgct gctcctcaag gtgtgtgcag 360ttcttagaac cagaggatta cctgtgaaga attctgtgct gctcctcaag gtgtgtgcag 360
attgcagagc tcagcttcag cttctgcatt gctttcaatg gggaagcact cctgctgtta 420attgcagagc tcagcttcag cttctgcatt gctttcaatg gggaagcact cctgctgtta 420
caagcagaag ctgaggaagg ggctctggtc tcctgaggaa gacgagaagc tcatgaacca 480caagcagaag ctgaggaagg ggctctggtc tcctgaggaa gacgagaagc tcatgaacca 480
cataaccaag catgggcatg gctgctggag cactgttcca aagcttgcag gtacaatcaa 540cataaccaag catgggcatg gctgctggag cactgttcca aagcttgcag gtacaatcaa 540
aatcctgcac actttattct tctcaattat ccattcccac tgtttcctat tcatctccaa 600aatcctgcac actttattct tctcaattat ccattcccac tgtttcctat tcatctccaa 600
ggccacttct tctcccaatc ttctcatacc tgcccaatta atgattgcag ggcttcaaag 660ggccacttct tctcccaatc ttctcatacc tgcccaatta atgattgcag ggcttcaaag 660
gtgtggcaag agctgcaggc tgaggtggat aaattacctg aggcctgacc ttaaaagagg 720gtgtggcaag agctgcaggc tgaggtggat aaattacctg aggcctgacc ttaaaagagg 720
tgcattctct caggaggagg aagaccttat cattgaactt catgctgtct tgggcaacag 780tgcattctct caggaggagg aagaccttat cattgaactt catgctgtct tgggcaacag 780
gtaaatttaa tcccaaatca cactgtcaga attttgcacc tattgcttca aagcaagctt 840gtaaatttaa tcccaaatca cactgtcaga attttgcacc tattgcttca aagcaagctt 840
tccttaacta tgcctttttc acgtaaatga acaggtggtc tcagattgca acacggttgc 900tccttaacta tgccttttttc acgtaaatga acaggtggtc tcagattgca acacggttgc 900
ctggaagaac tgataacgag atcaagaatc tctggaattc aagcatcaag aagaagctcc 960ctggaagaac tgataacgag atcaagaatc tctggaattc aagcatcaag aagaagctcc 960
ggcagaaagg catcgacccc aacacccaca agccccttgc tgaggttgat cgcaaaatag 1020ggcagaaagg catcgacccc aacacccaca agccccttgc tgaggttgat cgcaaaatag 1020
ctccaacaat cagtactgag agaacctccg agtccagcga tattgaccct tcaagtggtg 1080ctccaacaat cagtactgag agaacctccg agtccagcga tattgaccct tcaagtggtg 1080
gtgcacttgg caacttgagc catctcctca gtgagacagc acaatcacca gagctgctgc 1140gtgcacttgg caacttgagc catctcctca gtgagacagc acaatcacca gagctgctgc 1140
cagtgctcgg taagcatcgc aaagaaacta ctagtttggc acatctaagg gtgccatcga 1200cagtgctcgg taagcatcgc aaagaaacta ctagtttggc acatctaagg gtgccatcga 1200
aggagctatt ccttgaccag cttgtttctg gtaatgataa cctccccagc tgccgctcaa 1260aggagctatt ccttgaccag cttgtttctg gtaatgataa cctccccagc tgccgctcaa 1260
caggcccaat tccaaatttc cctttccagc agttgatgtg ttacagcaat gaatttggcg 1320caggcccaat tccaaatttc cctttccagc agttgatgtg ttacagcaat gaatttggcg 1320
gcaagcatgg aggcagcacg aatccactct ggtttaacca gaatgagtca agctgcagca 1380gcaagcatgg aggcagcacg aatccactct ggtttaacca gaatgagtca agctgcagca 1380
ccatttccac tgtgatgcca ccagtttcgc catcaactct ctcaacatca acaggactca 1440ccatttccac tgtgatgcca ccagtttcgc catcaactct ctcaacatca acaggactca 1440
ataggtcacc ggacaatcca cactctggag gtactggcat tcagagtaac caattctact 1500ataggtcacc ggacaatcca cactctggag gtactggcat tcagagtaac caattctact 1500
gggacaccac taatcctagc agcagtagca gtaaaggaag cagtggaagc aatagcttgg 1560gggacaccac taatcctagc agcagtagca gtaaaggaag cagtggaagc aatagcttgg 1560
gatttgagct gcaaagcaca agctcaattc tggagaatag tatcttccca tggacagatt 1620gatttgagct gcaaagcaca agctcaattc tggagaatag tatcttccca tggacagatt 1620
tatcgccaga taaaaatagc cacctagagg aagaactcaa gtggcctgac ctgctccatg 1680tatcgccaga taaaaatagc cacctagagg aagaactcaa gtggcctgac ctgctccatg 1680
gaaccttcac agatacacca gcaaccatgc agaatcttag ccaatcactg tatgaagatg 1740gaaccttcac agatacacca gcaaccatgc agaatcttag ccaatcactg tatgaagatg 1740
tggtcaaagc cgagaaccaa ttcaacatgg agggcctctg tgcagcttgg tctcaaaatt 1800tggtcaaagc cgagaaccaa ttcaacatgg agggcctctg tgcagcttgg tctcaaaatt 1800
tgcagccaca gcaacatctg caggtagcat cagatttgta tgacaaggat ttgcagagaa 1860tgcagccaca gcaacatctg caggtagcat cagatttgta tgacaaggat ttgcagagaa 1860
tgtccttgtc tttcgagaat atctaggcaa catgtttcag catgcatgga acagaacaat 1920tgtccttgtc tttcgagaat atctaggcaa catgtttcag catgcatgga acagaacaat 1920
agcagaaagc tgagttaatg aagcctagaa aacacaacat ttcttcacag atttatttgc 1980agcagaaagc tgagttaatg aagcctagaa aacacaacat ttcttcacag atttatttgc 1980
aggctatgtg gaggtgtttg cgtaggtaca ttcttatgat gatacagaga tcaacaatga 2040aggctatgtg gaggtgtttg cgtaggtaca ttcttatgat gatacagaga tcaacaatga 2040
taactgttca tcagttaaag atactgcagt acatgaaaaa aaggagacaa agtatgaatt 2100taactgttca tcagttaaag atactgcagt acatgaaaaa aaggagacaa agtatgaatt 2100
tatattacag cataatgtat agcctagaga aaagtatgtc tcgaagttta ctttcctttc 2160tatattacag cataatgtat agcctagaga aaagtatgtc tcgaagttta ctttcctttc 2160
acttaaagtt gctgtcttta tctgtacatg catgcagctc gactttttgt atacgtgagt 2220acttaaagtt gctgtcttta tctgtacatg catgcagctc gactttttgt atacgtgagt 2220
catggttgat ctttttctac caaataaatg aggcaaggat gtggaacact g 2271catggttgat ctttttctac caaataaatg aggcaaggat gtggaacact g 2271
<210> 2<210> 2
<211> 2057<211> 2057
<212> DNA<212> DNA
<213> 谷子(Setaria italica)<213> Millet (Setaria italica)
<400> 2<400> 2
tgataggaca taaggacaca cacgcttaca gagaagcaac aaagggaagg gctaagagcc 60tgataggaca taaggacaca cacgcttaca gagaagcaac aaagggaagg gctaagagcc 60
tgaggctccc acaaccacca gctttaaaag aaggggggca attggggagg gaggcctgca 120tgaggctccc acaaccacca gctttaaaag aaggggggca attggggagg gaggcctgca 120
aagaaaagga gaagagtgcc cttaagccta ccagtgcctt cctccaaatc ctgatattag 180aagaaaagga gaagagtgcc cttaagccta ccagtgcctt cctccaaatc ctgatattag 180
tagccactag ttgctgccgt tctcccacaa gctctactct atcagacacc actatatgag 240tagccactag ttgctgccgt tctcccacaa gctctactct atcagacacc actatatgag 240
cccgtataag cagttcatcc acaataatcc cacccttgaa ccacaaattg ttgagaggtg 300cccgtataag cagttcatcc acaataatcc cacccttgaa ccacaaattg ttgagaggtg 300
ttcttagaac cagaggatta cctgtgaaga attctgtgct gctcctcaag gtgtgtgcag 360ttcttagaac cagaggatta cctgtgaaga attctgtgct gctcctcaag gtgtgtgcag 360
attgcagagc tcagcttcag cttctgcatt gctttcaatg gggaagcact cctgctgtta 420attgcagagc tcagcttcag cttctgcatt gctttcaatg gggaagcact cctgctgtta 420
caagcagaag ctgaggaagg ggctctggtc tcctgaggaa gacgagaagc tcatgaacca 480caagcagaag ctgaggaagg ggctctggtc tcctgaggaa gacgagaagc tcatgaacca 480
cataaccaag catgggcatg gctgctggag cactgttcca aagcttgcag ggcttcaaag 540cataaccaag catgggcatg gctgctggag cactgttcca aagcttgcag ggcttcaaag 540
gtgtggcaag agctgcaggc tgaggtggat aaattacctg aggcctgacc ttaaaagagg 600gtgtggcaag agctgcaggc tgaggtggat aaattacctg aggcctgacc ttaaaagagg 600
tgcattctct caggaggagg aagaccttat cattgaactt catgctgtct tgggcaacag 660tgcattctct caggaggagg aagaccttat cattgaactt catgctgtct tgggcaacag 660
gtggtctcag attgcaacac ggttgcctgg aagaactgat aacgagatca agaatctctg 720gtggtctcag attgcaacac ggttgcctgg aagaactgat aacgagatca agaatctctg 720
gaattcaagc atcaagaaga agctccggca gaaaggcatc gaccccaaca cccacaagcc 780gaattcaagc atcaagaaga agctccggca gaaaggcatc gaccccaaca cccacaagcc 780
ccttgctgag gttgatcgca aaatagctcc aacaatcagt actgagagaa cctccgagtc 840ccttgctgag gttgatcgca aaatagctcc aacaatcagt actgagagaa cctccgagtc 840
cagcgatatt gacccttcaa gtggtggtgc acttggcaac ttgagccatc tcctcagtga 900cagcgatatt gacccttcaa gtggtggtgc acttggcaac ttgagccatc tcctcagtga 900
gacagcacaa tcaccagagc tgctgccagt gctcggtaag catcgcaaag aaactactag 960gacagcacaa tcaccagagc tgctgccagt gctcggtaag catcgcaaag aaactactag 960
tttggcacat ctaagggtgc catcgaagga gctattcctt gaccagcttg tttctggtaa 1020tttggcacat ctaagggtgc catcgaagga gctattcctt gaccagcttg tttctggtaa 1020
tgataacctc cccagctgcc gctcaacagg cccaattcca aatttccctt tccagcagtt 1080tgataacctc cccagctgcc gctcaacagg cccaattcca aatttccctt tccagcagtt 1080
gatgtgttac agcaatgaat ttggcggcaa gcatggaggc agcacgaatc cactctggtt 1140gatgtgttac agcaatgaat ttggcggcaa gcatggaggc agcacgaatc cactctggtt 1140
taaccagaat gagtcaagct gcagcaccat ttccactgtg atgccaccag tttcgccatc 1200taaccagaat gagtcaagct gcagcaccat ttccactgtg atgccaccag tttcgccatc 1200
aactctctca acatcaacag gactcaatag gtcaccggac aatccacact ctggaggtac 1260aactctctca acatcaacag gactcaatag gtcaccggac aatccacact ctggaggtac 1260
tggcattcag agtaaccaat tctactggga caccactaat cctagcagca gtagcagtaa 1320tggcattcag agtaaccaat tctactggga caccactaat cctagcagca gtagcagtaa 1320
aggaagcagt ggaagcaata gcttgggatt tgagctgcaa agcacaagct caattctgga 1380aggaagcagt ggaagcaata gcttgggatt tgagctgcaa agcacaagct caattctgga 1380
gaatagtatc ttcccatgga cagatttatc gccagataaa aatagccacc tagaggaaga 1440gaatagtatc ttcccatgga cagatttatc gccagataaa aatagccacc tagaggaaga 1440
actcaagtgg cctgacctgc tccatggaac cttcacagat acaccagcaa ccatgcagaa 1500actcaagtgg cctgacctgc tccatggaac cttcacagat acaccagcaa ccatgcagaa 1500
tcttagccaa tcactgtatg aagatgtggt caaagccgag aaccaattca acatggaggg 1560tcttagccaa tcactgtatg aagatgtggt caaagccgag aaccaattca acatggaggg 1560
cctctgtgca gcttggtctc aaaatttgca gccacagcaa catctgcagg tagcatcaga 1620cctctgtgca gcttggtctc aaaatttgca gccacagcaa catctgcagg tagcatcaga 1620
tttgtatgac aaggatttgc agagaatgtc cttgtctttc gagaatatct aggcaacatg 1680tttgtatgac aaggatttgc agagaatgtc cttgtctttc gagaatatct aggcaacatg 1680
tttcagcatg catggaacag aacaatagca gaaagctgag ttaatgaagc ctagaaaaca 1740tttcagcatg catggaacag aacaatagca gaaagctgag ttaatgaagc ctagaaaaca 1740
caacatttct tcacagattt atttgcaggc tatgtggagg tgtttgcgta ggtacattct 1800caacatttct tcacagattt atttgcaggc tatgtggagg tgtttgcgta ggtacattct 1800
tatgatgata cagagatcaa caatgataac tgttcatcag ttaaagatac tgcagtacat 1860tatgatgata cagagatcaa caatgataac tgttcatcag ttaaagatac tgcagtacat 1860
gaaaaaaagg agacaaagta tgaatttata ttacagcata atgtatagcc tagagaaaag 1920gaaaaaaagg agacaaagta tgaatttata ttacagcata atgtatagcc tagagaaaag 1920
tatgtctcga agtttacttt cctttcactt aaagttgctg tctttatctg tacatgcatg 1980tatgtctcga agtttacttt cctttcactt aaagttgctg tctttatctg tacatgcatg 1980
cagctcgact ttttgtatac gtgagtcatg gttgatcttt ttctaccaaa taaatgaggc 2040cagctcgact ttttgtatac gtgagtcatg gttgatcttt ttctaccaaa taaatgaggc 2040
aaggatgtgg aacactg 2057aaggatgtgg aacactg 2057
<210> 3<210> 3
<211> 1275<211> 1275
<212> DNA<212> DNA
<213> 谷子(Setaria italica)<213> Millet (Setaria italica)
<400> 3<400> 3
atggggaagc actcctgctg ttacaagcag aagctgagga aggggctctg gtctcctgag 60atggggaagc actcctgctg ttacaagcag aagctgagga aggggctctg gtctcctgag 60
gaagacgaga agctcatgaa ccacataacc aagcatgggc atggctgctg gagcactgtt 120gaagacgaga agctcatgaa ccacataacc aagcatgggc atggctgctg gagcactgtt 120
ccaaagcttg cagggcttca aaggtgtggc aagagctgca ggctgaggtg gataaattac 180ccaaagcttg cagggcttca aaggtgtggc aagagctgca ggctgaggtg gataaattac 180
ctgaggcctg accttaaaag aggtgcattc tctcaggagg aggaagacct tatcattgaa 240ctgaggcctg accttaaaag aggtgcattc tctcaggagg aggaagacct tatcattgaa 240
cttcatgctg tcttgggcaa caggtggtct cagattgcaa cacggttgcc tggaagaact 300cttcatgctg tcttgggcaa caggtggtct cagattgcaa cacggttgcc tggaagaact 300
gataacgaga tcaagaatct ctggaattca agcatcaaga agaagctccg gcagaaaggc 360gataacgaga tcaagaatct ctggaattca agcatcaaga agaagctccg gcagaaaggc 360
atcgacccca acacccacaa gccccttgct gaggttgatc gcaaaatagc tccaacaatc 420atcgacccca acacccacaa gccccttgct gaggttgatc gcaaaatagc tccaacaatc 420
agtactgaga gaacctccga gtccagcgat attgaccctt caagtggtgg tgcacttggc 480agtactgaga gaacctccga gtccagcgat attgaccctt caagtggtgg tgcacttggc 480
aacttgagcc atctcctcag tgagacagca caatcaccag agctgctgcc agtgctcggt 540aacttgagcc atctcctcag tgagacagca caatcaccag agctgctgcc agtgctcggt 540
aagcatcgca aagaaactac tagtttggca catctaaggg tgccatcgaa ggagctattc 600aagcatcgca aagaaactac tagtttggca catctaaggg tgccatcgaa ggagctattc 600
cttgaccagc ttgtttctgg taatgataac ctccccagct gccgctcaac aggcccaatt 660cttgaccagc ttgtttctgg taatgataac ctccccagct gccgctcaac aggcccaatt 660
ccaaatttcc ctttccagca gttgatgtgt tacagcaatg aatttggcgg caagcatgga 720ccaaatttcc ctttccagca gttgatgtgt tacagcaatg aatttggcgg caagcatgga 720
ggcagcacga atccactctg gtttaaccag aatgagtcaa gctgcagcac catttccact 780ggcagcacga atccactctg gtttaaccag aatgagtcaa gctgcagcac catttccact 780
gtgatgccac cagtttcgcc atcaactctc tcaacatcaa caggactcaa taggtcaccg 840gtgatgccac cagtttcgcc atcaactctc tcaacatcaa caggactcaa taggtcaccg 840
gacaatccac actctggagg tactggcatt cagagtaacc aattctactg ggacaccact 900gacaatccac actctggagg tactggcatt cagagtaacc aattctactg ggacaccact 900
aatcctagca gcagtagcag taaaggaagc agtggaagca atagcttggg atttgagctg 960aatcctagca gcagtagcag taaaggaagc agtggaagca atagcttggg atttgagctg 960
caaagcacaa gctcaattct ggagaatagt atcttcccat ggacagattt atcgccagat 1020caaagcacaa gctcaattct ggagaatagt atcttcccat ggacagattt atcgccagat 1020
aaaaatagcc acctagagga agaactcaag tggcctgacc tgctccatgg aaccttcaca 1080aaaaatagcc acctagagga agaactcaag tggcctgacc tgctccatgg aaccttcaca 1080
gatacaccag caaccatgca gaatcttagc caatcactgt atgaagatgt ggtcaaagcc 1140gatacaccag caaccatgca gaatcttagc caatcactgt atgaagatgt ggtcaaagcc 1140
gagaaccaat tcaacatgga gggcctctgt gcagcttggt ctcaaaattt gcagccacag 1200gagaaccaat tcaacatgga gggcctctgt gcagcttggt ctcaaaattt gcagccacag 1200
caacatctgc aggtagcatc agatttgtat gacaaggatt tgcagagaat gtccttgtct 1260caacatctgc aggtagcatc agatttgtat gacaaggatt tgcagagaat gtccttgtct 1260
ttcgagaata tctag 1275ttcgagaata tctag 1275
<210> 4<210> 4
<211> 424<211> 424
<212> PRT<212> PRT
<213> 谷子(Setaria italica)<213> Millet (Setaria italica)
<400> 4<400> 4
Met Gly Lys His Ser Cys Cys Tyr Lys Gln Lys Leu Arg Lys Gly LeuMet Gly Lys His Ser Cys Cys Tyr Lys Gln Lys Leu Arg Lys Gly Leu
1 5 10 151 5 10 15
Trp Ser Pro Glu Glu Asp Glu Lys Leu Met Asn His Ile Thr Lys HisTrp Ser Pro Glu Glu Asp Glu Lys Leu Met Asn His Ile Thr Lys His
20 25 30 20 25 30
Gly His Gly Cys Trp Ser Thr Val Pro Lys Leu Ala Gly Leu Gln ArgGly His Gly Cys Trp Ser Thr Val Pro Lys Leu Ala Gly Leu Gln Arg
35 40 45 35 40 45
Cys Gly Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro AspCys Gly Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro Asp
50 55 60 50 55 60
Leu Lys Arg Gly Ala Phe Ser Gln Glu Glu Glu Asp Leu Ile Ile GluLeu Lys Arg Gly Ala Phe Ser Gln Glu Glu Glu Asp Leu Ile Ile Glu
65 70 75 8065 70 75 80
Leu His Ala Val Leu Gly Asn Arg Trp Ser Gln Ile Ala Thr Arg LeuLeu His Ala Val Leu Gly Asn Arg Trp Ser Gln Ile Ala Thr Arg Leu
85 90 95 85 90 95
Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Leu Trp Asn Ser Ser IlePro Gly Arg Thr Asp Asn Glu Ile Lys Asn Leu Trp Asn Ser Ser Ile
100 105 110 100 105 110
Lys Lys Lys Leu Arg Gln Lys Gly Ile Asp Pro Asn Thr His Lys ProLys Lys Lys Leu Arg Gln Lys Gly Ile Asp Pro Asn Thr His Lys Pro
115 120 125 115 120 125
Leu Ala Glu Val Asp Arg Lys Ile Ala Pro Thr Ile Ser Thr Glu ArgLeu Ala Glu Val Asp Arg Lys Ile Ala Pro Thr Ile Ser Thr Glu Arg
130 135 140 130 135 140
Thr Ser Glu Ser Ser Asp Ile Asp Pro Ser Ser Gly Gly Ala Leu GlyThr Ser Glu Ser Ser Asp Ile Asp Pro Ser Ser Gly Gly Ala Leu Gly
145 150 155 160145 150 155 160
Asn Leu Ser His Leu Leu Ser Glu Thr Ala Gln Ser Pro Glu Leu LeuAsn Leu Ser His Leu Leu Ser Glu Thr Ala Gln Ser Pro Glu Leu Leu
165 170 175 165 170 175
Pro Val Leu Gly Lys His Arg Lys Glu Thr Thr Ser Leu Ala His LeuPro Val Leu Gly Lys His Arg Lys Glu Thr Thr Ser Leu Ala His Leu
180 185 190 180 185 190
Arg Val Pro Ser Lys Glu Leu Phe Leu Asp Gln Leu Val Ser Gly AsnArg Val Pro Ser Lys Glu Leu Phe Leu Asp Gln Leu Val Ser Gly Asn
195 200 205 195 200 205
Asp Asn Leu Pro Ser Cys Arg Ser Thr Gly Pro Ile Pro Asn Phe ProAsp Asn Leu Pro Ser Cys Arg Ser Thr Gly Pro Ile Pro Asn Phe Pro
210 215 220 210 215 220
Phe Gln Gln Leu Met Cys Tyr Ser Asn Glu Phe Gly Gly Lys His GlyPhe Gln Gln Leu Met Cys Tyr Ser Asn Glu Phe Gly Gly Lys His Gly
225 230 235 240225 230 235 240
Gly Ser Thr Asn Pro Leu Trp Phe Asn Gln Asn Glu Ser Ser Cys SerGly Ser Thr Asn Pro Leu Trp Phe Asn Gln Asn Glu Ser Ser Cys Ser
245 250 255 245 250 255
Thr Ile Ser Thr Val Met Pro Pro Val Ser Pro Ser Thr Leu Ser ThrThr Ile Ser Thr Val Met Pro Pro Val Ser Pro Ser Thr Leu Ser Thr
260 265 270 260 265 270
Ser Thr Gly Leu Asn Arg Ser Pro Asp Asn Pro His Ser Gly Gly ThrSer Thr Gly Leu Asn Arg Ser Pro Asp Asn Pro His Ser Gly Gly Thr
275 280 285 275 280 285
Gly Ile Gln Ser Asn Gln Phe Tyr Trp Asp Thr Thr Asn Pro Ser SerGly Ile Gln Ser Asn Gln Phe Tyr Trp Asp Thr Thr Asn Pro Ser Ser
290 295 300 290 295 300
Ser Ser Ser Lys Gly Ser Ser Gly Ser Asn Ser Leu Gly Phe Glu LeuSer Ser Ser Lys Gly Ser Ser Gly Ser Asn Ser Leu Gly Phe Glu Leu
305 310 315 320305 310 315 320
Gln Ser Thr Ser Ser Ile Leu Glu Asn Ser Ile Phe Pro Trp Thr AspGln Ser Thr Ser Ser Ile Leu Glu Asn Ser Ile Phe Pro Trp Thr Asp
325 330 335 325 330 335
Leu Ser Pro Asp Lys Asn Ser His Leu Glu Glu Glu Leu Lys Trp ProLeu Ser Pro Asp Lys Asn Ser His Leu Glu Glu Glu Glu Leu Lys Trp Pro
340 345 350 340 345 350
Asp Leu Leu His Gly Thr Phe Thr Asp Thr Pro Ala Thr Met Gln AsnAsp Leu Leu His Gly Thr Phe Thr Asp Thr Pro Ala Thr Met Gln Asn
355 360 365 355 360 365
Leu Ser Gln Ser Leu Tyr Glu Asp Val Val Lys Ala Glu Asn Gln PheLeu Ser Gln Ser Leu Tyr Glu Asp Val Val Lys Ala Glu Asn Gln Phe
370 375 380 370 375 380
Asn Met Glu Gly Leu Cys Ala Ala Trp Ser Gln Asn Leu Gln Pro GlnAsn Met Glu Gly Leu Cys Ala Ala Trp Ser Gln Asn Leu Gln Pro Gln
385 390 395 400385 390 395 400
Gln His Leu Gln Val Ala Ser Asp Leu Tyr Asp Lys Asp Leu Gln ArgGln His Leu Gln Val Ala Ser Asp Leu Tyr Asp Lys Asp Leu Gln Arg
405 410 415 405 410 415
Met Ser Leu Ser Phe Glu Asn IleMet Ser Leu Ser Phe Glu Asn Ile
420 420
Claims (6)
- Use of a SiMYB61 protein or related biomaterial thereof in (a1) and/or (a2) as follows:(a1) improving plant yield-related traits;(a2) the stress resistance of the plants is improved;the amino acid sequence of the SiMYB61 protein is shown in SEQ ID No. 4;the related biological material is a nucleic acid molecule capable of expressing the SiMYB61 protein or an expression cassette, a recombinant vector, a recombinant bacterium or a transgenic cell line containing the nucleic acid molecule;the plant yield-related traits are ear number, ear length and/or grain per ear;the plant stress resistance is the resistance of the plant to low nitrogen stress;the plant is rice or millet.
- The application of SiMYB61 protein or related biological materials thereof in breeding plants with high yield and/or high stress resistance;the amino acid sequence of the SiMYB61 protein is shown as SEQ ID No. 4;the related biological material is a nucleic acid molecule capable of expressing the SiMYB61 protein or an expression cassette, a recombinant vector, a recombinant bacterium or a transgenic cell line containing the nucleic acid molecule;the high yield is represented by a large number of spikes and/or a high spike length and/or a large number of grains per spike;the stress resistance is resistance to low nitrogen stress;the plant is rice or millet.
- 3. A method for increasing yield-related traits in plants and/or increasing stress tolerance in plants, comprising the step of increasing expression level and/or activity of a SiMYB61 protein in a recipient plant;the amino acid sequence of the SiMYB61 protein is shown in SEQ ID No. 4;the yield-related traits are ear number, ear length and/or grain number per ear;the stress tolerance is resistance to low nitrogen stress;the plant is rice or millet.
- 4. A method of growing a transgenic plant comprising the steps of: introducing a nucleic acid molecule capable of expressing a SiMYB61 protein into a recipient plant to obtain a transgenic plant with increased SiMYB61 protein expression; the transgenic plant has increased yield-related traits and/or stress resistance as compared to the recipient plant;the amino acid sequence of the SiMYB61 protein is shown as SEQ ID No. 4;the yield is the ear number, the ear length and/or the grain number per ear;the stress resistance is resistance to low nitrogen stress;the plant is rice or millet.
- 5. The method of claim 4, wherein: the step of introducing into a recipient plant a nucleic acid molecule capable of expressing a SiMYB61 protein comprises introducing into the recipient plant an expression cassette comprising a gene encoding the SiMYB61 protein.
- 6. The method of claim 5, wherein:the encoding gene of the SiMYB61 protein is a DNA molecule described in any one of the following items:(B1) DNA molecule shown in SEQ ID No. 2;(B2) a DNA molecule shown as SEQ ID No. 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010401862.0A CN111518183B (en) | 2020-05-13 | 2020-05-13 | Application of SiMYB61 protein and related biomaterial thereof in regulation and control of plant stress resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010401862.0A CN111518183B (en) | 2020-05-13 | 2020-05-13 | Application of SiMYB61 protein and related biomaterial thereof in regulation and control of plant stress resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111518183A CN111518183A (en) | 2020-08-11 |
CN111518183B true CN111518183B (en) | 2022-08-23 |
Family
ID=71907235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010401862.0A Active CN111518183B (en) | 2020-05-13 | 2020-05-13 | Application of SiMYB61 protein and related biomaterial thereof in regulation and control of plant stress resistance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111518183B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110004160B (en) * | 2019-05-23 | 2022-04-19 | 南京林业大学 | Bambusa multiplex transcription factor BmMYB26, and coding gene and application thereof |
CN116555279B (en) * | 2023-02-09 | 2023-11-21 | 湖南农业大学 | Gene segment for enhancing lodging resistance of capsicum, coded protein thereof, detection kit, rapid detection method and application |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110331145A (en) * | 2019-08-05 | 2019-10-15 | 东北林业大学 | The application of miR156 and its relevant biological material in regulation disease resistance of plant |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX381662B (en) * | 2009-06-10 | 2025-03-13 | Evogene Ltd | ISOLATED POLYNUCLEOTIDES AND POLYPEPTIDES, AND METHODS OF USING THEM TO IMPROVE NITROGEN USE EFFICIENCY, YIELD, GROWTH RATE, VIGOR, BIOMASS, OIL CONTENT, AND/OR ABIOTIC STRESS TOLERANCE. |
US20140041073A1 (en) * | 2012-08-03 | 2014-02-06 | Mendel Biotechnology, Inc. | Trait improvement in plants expressing myb-related proteins |
-
2020
- 2020-05-13 CN CN202010401862.0A patent/CN111518183B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110331145A (en) * | 2019-08-05 | 2019-10-15 | 东北林业大学 | The application of miR156 and its relevant biological material in regulation disease resistance of plant |
Non-Patent Citations (5)
Title |
---|
《A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice》;Debao Huang等;《The Plant Cell》;20150630(第27期);第1681-1682,1684-1687,1691-1692页 * |
《Identification and characterization of circular RNAs during wood formation of poplars in acclimation to low nitrogen availability》;Huimin Liu等;《Planta》;20200110;第251卷(第2期);第1-2页 * |
《Opposing control by transcription factors MYB61 and MYB3 increases freezing tolerance by relieving C-repeat binding factor suppression》;Zhenqian Zhang等;《Plant Physiology》;20160830;第172卷(第2期);第1306-1323页 * |
《Stomata regulation by tissue-specific expression of the Citrus sinensis MYB61 transcription factor improves water-use efficiency in Arabidopsis》;Jesús L. Romero-Romero等;《Plant Physiology and Biochemistry》;20180625(第130期);第54-60页 * |
《transcription factor MYB61 [Setaria italica]》;NCBI;《GenPept》;20171013;第1页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111518183A (en) | 2020-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070169219A1 (en) | Nucleotide sequences and corresponding polypeptides conferring improved nitrogen use efficiency characteristics in plants | |
CN112226455B (en) | Rice grain length and grain weight related protein, and coding gene and application thereof | |
CN105949295A (en) | Protein relevant to plant flowering time and encoding gene and application thereof | |
CN108822194B (en) | A plant starch synthesis related protein OsFLO10 and its encoding gene and application | |
CN111518183B (en) | Application of SiMYB61 protein and related biomaterial thereof in regulation and control of plant stress resistance | |
CN111574605A (en) | Application of rice gene OsLAT5 in regulating the uptake and accumulation of diquat | |
CN113564176B (en) | Wheat TaHAL3-7A gene and application thereof in regulating drought resistance of crops | |
CN111534539B (en) | SiMYB4 protein related to plant stress resistance and related biological material and application thereof | |
CN106432449B (en) | Plant Drought Tolerance-Related Protein VPS23A and Its Encoding Gene and Application | |
CN108707592A (en) | CLALS albumen, its encoding gene and their applications in predicting watermelon Herbicid resistant | |
CN116716341B (en) | Application of rice gene XLO_ 047362 in improving rice resistance to Pyricularia oryzae | |
CN107266543A (en) | Resistance relevant protein IbRAP2 12 and its encoding gene and application | |
CN112029777B (en) | A kind of OsALIS4 gene that reduces rice seed setting rate and its encoded protein and application | |
CN107573411B (en) | Application of wheat TaZIM1-7A protein in regulation and control of crop heading period | |
CN112899292B (en) | Upland cotton plant height regulation gene GhGA20ox6 and its application | |
CN104592370A (en) | OsPYL9 protein, OsPYL9 protein coding gene and applications of OsPYL9 protein | |
CN114736280A (en) | Application of ZmROA1 protein in regulation and control of plant tolerance | |
CN111363021A (en) | SiNAC67 protein and its encoding gene and application | |
CN111518184B (en) | Novel application of SiTGAL6 protein | |
CN108690847B (en) | Application of protein nog1 in regulation and control of plant yield and grain number per ear | |
CN111153980A (en) | A plant grain shape-related protein OsSDSG and its encoding gene and application | |
CN111471788B (en) | Flanking sequence of exogenous insertion segment of corn SbSNAC1-466 transformed into SbSNAC1 gene and application thereof | |
CN111454343B (en) | A protein related to plant yield traits and stress tolerance and its application | |
CN115029356B (en) | Genetic engineering application of rice nitrate-induced protein gene OsNOI4 | |
CN116425845A (en) | Application of proteins OsNLP3 and OsNLP4 in regulation of plant panicle shape |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |