CN111490047B - memory structure - Google Patents
memory structure Download PDFInfo
- Publication number
- CN111490047B CN111490047B CN201910110946.6A CN201910110946A CN111490047B CN 111490047 B CN111490047 B CN 111490047B CN 201910110946 A CN201910110946 A CN 201910110946A CN 111490047 B CN111490047 B CN 111490047B
- Authority
- CN
- China
- Prior art keywords
- doped region
- transistor
- memory structure
- capacitor
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 51
- 238000002955 isolation Methods 0.000 claims description 27
- 239000004065 semiconductor Substances 0.000 claims description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims description 8
- 150000004706 metal oxides Chemical class 0.000 claims description 8
- 239000010410 layer Substances 0.000 description 101
- 230000004888 barrier function Effects 0.000 description 32
- 239000004020 conductor Substances 0.000 description 23
- 239000000463 material Substances 0.000 description 22
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 22
- 239000000758 substrate Substances 0.000 description 17
- 229910021332 silicide Inorganic materials 0.000 description 13
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 13
- 206010010144 Completed suicide Diseases 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 229910052814 silicon oxide Inorganic materials 0.000 description 9
- 125000006850 spacer group Chemical group 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 239000010936 titanium Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 2
- 229910021334 nickel silicide Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910004166 TaN Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
- H10B10/12—Static random access memory [SRAM] devices comprising a MOSFET load element
Landscapes
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
本发明公开一种内存结构,其包括第一晶体管、第二晶体管与电容器。第一晶体管包括第一栅极与位于第一栅极的两侧的第一掺杂区与第二掺杂区。第一掺杂区与第二掺杂区在第一方向上排列。第二晶体管包括第二栅极与位于第二栅极的两侧的第三掺杂区与第四掺杂区。第二掺杂区与第三掺杂区位于第一栅极与第二栅极之间。第二掺杂区与第三掺杂区在第二方向上排列。第二方向与第一方向相交。电容器耦接至第二掺杂区与第三掺杂区。
The invention discloses a memory structure, which includes a first transistor, a second transistor and a capacitor. The first transistor includes a first gate electrode and first and second doped regions located on both sides of the first gate electrode. The first doped region and the second doped region are arranged in the first direction. The second transistor includes a second gate electrode and third and fourth doped regions located on both sides of the second gate electrode. The second doped region and the third doped region are located between the first gate electrode and the second gate electrode. The second doped region and the third doped region are arranged in the second direction. The second direction intersects the first direction. The capacitor is coupled to the second doped region and the third doped region.
Description
技术领域Technical field
本发明涉及一种半导体结构,且特别是涉及一种内存结构。The present invention relates to a semiconductor structure, and in particular to a memory structure.
背景技术Background technique
目前发展出一种内存结构,包括彼此耦接晶体管与电容器。在此种内存结构中,使用电容器作为存储组件。因此,如何增加电容器的电容以提升内存组件的电性效能为目前业界持续努力的目标。A memory structure has been developed that includes transistors and capacitors coupled to each other. In this memory structure, capacitors are used as storage components. Therefore, how to increase the capacitance of capacitors to improve the electrical performance of memory components is a goal that the industry continues to strive for.
发明内容Contents of the invention
本发明提供一种内存结构,其可有效地增加电容器的电容,进而可提升内存组件的电性效能。The present invention provides a memory structure that can effectively increase the capacitance of the capacitor, thereby improving the electrical performance of the memory component.
本发明提出一种内存结构,包括第一晶体管、第二晶体管与电容器。第一晶体管包括第一栅极与位于第一栅极的两侧的第一掺杂区与第二掺杂区。第一掺杂区与第二掺杂区在第一方向上排列。第二晶体管包括第二栅极与位于第二栅极的两侧的第三掺杂区与第四掺杂区。第二掺杂区与第三掺杂区位于第一栅极与第二栅极之间。第二掺杂区与第三掺杂区在第二方向上排列。第二方向与第一方向相交。电容器耦接至第二掺杂区与第三掺杂区。The invention proposes a memory structure, including a first transistor, a second transistor and a capacitor. The first transistor includes a first gate electrode and first and second doped regions located on both sides of the first gate electrode. The first doped region and the second doped region are arranged in the first direction. The second transistor includes a second gate electrode and third and fourth doped regions located on both sides of the second gate electrode. The second doped region and the third doped region are located between the first gate electrode and the second gate electrode. The second doped region and the third doped region are arranged in the second direction. The second direction intersects the first direction. The capacitor is coupled to the second doped region and the third doped region.
依照本发明的一实施例所述,在上述内存结构中,第一晶体管与第二晶体管分别可为P型金属氧化物半导体晶体管与N型金属氧化物半导体晶体管中的一者与另一者。According to an embodiment of the present invention, in the above memory structure, the first transistor and the second transistor may be one or the other of a P-type metal oxide semiconductor transistor and an N-type metal oxide semiconductor transistor, respectively.
依照本发明的一实施例所述,在上述内存结构中,电容器可在第二方向上延伸。According to an embodiment of the present invention, in the above memory structure, the capacitor may extend in the second direction.
依照本发明的一实施例所述,在上述内存结构中,第三掺杂区与第四掺杂区可在第三方向上排列。第三方向可与第二方向相交。According to an embodiment of the present invention, in the above memory structure, the third doped region and the fourth doped region may be arranged in the third direction. The third direction may intersect the second direction.
依照本发明的一实施例所述,在上述内存结构中,第一方向可与第三方向平行。According to an embodiment of the present invention, in the above memory structure, the first direction may be parallel to the third direction.
依照本发明的一实施例所述,在上述内存结构中,第一晶体管的栅极的延伸方向可相交于第一方向且可不垂直于第二方向。第二晶体管的栅极的延伸方向可相交于第三方向且可不垂直于第二方向。According to an embodiment of the present invention, in the above memory structure, the extending direction of the gate of the first transistor may intersect with the first direction and may not be perpendicular to the second direction. The extending direction of the gate of the second transistor may intersect the third direction and may not be perpendicular to the second direction.
依照本发明的一实施例所述,在上述内存结构中,耦接至电容器的第一晶体管与第二晶体管可呈错位排列。According to an embodiment of the present invention, in the above memory structure, the first transistor and the second transistor coupled to the capacitor may be arranged in a staggered manner.
依照本发明的一实施例所述,在上述内存结构中,还可包括介电层。介电层覆盖第一晶体管与第二晶体管,且具有至少一个开口。电容器可位于开口中。According to an embodiment of the present invention, the above memory structure may further include a dielectric layer. The dielectric layer covers the first transistor and the second transistor and has at least one opening. Capacitors can be located in the openings.
依照本发明的一实施例所述,在上述内存结构中,还可包括隔离结构。隔离结构可位于第二掺杂区与第三掺杂区之间。According to an embodiment of the present invention, the above memory structure may further include an isolation structure. The isolation structure may be located between the second doped region and the third doped region.
依照本发明的一实施例所述,在上述内存结构中,开口的数量可为一个。开口可暴露出第二掺杂区、第三掺杂区与隔离结构。According to an embodiment of the present invention, in the above memory structure, the number of openings may be one. The opening can expose the second doped region, the third doped region and the isolation structure.
依照本发明的一实施例所述,在上述内存结构中,开口的数量可为多个。每个开口可暴露出第二掺杂区、第三掺杂区与隔离结构中的至少一者。According to an embodiment of the present invention, in the above memory structure, the number of openings may be multiple. Each opening may expose at least one of the second doped region, the third doped region and the isolation structure.
依照本发明的一实施例所述,在上述内存结构中,还可包括接触窗。接触窗耦接至电容器。接触窗可位于隔离结构、第二掺杂区与第三掺杂区中的至少一者上方。According to an embodiment of the present invention, the above memory structure may further include a contact window. The contact window is coupled to the capacitor. The contact window may be located over at least one of the isolation structure, the second doped region, and the third doped region.
基于上述,在本发明所提出的内存结构中,第一掺杂区与第二掺杂区在第一方向上排列,第二掺杂区与第三掺杂区在第二方向上排列,第二方向与第一方向相交,且电容器耦接至第二掺杂区与第三掺杂区。通过上述设置方式,可在不增加芯片面积的情况下,有效地增加电容器的尺寸,因此能够有效地增加电容器的电容,进而可提升内存组件的电性效能。Based on the above, in the memory structure proposed by the present invention, the first doped region and the second doped region are arranged in the first direction, the second doped region and the third doped region are arranged in the second direction, and the first doped region and the second doped region are arranged in the second direction. The two directions intersect the first direction, and the capacitor is coupled to the second doping region and the third doping region. Through the above arrangement, the size of the capacitor can be effectively increased without increasing the chip area, so the capacitance of the capacitor can be effectively increased, thereby improving the electrical performance of the memory component.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附的附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, embodiments are given below and described in detail with reference to the attached drawings.
附图说明Description of the drawings
图1为本发明一实施例的内存结构的上视图;Figure 1 is a top view of a memory structure according to an embodiment of the present invention;
图2为沿图1中的I-I’剖面线的内存结构的剖视图;Figure 2 is a cross-sectional view of the memory structure along the I-I’ section line in Figure 1;
图3为本发明另一实施例的内存结构的上视图;Figure 3 is a top view of a memory structure according to another embodiment of the present invention;
图4为沿图3中的II-II’剖面线的内存结构的剖视图。FIG. 4 is a cross-sectional view of the memory structure along the II-II' cross-sectional line in FIG. 3 .
符号说明Symbol Description
100、200:内存结构100, 200: memory structure
102:基底102: Base
104、106:晶体管104, 106: Transistor
108、208:电容器108, 208: Capacitor
108a、108b、208a、208b:电极108a, 108b, 208a, 208b: electrode
108c、208c:绝缘层108c, 208c: insulation layer
110、112:阱区110, 112: Well area
114:隔离结构114: Isolation structure
116、134:栅极116, 134: Gate
118、120、136、138:掺杂区118, 120, 136, 138: Doping area
122、140、152:介电层122, 140, 152: Dielectric layer
124、142:间隙壁124, 142: Gap wall
126、128、144、146:轻掺杂漏极126, 128, 144, 146: Lightly doped drain
130、132、148、150:金属硅化物层130, 132, 148, 150: metal silicide layer
152a、152b:开口152a, 152b: opening
154、158、202:接触窗154, 158, 202: Contact window
156、160、164、168、172、204、206、210、212:阻障层156, 160, 164, 168, 172, 204, 206, 210, 212: barrier layer
162、166、170:导体层162, 166, 170: Conductor layer
D1:第一方向D1: first direction
D2:第二方向D2: Second direction
D3:第三方向D3: Third direction
ED1、ED2:延伸方向ED1, ED2: extension direction
具体实施方式Detailed ways
图1为本发明一实施例的内存结构的上视图。图2为沿图1中的I-I’剖面线的内存结构的剖视图。在图1中,省略图2中的部分构件,以清楚地说明晶体管与电容器之间的配置关系。此外,图1与图2中的构件的比例关系仅为示意说明,本发明并不以此为限。在本实施例中,关于「方向」的内容绘示于图1中。FIG. 1 is a top view of a memory structure according to an embodiment of the present invention. Figure 2 is a cross-sectional view of the memory structure along the line I-I' in Figure 1. In FIG. 1 , some components in FIG. 2 are omitted to clearly illustrate the configuration relationship between transistors and capacitors. In addition, the proportional relationship between the components in Figure 1 and Figure 2 is only for schematic illustration, and the present invention is not limited thereto. In this embodiment, the content about "direction" is shown in Figure 1 .
请参照图1与图2,内存结构100包括基底102、晶体管104、晶体管106与电容器108。内存结构100例如是两个晶体管静态随机存取内存(two-transistor static randomaccess memory,2T SRAM),但本发明并不以此为限。基底102例如是半导体基底,如硅基底。电容器108可耦接在晶体管104与晶体管106之间。Referring to FIGS. 1 and 2 , the memory structure 100 includes a substrate 102 , a transistor 104 , a transistor 106 and a capacitor 108 . The memory structure 100 is, for example, a two-transistor static random access memory (2T SRAM), but the invention is not limited thereto. The substrate 102 is, for example, a semiconductor substrate, such as a silicon substrate. Capacitor 108 may be coupled between transistor 104 and transistor 106 .
以下,所记载的第一导电型与第二导电型分别可为P型导电型与N型导电型中的一者与另一者。在本实施例中,第一导电型是以P型导电型为例,且第二导电型是以N型导电型为例,但本发明并不以此为限。在另一实施例中,第一导电型可为N型导电型,且第二导电型可为P型导电型。Hereinafter, the first conductivity type and the second conductivity type described may be one or the other of P-type conductivity type and N-type conductivity type respectively. In this embodiment, the first conductivity type is a P-type conductivity type, and the second conductivity type is an N-type conductivity type, for example, but the invention is not limited thereto. In another embodiment, the first conductivity type may be an N-type conductivity type, and the second conductivity type may be a P-type conductivity type.
内存结构100还可包括阱区110、阱区112与隔离结构114中的至少一者。阱区110位于基底102中。阱区110可具有第一导电型(如,P型)。阱区112位于阱区110的一侧的基底102中。阱区112可具有第二导电型(如,N型)。The memory structure 100 may also include at least one of a well region 110, a well region 112, and an isolation structure 114. Well region 110 is located in substrate 102 . The well region 110 may have a first conductivity type (eg, P type). The well region 112 is located in the substrate 102 on one side of the well region 110 . The well region 112 may have a second conductivity type (eg, N-type).
隔离结构114设置在基底102中,且位于阱区110与阱区112之间。隔离结构114例如是浅沟槽隔离结构(shallow trench isolation,STI)。隔离结构114的材料例如是氧化硅。The isolation structure 114 is disposed in the substrate 102 and is located between the well region 110 and the well region 112 . The isolation structure 114 is, for example, a shallow trench isolation structure (shallow trench isolation, STI). The material of the isolation structure 114 is, for example, silicon oxide.
晶体管104与晶体管106分别可为P型金属氧化物半导体晶体管与N型金属氧化物半导体晶体管中的一者与另一者。在本实施例中,晶体管104可具有第一导电型(P型),且晶体管106可具有第二导电型(N型)。亦即,晶体管104是以P型金属氧化物半导体晶体管为例,且晶体管106是以N型金属氧化物半导体晶体管为例,但本发明并不以此为限。The transistor 104 and the transistor 106 may be one or the other of a P-type metal oxide semiconductor transistor and an N-type metal oxide semiconductor transistor, respectively. In this embodiment, the transistor 104 may have a first conductivity type (P-type), and the transistor 106 may have a second conductivity type (N-type). That is, the transistor 104 is a P-type metal oxide semiconductor transistor, and the transistor 106 is an N-type metal oxide semiconductor transistor, but the invention is not limited thereto.
晶体管104包括栅极116与位于栅极116的两侧的掺杂区118与掺杂区120。掺杂区118与掺杂区120在第一方向D1上排列。栅极116的材料例如是掺杂多晶硅。在一些实施例中,晶体管104还可包括设置在栅极116上的金属硅化物层(未示出)。掺杂区118与掺杂区120可位于栅极116两侧的基底102中。此外,掺杂区118与掺杂区120可位于阱区112中。掺杂区118与掺杂区120分别可作为源极或漏极。掺杂区118与掺杂区120可具有第一导电型(如,P型)。The transistor 104 includes a gate 116 and doped regions 118 and 120 located on both sides of the gate 116 . The doped regions 118 and 120 are arranged in the first direction D1. The material of the gate 116 is, for example, doped polysilicon. In some embodiments, transistor 104 may also include a metal suicide layer (not shown) disposed on gate 116 . The doped regions 118 and 120 may be located in the substrate 102 on both sides of the gate 116 . In addition, the doped regions 118 and 120 may be located in the well region 112 . The doped region 118 and the doped region 120 can respectively serve as a source electrode or a drain electrode. The doped regions 118 and 120 may have a first conductivity type (eg, P-type).
此外,晶体管104还可包括介电层122、间隙壁124、轻掺杂漏极(lightly dopeddrain,LDD)126、轻掺杂漏极128、金属硅化物层130与金属硅化物层132中的至少一者。介电层122位于栅极116与基底102之间,由此栅极116与基底102可彼此绝缘。介电层122的材料例如是氧化硅。In addition, the transistor 104 may further include at least one of a dielectric layer 122, a spacer 124, a lightly doped drain (LDD) 126, a lightly doped drain 128, a metal silicide layer 130, and a metal silicide layer 132. One. The dielectric layer 122 is located between the gate electrode 116 and the substrate 102 so that the gate electrode 116 and the substrate 102 can be insulated from each other. The material of the dielectric layer 122 is, for example, silicon oxide.
间隙壁124设置在栅极116的侧壁上。间隙壁124可为单层结构或多层结构。间隙壁124的材料例如是氧化硅、氮化硅或其组合。The spacers 124 are disposed on the sidewalls of the gate 116 . The spacer 124 may be a single-layer structure or a multi-layer structure. The material of the spacer 124 is, for example, silicon oxide, silicon nitride or a combination thereof.
轻掺杂漏极126位于栅极116与掺杂区118之间的基底102中。轻掺杂漏极128位于栅极116与掺杂区120之间的基底102中。此外,轻掺杂漏极126与轻掺杂漏极128可位于阱区112中。轻掺杂漏极126与轻掺杂漏极128可具有第一导电型(如,P型)。在一些实施例中,「轻掺杂漏极(LDD)」也可称为「源极/漏极延伸区(source/drain extension,SDE)」)。A lightly doped drain 126 is located in the substrate 102 between the gate 116 and the doped region 118 . A lightly doped drain 128 is located in the substrate 102 between the gate 116 and the doped region 120 . In addition, the lightly doped drain 126 and the lightly doped drain 128 may be located in the well region 112 . The lightly doped drain 126 and the lightly doped drain 128 may have a first conductivity type (eg, P-type). In some embodiments, "lightly doped drain (LDD)" may also be referred to as "source/drain extension (SDE)").
金属硅化物层130设置在掺杂区118上。金属硅化物层132设置在掺杂区120上。金属硅化物层130与金属硅化物层132的材料例如是硅化镍或硅化钴。Metal suicide layer 130 is disposed on doped region 118 . Metal suicide layer 132 is disposed on doped region 120 . The material of the metal silicide layer 130 and the metal silicide layer 132 is, for example, nickel silicide or cobalt silicide.
晶体管106包括栅极134与位于栅极134的两侧的掺杂区136与掺杂区138。掺杂区120与掺杂区136位于栅极116与栅极134之间。隔离结构114可位于掺杂区120与掺杂区136之间。掺杂区120与掺杂区136在第二方向D2上排列。第二方向D2与第一方向D1相交。此外,掺杂区136与掺杂区138可在第三方向D3上排列。第三方向D3可与第二方向D2相交。第一方向D1可与第三方向D3平行,但本发明并不以此为限。另外,晶体管104的栅极116的延伸方向ED1可相交于第一方向D1且可不垂直于第二方向D2。晶体管106的栅极134的延伸方向ED2可相交于第三方向D3且可不垂直于第二方向D2。The transistor 106 includes a gate 134 and doped regions 136 and 138 located on both sides of the gate 134 . The doped region 120 and the doped region 136 are located between the gate electrode 116 and the gate electrode 134 . Isolation structure 114 may be located between doped region 120 and doped region 136 . The doped regions 120 and 136 are arranged in the second direction D2. The second direction D2 intersects the first direction D1. In addition, the doped regions 136 and 138 may be arranged in the third direction D3. The third direction D3 may intersect the second direction D2. The first direction D1 may be parallel to the third direction D3, but the invention is not limited thereto. In addition, the extending direction ED1 of the gate electrode 116 of the transistor 104 may intersect the first direction D1 and may not be perpendicular to the second direction D2. The extension direction ED2 of the gate 134 of the transistor 106 may intersect the third direction D3 and may not be perpendicular to the second direction D2.
栅极134的材料例如是掺杂多晶硅。在一些实施例中,晶体管106更可包括设置在栅极134上的金属硅化物层(未示出)。掺杂区136与掺杂区138可位于栅极134两侧的基底102中。此外,掺杂区136与掺杂区138可位于阱区110中。掺杂区136与掺杂区138分别可作为源极或漏极。掺杂区136与掺杂区138可具有第二导电型(如,N型)。The material of the gate 134 is, for example, doped polysilicon. In some embodiments, the transistor 106 may further include a metal suicide layer (not shown) disposed on the gate 134 . The doped regions 136 and 138 may be located in the substrate 102 on both sides of the gate 134 . In addition, the doped regions 136 and 138 may be located in the well region 110 . The doped region 136 and the doped region 138 can respectively serve as a source electrode or a drain electrode. The doped regions 136 and 138 may have a second conductivity type (eg, N-type).
此外,晶体管106还可包括介电层140、间隙壁142、轻掺杂漏极144、轻掺杂漏极146、金属硅化物层148与金属硅化物层150中的至少一者。介电层140位于栅极134与基底102之间,由此栅极134与基底102可彼此绝缘。介电层140的材料例如是氧化硅。In addition, the transistor 106 may further include at least one of a dielectric layer 140 , a spacer 142 , a lightly doped drain 144 , a lightly doped drain 146 , a metal suicide layer 148 and a metal suicide layer 150 . The dielectric layer 140 is located between the gate electrode 134 and the substrate 102 so that the gate electrode 134 and the substrate 102 can be insulated from each other. The material of the dielectric layer 140 is, for example, silicon oxide.
间隙壁142设置在栅极134的侧壁上。间隙壁142可为单层结构或多层结构。间隙壁142的材料例如是氧化硅、氮化硅或其组合。The spacers 142 are disposed on the sidewalls of the gate 134 . The spacer 142 may be a single-layer structure or a multi-layer structure. The material of the spacer 142 is, for example, silicon oxide, silicon nitride or a combination thereof.
轻掺杂漏极144位于栅极134与掺杂区136之间的基底102中。轻掺杂漏极146位于栅极134与掺杂区138之间的基底102中。此外,轻掺杂漏极144与轻掺杂漏极146可位于阱区110中。轻掺杂漏极144与轻掺杂漏极146可具有第二导电型(如,N型)。A lightly doped drain 144 is located in the substrate 102 between the gate 134 and the doped region 136 . A lightly doped drain 146 is located in the substrate 102 between the gate 134 and the doped region 138 . In addition, the lightly doped drain 144 and the lightly doped drain 146 may be located in the well region 110 . The lightly doped drain 144 and the lightly doped drain 146 may have a second conductivity type (eg, N-type).
金属硅化物层148设置在掺杂区136上。金属硅化物层150设置在掺杂区138上。金属硅化物层148与金属硅化物层150的材料例如是硅化镍或硅化钴。Metal suicide layer 148 is disposed on doped region 136 . Metal suicide layer 150 is disposed on doped region 138 . The material of the metal silicide layer 148 and the metal silicide layer 150 is, for example, nickel silicide or cobalt silicide.
内存结构100还可包括介电层152。介电层152覆盖晶体管104与晶体管106,且具有至少一个开口152a。电容器108可位于开口152a中。在本实施例中,开口152a的数量可为一个,且开口152a可为槽状开口(slot),但本发明并不以此为限。开口152a可暴露出掺杂区120、掺杂区136与隔离结构114,且还可暴露出金属硅化物层132与金属硅化物层148。介电层152可为多层结构。介电层152的材料例如是氧化硅、氮化硅或其组合。Memory structure 100 may also include dielectric layer 152 . The dielectric layer 152 covers the transistor 104 and the transistor 106 and has at least one opening 152a. Capacitor 108 may be located in opening 152a. In this embodiment, the number of openings 152a may be one, and the opening 152a may be a slot, but the invention is not limited thereto. The opening 152a may expose the doped region 120, the doped region 136 and the isolation structure 114, and may also expose the metal silicide layer 132 and the metal silicide layer 148. The dielectric layer 152 may be a multi-layer structure. The material of the dielectric layer 152 is, for example, silicon oxide, silicon nitride or a combination thereof.
电容器108耦接至掺杂区120与掺杂区136。因此,电容器108可在第二方向D2上延伸,且耦接至电容器108的晶体管104与晶体管106可呈错位排列。电容器108可包括电极108a、电极108b与绝缘层108c。电极108a可直接连接至掺杂区120、掺杂区136,且还可直接连接至金属硅化物层132与金属硅化物层148,但本发明并不以此为限。电极108a可用以作为电容器108的下电极。电极108b设置在电极108a上。电极108b可用以作为电容器108的上电极。电极108a与电极108b的材料例如是Ti、TiN、Ta、TaN、Al、In、Nb、Hf、Sn、Zn、Zr、Cu、Y、W、Pt或其组合。绝缘层108c设置在电极108a与电极108b之间。绝缘层108c的材料例如是高介电常数材料(high-k material)、氧化硅、氮化硅、氧化硅/氮化硅/氧化硅(oxide-nitride-oxide,ONO)或其组合。高介电常数材料例如是氧化钽(Ta2O5)、氧化铝(Al2O3)、氧化铪(HfO2)、氧化钛(TiO2)、氧化锆(ZrO2)或其组合。在电容器108中,由于绝缘层108c设置在电极108a与电极108b之间,由此可形成金属-绝缘体-金属(metal-insulator-metal,MIM)电容器。Capacitor 108 is coupled to doped region 120 and doped region 136 . Therefore, the capacitor 108 may extend in the second direction D2, and the transistors 104 and 106 coupled to the capacitor 108 may be arranged in a staggered manner. The capacitor 108 may include an electrode 108a, an electrode 108b, and an insulating layer 108c. The electrode 108a can be directly connected to the doping region 120 and the doping region 136, and can also be directly connected to the metal silicide layer 132 and the metal silicide layer 148, but the invention is not limited thereto. Electrode 108a may serve as the lower electrode of capacitor 108. The electrode 108b is provided on the electrode 108a. Electrode 108b may serve as the upper electrode of capacitor 108. The materials of the electrodes 108a and 108b are, for example, Ti, TiN, Ta, TaN, Al, In, Nb, Hf, Sn, Zn, Zr, Cu, Y, W, Pt or combinations thereof. The insulating layer 108c is provided between the electrode 108a and the electrode 108b. The material of the insulating layer 108c is, for example, a high-k material, silicon oxide, silicon nitride, silicon oxide/silicon nitride/silicon oxide (oxide-nitride-oxide, ONO) or a combination thereof. The high dielectric constant material is, for example, tantalum oxide (Ta 2 O 5 ), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ) or combinations thereof. In the capacitor 108, since the insulating layer 108c is disposed between the electrode 108a and the electrode 108b, a metal-insulator-metal (MIM) capacitor can be formed.
内存结构100还可包括位于介电层152中的接触窗154、阻障层156、接触窗158、阻障层160、导体层162、阻障层164、导体层166、阻障层168、导体层170与阻障层172中的至少一者。接触窗154耦接至掺杂区118。阻障层156可设置在接触窗154与金属硅化物层130之间。接触窗158耦接至掺杂区138。阻障层160可设置在接触窗158与金属硅化物层150之间。接触窗154与接触窗158的材料例如是钨。阻障层156与阻障层160的材料例如是钛、氮化钛或其组合。Memory structure 100 may also include contacts 154 in dielectric layer 152, barrier layer 156, contact 158, barrier layer 160, conductor layer 162, barrier layer 164, conductor layer 166, barrier layer 168, conductor At least one of layer 170 and barrier layer 172 . Contact 154 is coupled to doped region 118 . Barrier layer 156 may be disposed between contact window 154 and metal suicide layer 130 . Contact 158 is coupled to doped region 138 . Barrier layer 160 may be disposed between contact window 158 and metal suicide layer 150 . The material of the contact window 154 and the contact window 158 is, for example, tungsten. The material of the barrier layer 156 and the barrier layer 160 is, for example, titanium, titanium nitride or a combination thereof.
导体层162耦接至接触窗154。阻障层164设置在导体层162与接触窗154之间。导体层166耦接至接触窗158。阻障层168设置在导体层166与接触窗158之间。导体层170耦接至电极108b。阻障层172设置在导体层170与电极108b之间。导体层162、导体层166与导体层170的材料例如是铝(Al)、铜(Cu)或其组合。阻障层164、阻障层168与阻障层172的材料例如是钛、氮化钛或其组合。Conductor layer 162 is coupled to contact 154 . The barrier layer 164 is disposed between the conductor layer 162 and the contact window 154 . Conductor layer 166 is coupled to contact 158 . Barrier layer 168 is disposed between conductor layer 166 and contact window 158 . Conductor layer 170 is coupled to electrode 108b. Barrier layer 172 is disposed between conductor layer 170 and electrode 108b. The material of the conductor layer 162, the conductor layer 166 and the conductor layer 170 is, for example, aluminum (Al), copper (Cu) or a combination thereof. The material of the barrier layer 164, the barrier layer 168 and the barrier layer 172 is, for example, titanium, titanium nitride or a combination thereof.
基于上述实施例可知,在内存结构100中,掺杂区118与掺杂区120在第一方向D1上排列,掺杂区120与掺杂区136在第二方向D2上排列,第二方向D2与第一方向D1相交,且电容器108耦接至掺杂区120与掺杂区136。通过上述设置方式,可在不增加芯片面积的情况下,有效地增加电容器108的尺寸,因此能够有效地增加电容器108的电容,进而可提升内存组件的电性效能。Based on the above embodiments, it can be seen that in the memory structure 100, the doped regions 118 and 120 are arranged in the first direction D1, the doped regions 120 and the doped regions 136 are arranged in the second direction D2, and the doped regions 118 and 120 are arranged in the second direction D2. Intersecting the first direction D1 , the capacitor 108 is coupled to the doping region 120 and the doping region 136 . Through the above arrangement, the size of the capacitor 108 can be effectively increased without increasing the chip area. Therefore, the capacitance of the capacitor 108 can be effectively increased, thereby improving the electrical performance of the memory component.
图3为本发明另一实施例的内存结构的上视图。图4为沿图3中的II-II’剖面线的内存结构的剖视图。在图3中,省略图4中的部分构件,以清楚地说明晶体管与电容器之间的配置关系。此外,图3与图4中的构件的比例关系仅为示意说明,本发明并不以此为限。在本实施例中,关于「方向」的内容绘示于图3中。FIG. 3 is a top view of a memory structure according to another embodiment of the present invention. FIG. 4 is a cross-sectional view of the memory structure along the II-II' cross-sectional line in FIG. 3 . In FIG. 3 , some components in FIG. 4 are omitted to clearly illustrate the configuration relationship between the transistor and the capacitor. In addition, the proportional relationship between the components in Figure 3 and Figure 4 is only for schematic illustration, and the present invention is not limited thereto. In this embodiment, the content about "direction" is shown in Figure 3 .
请同时参照图1至图4,图3与图4的内存结构200图1与图2的内存结构100的差异如下。在内存结构200中,介电层152中的开口152b的数量可为多个,且开口152b可为介层窗开口(via hole)。每个开口152b可暴露出掺杂区120、掺杂区136与隔离结构114中的至少一者。举例来说,开口152b可仅暴露出掺杂区120、开口152b可仅暴露出掺杂区136、开口152b可同时暴露出掺杂区120与隔离结构114或者开口152b可同时暴露出掺杂区136与隔离结构114。此外,虽然在图3与图4中未示出,但在其他实施例中,开口152b可同时暴露出掺杂区120、掺杂区136与隔离结构114。电容器208中的电极208a、电极208b与绝缘层208c分别可延伸至多个开口152b中,由此可更进一步增加电容器208的电容。关于电容器208中的各构件的配置方式、材料与功效可参考上述电容器108的内容,于此不再说明。Please refer to FIGS. 1 to 4 at the same time. The differences between the memory structures 200 of FIG. 3 and FIG. 4 and the memory structures 100 of FIG. 1 and FIG. 2 are as follows. In the memory structure 200, the number of openings 152b in the dielectric layer 152 may be multiple, and the openings 152b may be via holes. Each opening 152b may expose at least one of the doped region 120, the doped region 136, and the isolation structure 114. For example, the opening 152b may only expose the doped region 120, the opening 152b may only expose the doped region 136, the opening 152b may simultaneously expose the doped region 120 and the isolation structure 114, or the opening 152b may simultaneously expose the doped region. 136 and isolation structure 114. In addition, although not shown in FIGS. 3 and 4 , in other embodiments, the opening 152 b may simultaneously expose the doped region 120 , the doped region 136 and the isolation structure 114 . The electrodes 208a, 208b and insulating layer 208c in the capacitor 208 can respectively extend into the plurality of openings 152b, thereby further increasing the capacitance of the capacitor 208. Regarding the arrangement, materials, and functions of each component in the capacitor 208, reference may be made to the content of the capacitor 108 described above and will not be described here.
此外,内存结构200还可包括接触窗202、阻障层204、阻障层206、阻障层210与阻障层212中的至少一者。接触窗202耦接至电容器208。因此,导体层170可通过阻障层172、接触窗202与阻障层204而耦接至电容器208。此外,接触窗202可位于隔离结构114、掺杂区120与掺杂区136中的至少一者上方。在本实施例中,接触窗202是以位于隔离结构114上方为例,但本发明并不以此为限。在其他实施例中,接触窗202可仅位于掺杂区120上方、接触窗202可仅位于掺杂区136上方、接触窗202可同时位于隔离结构114与掺杂区120上方、接触窗202可同时位于隔离结构114与掺杂区136上方或者接触窗202可同时位于隔离结构114、掺杂区120与掺杂区136上方。在图4中,接触窗202的数量是以一个为例来进行说明,但本发明并不以此为限。在一些实施例中,接触窗202的数量也可为多个。接触窗202的材料例如是钨。In addition, the memory structure 200 may further include at least one of a contact window 202, a barrier layer 204, a barrier layer 206, a barrier layer 210, and a barrier layer 212. Contact 202 is coupled to capacitor 208 . Therefore, the conductor layer 170 can be coupled to the capacitor 208 through the barrier layer 172, the contact window 202, and the barrier layer 204. Additionally, the contact window 202 may be located over at least one of the isolation structure 114 , the doped region 120 , and the doped region 136 . In this embodiment, the contact window 202 is located above the isolation structure 114, but the invention is not limited to this. In other embodiments, the contact window 202 may be located only above the doped region 120 , the contact window 202 may be located only above the doped region 136 , the contact window 202 may be located above both the isolation structure 114 and the doped region 120 , the contact window 202 may be The contact window 202 may be located above the isolation structure 114 and the doped region 136 at the same time or the contact window 202 may be located above the isolation structure 114 , the doped region 120 and the doped region 136 at the same time. In FIG. 4 , the number of contact windows 202 is illustrated by taking one as an example, but the present invention is not limited to this. In some embodiments, the number of contact windows 202 may also be multiple. The material of the contact window 202 is, for example, tungsten.
阻障层204设置在接触窗202与电极208b之间。阻障层206、阻障层210与阻障层212分别设置在导体层162、导体层166与导体层170上。阻障层206、阻障层210与阻障层212的材料例如是钛、氮化钛或其组合。Barrier layer 204 is provided between contact window 202 and electrode 208b. The barrier layer 206, the barrier layer 210 and the barrier layer 212 are respectively disposed on the conductor layer 162, the conductor layer 166 and the conductor layer 170. The material of the barrier layer 206, the barrier layer 210 and the barrier layer 212 is, for example, titanium, titanium nitride or a combination thereof.
在内存结构200中,根据制作工艺的选择,导体层162、阻障层164、导体层166、阻障层168、导体层170与阻障层172可位于介电层152上。此外,导体层162、导体层166、与导体层170的材料可依据制作工艺进行调整,例如是铝。In the memory structure 200, the conductor layer 162, the barrier layer 164, the conductor layer 166, the barrier layer 168, the conductor layer 170 and the barrier layer 172 may be located on the dielectric layer 152 according to the selection of the manufacturing process. In addition, the materials of the conductor layer 162, the conductor layer 166, and the conductor layer 170 can be adjusted according to the manufacturing process, such as aluminum.
此外,在内存结构200与内存结构100中,相似的构件以相同的符号表示并省略其说明。In addition, in the memory structure 200 and the memory structure 100, similar components are represented by the same symbols and their descriptions are omitted.
基于上述实施例可知,在内存结构200中,掺杂区118与掺杂区120在第一方向D1上排列,掺杂区120与掺杂区136在第二方向D2上排列,第二方向D2与第一方向D1相交,且电容器208耦接至掺杂区120与掺杂区136。通过上述设置方式,可在不增加芯片面积的情况下,有效地增加电容器208的尺寸,因此能够有效地增加电容器208的电容,进而可提升内存组件的电性效能。此外,由于电容器208可延伸至多个开口152b中,由此可更进一步增加电容器208的电容。Based on the above embodiments, it can be seen that in the memory structure 200, the doped regions 118 and 120 are arranged in the first direction D1, the doped regions 120 and the doped regions 136 are arranged in the second direction D2, and the doped regions 118 and 120 are arranged in the second direction D2. Intersecting the first direction D1 , the capacitor 208 is coupled to the doping region 120 and the doping region 136 . Through the above arrangement, the size of the capacitor 208 can be effectively increased without increasing the chip area. Therefore, the capacitance of the capacitor 208 can be effectively increased, thereby improving the electrical performance of the memory component. In addition, since the capacitor 208 can extend into the plurality of openings 152b, the capacitance of the capacitor 208 can be further increased.
综上所述,上述实施例的内存结构通过上述电容器的设置方式,可在不增加芯片面积的情况下,有效地增加电容器的尺寸,因此能够有效地增加电容器的电容,进而可提升内存组件的电性效能。In summary, the memory structure of the above embodiments can effectively increase the size of the capacitor without increasing the chip area through the arrangement of the capacitors. Therefore, the capacitance of the capacitor can be effectively increased, thereby improving the performance of the memory component. Electrical performance.
虽然结合以上实施例公开了本发明,然而其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,可作些许的更动与润饰,故本发明的保护范围应当以附上的权利要求所界定的为准。Although the present invention has been disclosed in conjunction with the above embodiments, they are not intended to limit the present invention. Anyone with ordinary skill in the technical field can make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be defined by the appended claims.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108103145 | 2019-01-28 | ||
TW108103145A TWI696247B (en) | 2019-01-28 | 2019-01-28 | Memory structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111490047A CN111490047A (en) | 2020-08-04 |
CN111490047B true CN111490047B (en) | 2023-11-10 |
Family
ID=71811571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910110946.6A Active CN111490047B (en) | 2019-01-28 | 2019-02-12 | memory structure |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111490047B (en) |
TW (1) | TWI696247B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11950409B2 (en) | 2022-03-29 | 2024-04-02 | Nanya Technology Corporation | Semiconductor device having diode connectedto memory device and circuit including the same |
US12267994B2 (en) | 2022-03-29 | 2025-04-01 | Nanya Technology Corporation | Method for manufacturing semiconductor device having diode connectedto memory device |
TWI825783B (en) * | 2022-03-29 | 2023-12-11 | 南亞科技股份有限公司 | Method for preparing semiconductor device having diode connectedto memory device and circuit including the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05315564A (en) * | 1992-05-06 | 1993-11-26 | Toshiba Corp | Semiconductor device and manufacture thereof |
US6104055A (en) * | 1997-03-27 | 2000-08-15 | Nec Corporation | Semiconductor device with memory cell having a storage capacitor with a plurality of concentric storage electrodes formed in an insulating layer and fabrication method thereof |
TW543192B (en) * | 2001-06-29 | 2003-07-21 | Mitsubishi Electric Corp | Semiconductor device and manufacturing method thereof |
US7022565B1 (en) * | 2004-11-26 | 2006-04-04 | Grace Semiconductor Manufacturing Corporation | Method of fabricating a trench capacitor of a mixed mode integrated circuit |
CN101140934A (en) * | 2006-09-08 | 2008-03-12 | 茂德科技股份有限公司 | Memory structure and preparation method thereof |
US10020311B1 (en) * | 2017-08-02 | 2018-07-10 | Ap Memory Technology Corporation | Semiconductor memory device provided with DRAM cell including two transistors and common capacitor |
CN108962909A (en) * | 2017-05-19 | 2018-12-07 | 爱思开海力士有限公司 | Semiconductor storage including capacitor |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW382814B (en) * | 1998-10-30 | 2000-02-21 | Vanguard Int Semiconduct Corp | Method of making DRAM device having bitline top capacitor structure of linear bitline shape on substrate |
JP2003347512A (en) * | 2002-05-27 | 2003-12-05 | Fujitsu Ltd | Semiconductor device and method for manufacturing the same |
US7166896B2 (en) * | 2002-08-26 | 2007-01-23 | Micron Technology, Inc. | Cross diffusion barrier layer in polysilicon |
US20060102957A1 (en) * | 2004-11-12 | 2006-05-18 | Jhon-Jhy Liaw | SER immune cell structure |
JP2006190889A (en) * | 2005-01-07 | 2006-07-20 | Fujitsu Ltd | Semiconductor device and manufacturing method thereof |
US8716081B2 (en) * | 2007-03-15 | 2014-05-06 | Globalfoundries Singapore Pte. Ltd. | Capacitor top plate over source/drain to form a 1T memory device |
KR101450254B1 (en) * | 2008-07-09 | 2014-10-13 | 삼성전자주식회사 | A semiconductor memory device comprising a storage node with increased capacitance |
US8890225B2 (en) * | 2011-10-14 | 2014-11-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for single gate non-volatile memory device having a capacitor well doping design with improved coupling efficiency |
US9059168B2 (en) * | 2012-02-02 | 2015-06-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Adjustable meander line resistor |
JP2014225566A (en) * | 2013-05-16 | 2014-12-04 | ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. | Semiconductor device |
-
2019
- 2019-01-28 TW TW108103145A patent/TWI696247B/en active
- 2019-02-12 CN CN201910110946.6A patent/CN111490047B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05315564A (en) * | 1992-05-06 | 1993-11-26 | Toshiba Corp | Semiconductor device and manufacture thereof |
US6104055A (en) * | 1997-03-27 | 2000-08-15 | Nec Corporation | Semiconductor device with memory cell having a storage capacitor with a plurality of concentric storage electrodes formed in an insulating layer and fabrication method thereof |
TW543192B (en) * | 2001-06-29 | 2003-07-21 | Mitsubishi Electric Corp | Semiconductor device and manufacturing method thereof |
US7022565B1 (en) * | 2004-11-26 | 2006-04-04 | Grace Semiconductor Manufacturing Corporation | Method of fabricating a trench capacitor of a mixed mode integrated circuit |
CN101140934A (en) * | 2006-09-08 | 2008-03-12 | 茂德科技股份有限公司 | Memory structure and preparation method thereof |
CN108962909A (en) * | 2017-05-19 | 2018-12-07 | 爱思开海力士有限公司 | Semiconductor storage including capacitor |
US10020311B1 (en) * | 2017-08-02 | 2018-07-10 | Ap Memory Technology Corporation | Semiconductor memory device provided with DRAM cell including two transistors and common capacitor |
Also Published As
Publication number | Publication date |
---|---|
TW202029416A (en) | 2020-08-01 |
TWI696247B (en) | 2020-06-11 |
CN111490047A (en) | 2020-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111883533B (en) | Memory structure | |
US11183500B2 (en) | Semiconductor memory device and method of manufacturing the same | |
US9449964B2 (en) | Semiconductor process | |
US20240206157A1 (en) | Semiconductor memory devices having contact plugs | |
CN111490047B (en) | memory structure | |
TWI783765B (en) | Semiconductor memory device | |
US20190333913A1 (en) | Semiconductor device and method for fabricating the same | |
US20220336672A1 (en) | Semiconductor device | |
TWI873646B (en) | Semiconductor memory device | |
US20240074148A1 (en) | Semiconductor device | |
CN118475114A (en) | Semiconductor memory devices | |
TWI691051B (en) | Memory structure | |
TWI675460B (en) | Memory structure and manufacturing method thereof | |
EP4336559B1 (en) | Integrated circuit device | |
US20240130118A1 (en) | Semiconductor memory device | |
TWI863300B (en) | Semiconductor device | |
US20250176164A1 (en) | Semiconductor memory devices | |
US20250203849A1 (en) | Semiconductor device | |
TWI736947B (en) | Memory structure and manufacturing method thereof | |
TW201836076A (en) | Memory element and manufacturing method thereof | |
CN120021373A (en) | Semiconductor Devices | |
JP2024127787A (en) | Semiconductor Device | |
KR20250104873A (en) | Semiconductor devices | |
KR20240104984A (en) | Field effect transistor and integrated circuit device comprising the same | |
KR20250061470A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230915 Address after: Hsinchu Science Industrial Park, Taiwan, China Applicant after: Powerchip Technology Corp. Address before: Hsinchu Science Industrial Park, Taiwan, China Applicant before: Powerchip Technology Corp. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |