CN111476754A - A system and method for bone marrow cell imaging artificial intelligence-aided grading diagnosis - Google Patents
A system and method for bone marrow cell imaging artificial intelligence-aided grading diagnosis Download PDFInfo
- Publication number
- CN111476754A CN111476754A CN202010126812.6A CN202010126812A CN111476754A CN 111476754 A CN111476754 A CN 111476754A CN 202010126812 A CN202010126812 A CN 202010126812A CN 111476754 A CN111476754 A CN 111476754A
- Authority
- CN
- China
- Prior art keywords
- bone marrow
- cell
- image
- cells
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000002798 bone marrow cell Anatomy 0.000 title claims abstract description 123
- 238000003745 diagnosis Methods 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000003384 imaging method Methods 0.000 title description 9
- 210000004027 cell Anatomy 0.000 claims abstract description 192
- 238000002372 labelling Methods 0.000 claims abstract description 57
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 20
- 238000004458 analytical method Methods 0.000 claims abstract description 17
- 238000007405 data analysis Methods 0.000 claims abstract description 14
- 238000004891 communication Methods 0.000 claims abstract description 4
- 210000001185 bone marrow Anatomy 0.000 claims description 53
- 230000003902 lesion Effects 0.000 claims description 25
- 238000012549 training Methods 0.000 claims description 18
- 210000004698 lymphocyte Anatomy 0.000 claims description 16
- 238000012360 testing method Methods 0.000 claims description 13
- 208000007502 anemia Diseases 0.000 claims description 12
- 210000003743 erythrocyte Anatomy 0.000 claims description 11
- 210000000267 erythroid cell Anatomy 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 11
- 210000003714 granulocyte Anatomy 0.000 claims description 10
- 108090000623 proteins and genes Proteins 0.000 claims description 10
- 210000000066 myeloid cell Anatomy 0.000 claims description 8
- 230000001575 pathological effect Effects 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 7
- 210000004765 promyelocyte Anatomy 0.000 claims description 7
- 230000002159 abnormal effect Effects 0.000 claims description 6
- 201000010099 disease Diseases 0.000 claims description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 6
- 230000000877 morphologic effect Effects 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 6
- 230000002062 proliferating effect Effects 0.000 claims description 6
- 230000011218 segmentation Effects 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 3
- 241000283080 Proboscidea <mammal> Species 0.000 claims 9
- 230000010307 cell transformation Effects 0.000 claims 2
- 238000013507 mapping Methods 0.000 claims 2
- 210000001704 mesoblast Anatomy 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 claims 1
- 210000001237 metamyelocyte Anatomy 0.000 description 10
- 206010028980 Neoplasm Diseases 0.000 description 6
- 238000002059 diagnostic imaging Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 6
- 210000003969 blast cell Anatomy 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 210000001616 monocyte Anatomy 0.000 description 5
- 238000004163 cytometry Methods 0.000 description 3
- 230000036210 malignancy Effects 0.000 description 3
- 210000003887 myelocyte Anatomy 0.000 description 3
- 238000013517 stratification Methods 0.000 description 3
- 238000003759 clinical diagnosis Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 210000003924 normoblast Anatomy 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 210000003593 megakaryocyte Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30024—Cell structures in vitro; Tissue sections in vitro
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30204—Marker
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30242—Counting objects in image
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Data Mining & Analysis (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Computing Systems (AREA)
- Pathology (AREA)
- Multimedia (AREA)
- Databases & Information Systems (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及医疗辅助诊断技术领域,公开了一种骨髓细胞影像人工智能辅助分级诊断系统及方法,包括数据采集单元、自动识别与标注单元、手动标注单元、细胞数据统计单元、数据分析分级单元、影像辅助分级诊断单元、显示器、储存模块和处理器,所述括数据采集单元、自动识别与标注单元、手动标注单元、细胞数据统计单元、数据分析分级单元、影像辅助分级诊断单元、储存模块和显示器均与处理器通讯连接。本发明能够不仅能够对骨髓细胞影像进行自动的识别、标注、计数分析和分级诊断,还可以对骨髓细胞影像进行手动标注,并将手动标注的结果存入存储模块,系统对手动标注的信息进行记忆,逐步提升系统对骨髓细胞影像的辨别能力。
The invention relates to the technical field of medical assistant diagnosis, and discloses a bone marrow cell image artificial intelligence assistant grading diagnosis system and method, comprising a data acquisition unit, an automatic identification and labeling unit, a manual labeling unit, a cell data statistics unit, a data analysis and grading unit, An image-assisted grading diagnosis unit, a display, a storage module and a processor, including a data acquisition unit, an automatic identification and labeling unit, a manual labeling unit, a cell data statistics unit, a data analysis and grading unit, an image-assisted grading diagnosis unit, a storage module and The displays are all connected in communication with the processor. The present invention can not only automatically identify, label, count analysis and grade diagnosis for the bone marrow cell image, but also manually mark the bone marrow cell image, and store the manually marked results in the storage module, and the system can perform the manual marking information. Memory, and gradually improve the system's ability to distinguish bone marrow cell images.
Description
技术领域technical field
本发明涉及医疗辅助诊断技术领域,尤其涉及一种骨髓细胞影像人工智能辅助分级诊断系统及方法。The invention relates to the technical field of medical auxiliary diagnosis, in particular to a bone marrow cell image artificial intelligence auxiliary classification diagnosis system and method.
背景技术Background technique
研究显示,在我国医疗影像数据每年的增长率约为30%,而影像诊断医师数量的年增长率仅约为4.1%,这意味着影像诊断医师在未来将超负荷工作;这必将会大大降低医师的诊断效率,甚至降低诊断准确性;另外,由于医疗影像诊断对医师的诊断经验有着较高要求,而在发展水平较低的地区,经验丰富的诊断医师资源相对匮乏。Research shows that the annual growth rate of medical imaging data in my country is about 30%, while the annual growth rate of the number of diagnostic imaging physicians is only about 4.1%, which means that diagnostic imaging physicians will be overworked in the future; It reduces the diagnostic efficiency of doctors and even reduces the accuracy of diagnosis; in addition, because medical imaging diagnosis has high requirements on the diagnostic experience of doctors, and in areas with low development level, the resources of experienced diagnostic doctors are relatively scarce.
随着现代医学科技的发展,各种新技术逐步渗透进医疗领域,为了在一定程度上减轻影像诊断医师压力,影像的人工智能辅助诊断系统被提出。人工智能+医学影像是将人工智能技术具体应用在医学影像的诊断上,目前主要分为两部分,一是图像识别,应用于感知环节,其主要目的是将影像这类非机构化数据进行分析,获取一些有意义的信息。二是深度学习,应用于学习和分析环节,是人工智能应用的最核心环节,通过大量的影像数据和诊断数据,不断对神经元网络进行深度学习训练,促使其掌握“诊断”的能力。With the development of modern medical science and technology, various new technologies have gradually penetrated into the medical field. In order to reduce the pressure of imaging diagnosis physicians to a certain extent, an artificial intelligence-assisted diagnosis system for imaging has been proposed. Artificial intelligence + medical imaging is the specific application of artificial intelligence technology to the diagnosis of medical imaging. Currently, it is mainly divided into two parts. One is image recognition, which is applied to the perception link. Its main purpose is to analyze non-institutionalized data such as images. , to get some meaningful information. The second is deep learning, which is applied to learning and analysis, and is the core link of artificial intelligence applications. Through a large amount of image data and diagnostic data, deep learning training is continuously carried out on neuron networks to enable them to master the ability of "diagnosis".
申请号为CN 201810866088.3的专利公开了一种人工智能医学影像的肿瘤恶性风险分层辅助诊断系统,包括:数据采集模块、数据预处理模块、模型建立模块、模型验证与优化模块、分层诊断模块及数据库平台。该专利的肿瘤恶性风险分层辅助诊断系统基于人工智能技术,可实现对肿瘤的恶性风险进行逐次分层,模拟临床诊断思路,以人工智能模型的高精度的良性病变检出和恶性肿瘤检出能力,对影像特征明确的占位性病变进行自动诊断,从而能够实质性辅助占位性病变临床管理决策,改进临床诊断现有工作流程,增加医师诊断信心,减轻工作压力,也减少低恶性风险病变患者的焦虑,大大提高了良性病变及恶性肿瘤的确诊率。The patent with the application number CN 201810866088.3 discloses an auxiliary diagnosis system for tumor malignancy risk stratification of artificial intelligence medical images, including: a data acquisition module, a data preprocessing module, a model establishment module, a model verification and optimization module, and a hierarchical diagnosis module and database platform. The patented auxiliary diagnosis system for tumor malignancy risk stratification is based on artificial intelligence technology, which can realize the successive stratification of the malignant risk of tumors, simulate the clinical diagnosis idea, and use the artificial intelligence model to detect benign lesions and malignant tumors with high precision. It can automatically diagnose space-occupying lesions with clear imaging features, which can substantially assist the clinical management decision-making of space-occupying lesions, improve the existing workflow of clinical diagnosis, increase the physician’s confidence in diagnosis, reduce work pressure, and reduce the risk of low malignancy. The anxiety of patients with lesions greatly improves the diagnosis rate of benign lesions and malignant tumors.
上述专利虽然实现了影像的智能辅助诊断,但其只适用于肺癌、肝癌等细胞影像的智能辅助诊断,对于骨髓细胞的影像,还需要识别根据骨髓细胞中各个细胞的大小、颗粒及核的复杂程度等测量值来初步判断认定细胞特性,由于骨髓细胞中存在粒细胞系、红细胞系和巨核细胞系三大系统,各种细胞间有些从大小等数据区别较小,所以上述方案的智能辅助诊断系统对于骨髓细胞影像的识别准确率还较低。Although the above-mentioned patent realizes the intelligent auxiliary diagnosis of images, it is only applicable to the intelligent auxiliary diagnosis of lung cancer, liver cancer and other cell images. For the images of bone marrow cells, it is necessary to identify the complexity of the size, granules and nuclei of each cell in the bone marrow cells. Since there are three major systems of granulocyte lineage, erythrocyte lineage and megakaryocyte lineage in bone marrow cells, some of the various cells have small differences in size and other data, so the intelligent auxiliary diagnosis of the above scheme The recognition accuracy of the system for bone marrow cell images is still low.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的是提供一种骨髓细胞影像人工智能辅助分级诊断系统及方法,不仅能够对骨髓细胞影像进行自动的识别、标注、计数分析和分级诊断,还可以对骨髓细胞影像进行手动标注,并将手动标注的结果存入存储模块,系统对手动标注的信息进行记忆,逐步提升系统对骨髓细胞影像的辨别能力。In view of this, the purpose of the present invention is to provide a bone marrow cell image artificial intelligence-assisted grading diagnosis system and method, which can not only automatically identify, label, count, analyze and grade the bone marrow cell image, but also can perform the bone marrow cell image. Manually mark and store the manually marked results in the storage module, the system memorizes the manually marked information, and gradually improves the system's ability to distinguish bone marrow cell images.
本发明通过以下技术手段解决上述技术问题:The present invention solves the above-mentioned technical problems through the following technical means:
一种骨髓细胞影像人工智能辅助分级诊断系统,包括数据采集单元、自动识别与标注单元、手动标注单元、细胞数据统计单元、数据分析分级单元、影像辅助分级诊断单元、显示器、储存模块和处理器,所述括数据采集单元、自动识别与标注单元、手动标注单元、细胞数据统计单元、数据分析分级单元、影像辅助分级诊断单元、储存模块和显示器均与处理器通讯连接;所述数据采集单元包括用于对骨髓细胞影像进行信息读取的影像采集模块、对患者临床信息进行录入的临床信息采集模块、对患者的基因信息进行录入的基因信息采集模块;所述自动识别与标注单元包括表示标准细胞形态的细胞形态标准模块、对骨髓细胞的形态进行自动提取的骨髓细胞形态提取模块、将骨髓细胞影像的提取信息与细胞形态标准模块进行对比的细胞形态对比模块和对已识别的骨髓细胞形态进行自动标注的细胞形态自动标注模块;所述手动标注单元包括用于医师进行手动操作,对骨髓细胞影像进行手动标注的细胞形态手动标注模块、对医师手动进行标注信息进行储存的标注储存模块;所述数据分析单元包括计算有核细胞与成熟红细胞的比值的粒红细胞比值分析模块、计算每种细胞的数量在整个骨髓细胞总数的占比的细胞占比分析模块。A bone marrow cell imaging artificial intelligence-assisted grading diagnosis system, comprising a data acquisition unit, an automatic identification and labeling unit, a manual labeling unit, a cell data statistics unit, a data analysis and grading unit, an image-assisted grading diagnosis unit, a display, a storage module and a processor , the data acquisition unit, the automatic identification and labeling unit, the manual labeling unit, the cell data statistics unit, the data analysis and classification unit, the image-assisted classification and diagnosis unit, the storage module and the display are all connected with the processor in communication; the data collection unit It includes an image acquisition module for reading information on bone marrow cell images, a clinical information acquisition module for inputting patient clinical information, and a gene information acquisition module for inputting patient genetic information; the automatic identification and labeling unit includes a The cell morphology standard module for standard cell morphology, the bone marrow cell morphology extraction module for automatically extracting the morphology of bone marrow cells, the cell morphology comparison module for comparing the extracted information of bone marrow cell images with the cell morphology standard module, and the identified bone marrow cells. A cell morphology automatic labeling module for automatically labeling the morphology; the manual labeling unit includes a cell morphology manual labeling module for manual operation by a doctor to manually label bone marrow cell images, and a labeling storage module for manually labeling information by the doctor. The data analysis unit includes a granulocyte ratio analysis module for calculating the ratio of nucleated cells to mature red blood cells, and a cell ratio analysis module for calculating the proportion of the number of each cell in the total number of bone marrow cells.
进一步,所述影像辅助分级诊断单元包括一级、二级、三级、四级,所述一级包括正常骨髓象、非正常骨髓象,所述二级为一大类疾病,包括贫血骨髓象、增生性贫血骨髓象,所述三级为某种疾病,包括IDA骨髓象、CL骨髓象、AL骨髓象,所述四级为某种含特定基因的疾病,包括APL骨髓象、CML骨髓象。Further, the image-assisted grading diagnosis unit includes first-level, second-level, third-level, and fourth-level, the first-level includes normal bone marrow images and abnormal bone marrow images, and the second-level is a large category of diseases, including anemia bone marrow images. , Proliferative anemia bone marrow pattern, the third level is a certain disease, including IDA bone marrow pattern, CL bone marrow pattern, AL bone marrow pattern, the fourth level is a certain gene-containing disease, including APL bone marrow pattern, CML bone marrow pattern .
进一步,还包括数据预处理单元,所述数据预处理单元包括对影像采集模块采集的数据进行降噪和数据归一化处理的数据降噪模块、寻找与病理结果对应的病变并对图像进行病变标注的病变标注模块和病变分割模块。Further, it also includes a data preprocessing unit, the data preprocessing unit includes a data noise reduction module that performs noise reduction and data normalization processing on the data collected by the image acquisition module, searches for lesions corresponding to the pathological results, and performs lesions on the images. Annotated lesion annotation module and lesion segmentation module.
进一步,所述细胞数据统计单元包括细胞分类模块、细胞计数模块。Further, the cell data statistics unit includes a cell classification module and a cell counting module.
进一步,所述细胞计数模块将骨髓细胞分为:中幼红细胞、晚幼红细胞、其他红系细胞、原始细胞、成熟淋巴细胞、其他淋系细胞、单核系细胞、早幼粒细胞、中幼粒细胞、晚幼粒细胞、杆状核细胞、分叶核细胞和其他粒系细胞。Further, the cell counting module divides the bone marrow cells into: erythroid cells, metamyelocytes, other erythroid cells, blast cells, mature lymphocytes, other lymphoid cells, monocyte lineage cells, promyelocytic cells, and juvenile cells. Granulocytes, metamyelocytes, rod-shaped nuclear cells, segmented nuclear cells and other myeloid cells.
进一步,所述细胞数据分析单元还包括用于排出无用细胞干扰,准确高效的对骨髓细胞进行分类的误差校准模块。Further, the cell data analysis unit further includes an error calibration module for eliminating unnecessary cell interference and classifying the bone marrow cells accurately and efficiently.
一种骨髓细胞影像人工智能辅助分级诊断系统的方法,包括以下步骤:A method for a bone marrow cell imaging artificial intelligence-assisted grading diagnosis system, comprising the following steps:
A1、影像采集模块对骨髓细胞影像进行信息读取,临床信息采集模块对患者的临床信息进行录入,基因信息采集模块对患者的基因信息进行录入;A1. The image acquisition module reads information from bone marrow cell images, the clinical information acquisition module inputs the patient's clinical information, and the gene information acquisition module inputs the patient's genetic information;
A2、数据降噪模块对影像采集模块采集的数据进行降噪和数据归一化处理,寻找与病理结果对应的病变并对图像进行病变标注;A2. The data noise reduction module performs noise reduction and data normalization processing on the data collected by the image acquisition module, finds the lesions corresponding to the pathological results, and marks the lesions on the images;
A3、细胞形态提取模块对骨髓细胞的形态进行自动提取,细胞形态对比模块将骨髓细胞影像的提取信息与细胞形态标准模块进行对比,细胞形态自动标注模块对已识别的骨髓细胞形态进行自动标注;A3. The cell morphology extraction module automatically extracts the morphology of bone marrow cells, the cell morphology comparison module compares the extracted information of the bone marrow cell image with the cell morphology standard module, and the cell morphology automatic labeling module automatically labels the identified bone marrow cell morphology;
A4、医师进行手动操作,利用手动标注模块对骨髓细胞影像进行手动标注,标注储存模块对医师手动进行标注信息进行储存;A4. Physicians perform manual operations, use the manual labeling module to manually label the bone marrow cell images, and the labeling storage module stores the manually labeling information of the physicians;
A5、误差校准模块排出无用细胞干扰,准确高效的对骨髓细胞进行分类;A5. The error calibration module eliminates useless cell interference and accurately and efficiently classifies bone marrow cells;
A6、细胞计数模块将骨髓细胞分为:中幼红细胞、晚幼红细胞、其他红系细胞、原始细胞、成熟淋巴细胞、其他淋系细胞、单核系细胞、早幼粒细胞、中幼粒细胞、晚幼粒细胞、杆状核细胞、分叶核细胞和其他粒系细胞;A6. The cytometry module divides the bone marrow cells into: erythroid cells, metamyelocytes, other erythroid cells, blast cells, mature lymphocytes, other lymphoid cells, monocyte lineage cells, promyelocytes, and granulocytes , metamyelocytes, rod-shaped nuclear cells, lobulated nuclear cells and other myeloid cells;
A7、粒红细胞比值分析模块计算有核细胞与成熟红细胞的比值,细胞占比分析模块计算每种细胞的数量在整个骨髓细胞总数的占比;A7. The granulocyte ratio analysis module calculates the ratio of nucleated cells to mature red blood cells, and the cell ratio analysis module calculates the proportion of each type of cell in the total number of bone marrow cells;
A8、影像辅助分级诊断单元将骨髓象分为:一级、二级、三级和四级,一级包括正常骨髓象、非正常骨髓象,二级包括贫血骨髓象、增生性贫血骨髓象,三级包括IDA骨髓象、CL骨髓象、AL骨髓象,四级包括APL骨髓象、CML骨髓象。A8. The image-assisted grading diagnosis unit divides the bone marrow images into: first, second, third and fourth grades. The first grade includes normal bone marrow images and abnormal bone marrow images, and the second grade includes anemia bone marrow images and proliferative anemia bone marrow images. The third level includes IDA bone marrow, CL bone marrow, and AL bone marrow, and the fourth level includes APL bone marrow and CML bone marrow.
进一步,所述误差校准模块的误差校准方法,包括以下步骤:Further, the error calibration method of the error calibration module includes the following steps:
B1、获取染色的骨髓细胞影像,并将骨髓细胞影像映射到HSV空间中,分离出S通道;B1. Obtain the stained bone marrow cell image, map the bone marrow cell image to the HSV space, and isolate the S channel;
B2、绘制S通道图像的直方图,根据阈值范围将S通道图像二值化,得到骨髓细胞的二值图像,并将二值图像进行形态学处理;B2. Draw the histogram of the S channel image, binarize the S channel image according to the threshold range, obtain the binary image of the bone marrow cells, and perform morphological processing on the binary image;
B3、用连通域的方法提取经形态学处理后的骨髓细胞图像的边缘像素点,找到骨髓细胞上下左右的边缘像素点,然后分割骨髓细胞;B3. Extract the edge pixels of the morphologically processed bone marrow cell image by the method of connected domain, find the edge pixels of the upper, lower, left, and right edge of the bone marrow cells, and then segment the bone marrow cells;
B4、挑选分割后骨髓细胞的图像,将每一类中特征明显的细胞图像作为训练细胞输入深度残差网络中,训练网络;B4. Select images of bone marrow cells after segmentation, and input cell images with obvious features in each category as training cells into the deep residual network to train the network;
B5、将挑选后剩余的细胞作为测试细胞,用softmax分类器为测试细胞打分;如果最大分数大于或等于设定阈值,则归为某类;如果最大分数小于设定阈值,则归入子分类中;B5. Use the remaining cells after selection as the test cells, and use the softmax classifier to score the test cells; if the maximum score is greater than or equal to the set threshold, it is classified into a certain category; if the maximum score is less than the set threshold, it is classified as a sub-class middle;
B6、取步骤S5中训练细胞以及子分类中细胞边缘的任一像素点为极点,建立极坐标系,将所有像素点用极坐标变换一一映射到直角坐标系中;B6, take any pixel point of the training cell and the cell edge in the sub-classification in step S5 as a pole, establish a polar coordinate system, and map all the pixel points to a rectangular coordinate system one by one with polar coordinate transformation;
B7、对于训练细胞,遍历细胞的边缘像素点,每个像素点产生一张变换后的图像,每张图像有n个像素点,即变换n次;对于子分类中细胞,每张图像只变换一次;B7. For the training cells, traverse the edge pixels of the cells, each pixel generates a transformed image, each image has n pixels, that is, transform n times; for the cells in the sub-category, each image only transforms once;
B8、将训练细胞变换后的图像作为子分类网络的输入,重新训练深度残差网络,并保存网络参数;将子分类中细胞变换后的图像作为测试数据,用softmax分类器再次打分:如果细胞图像的最大得分大于或等于设定阈值,则该细胞图像归为某一子分类;如果最大得分小于设定阈值,则该细胞图像归为未分类细胞。B8. Use the transformed image of the training cell as the input of the sub-classification network, retrain the deep residual network, and save the network parameters; take the transformed image of the cell in the sub-classification as the test data, and use the softmax classifier to score again: if the cell If the maximum score of the image is greater than or equal to the set threshold, the cell image is classified as a subclass; if the maximum score is less than the set threshold, the cell image is classified as unclassified cells.
进一步,若未分类细胞占比大于设定的未分类阈值,则再将未分类细胞进行分割并分级,包括以下步骤,C1、将为分类细胞取经形态学处理后的骨髓细胞图像的边缘像素点,找到骨髓细胞上下左右的边缘像素点,分割骨髓细胞;Further, if the proportion of unclassified cells is greater than the set unclassified threshold, the unclassified cells are then segmented and graded, including the following steps, C1, for the classified cells to obtain the edge pixels of the morphologically processed bone marrow cell image , find the upper, lower, left, and right edge pixels of the bone marrow cells, and segment the bone marrow cells;
C2、将分割后的骨髓细胞图像作为训练细胞输入深度残差网络,训练网络;C2. Input the segmented bone marrow cell images as training cells into the deep residual network to train the network;
C3、再利用softmax分类器为测试细胞打分,若最大分数大于或等于设定阈值,则归为某类;若最大分数小于设定阈值,则归入最终未分类细胞;C3. Then use the softmax classifier to score the test cells. If the maximum score is greater than or equal to the set threshold, it will be classified into a certain category; if the maximum score is less than the set threshold, it will be classified into the final unclassified cell;
C4、若最终未分类细胞占比小于设定的未分类阈值,则停止,若最终未分类细胞占比大于设定的未分类阈值,则继续C1步骤,直到最终未分类细胞占比小于设定的未分类阈值。C4. If the final proportion of unsorted cells is less than the set unsorted threshold, stop; if the final unsorted cell proportion is greater than the set unsorted threshold, continue step C1 until the final unsorted cell proportion is less than the set unsorted threshold The unclassified threshold of .
本发明的有益效果:Beneficial effects of the present invention:
(1)本发明利用数据采集单元对骨髓细胞影像进行信息读取,对患者的临床信息进行录入,患者的基因信息进行录入;然后利用数据降噪模块对影像采集模块采集的数据进行降噪和数据归一化处理,寻找与病理结果对应的病变并对图像进行病变标注;再对骨髓细胞的形态进行自动提取,细胞形态对比模块将骨髓细胞影像的提取信息与细胞形态标准模块进行对比,细胞形态自动标注模块对已识别的骨髓细胞形态进行自动标注;并将细胞计数模块将骨髓细胞分为:中幼红细胞、晚幼红细胞、其他红系细胞、原始细胞、成熟淋巴细胞、其他淋系细胞、单核系细胞、早幼粒细胞、中幼粒细胞、晚幼粒细胞、杆状核细胞、分叶核细胞和其他粒系细胞;计算出有核细胞与成熟红细胞的比值,细胞占比分析模块计算每种细胞的数量在整个骨髓细胞总数的占比;最后将影像辅助分级诊断单元将骨髓象分为:一级、二级、三级、四级,整个系统能够对骨髓细胞影像进行智能的分级诊断,降低影像医师工作量。(1) The present invention utilizes the data acquisition unit to read the information of the bone marrow cell image, input the clinical information of the patient, and input the genetic information of the patient; and then use the data noise reduction module to perform noise reduction and The data is normalized to find the lesions corresponding to the pathological results and mark the lesions on the images; then the morphology of the bone marrow cells is automatically extracted, and the cell morphology comparison module compares the extracted information of the bone marrow cell images with the cell morphology standard module. The morphological automatic labeling module automatically labels the morphology of the identified bone marrow cells; and the cell counting module divides the bone marrow cells into: middle erythrocytes, metamyelocytes, other erythroid cells, blast cells, mature lymphocytes, and other lymphoid cells , monocytes, promyelocytes, myelocytes, metamyelocytes, rod-shaped nucleated cells, lobulated nucleated cells and other myeloid cells; calculate the ratio of nucleated cells to mature red blood cells, and the proportion of cells The analysis module calculates the proportion of the number of each type of cells in the total number of bone marrow cells; finally, the image-aided grading diagnosis unit divides the bone marrow image into: first, second, third, and fourth. Intelligent grading diagnosis reduces the workload of radiologists.
(2)本发明通过手动标注单元和数据储存单元的设置,在使用时,还可以逐一辨别本发明的辅助分级诊断系统对细胞识别的准确率,对正确的识别进行确认储存,对有误的识别进行纠错校正;如此,在使用本发明的过程中,还可以逐步提高其骨髓细胞影像的辨识能力,达到真正完全的人工智能辨别影像的目的。(2) In the present invention, through the setting of the manual labeling unit and the data storage unit, when in use, the accuracy rate of the cell identification by the auxiliary classification diagnosis system of the present invention can be identified one by one, and the correct identification can be confirmed and stored, and the wrong identification can be confirmed and stored. Identify and correct errors; in this way, in the process of using the present invention, the identification ability of the bone marrow cell image can also be gradually improved, so as to achieve the purpose of truly complete artificial intelligence image identification.
附图说明Description of drawings
图1是本发明一种骨髓细胞影像人工智能辅助分级诊断系统的示意图;1 is a schematic diagram of a bone marrow cell imaging artificial intelligence-assisted classification diagnosis system of the present invention;
图2是本发明的误差校准模块的误差校准方法的流程图。FIG. 2 is a flowchart of the error calibration method of the error calibration module of the present invention.
具体实施方式Detailed ways
以下将结合附图对本发明进行详细说明:The present invention will be described in detail below in conjunction with the accompanying drawings:
如图1-2所示:As shown in Figure 1-2:
一种骨髓细胞影像人工智能辅助分级诊断系统,如图1所示,包括数据采集单元、自动识别与标注单元、手动标注单元、细胞数据统计单元、数据分析分级单元、影像辅助分级诊断单元、显示器、储存模块和处理器,括数据采集单元、自动识别与标注单元、手动标注单元、细胞数据统计单元、数据分析分级单元、影像辅助分级诊断单元、储存模块和显示器均与处理器通讯连接;数据采集单元包括用于对骨髓细胞影像进行信息读取的影像采集模块、对患者临床信息进行录入的临床信息采集模块、对患者的基因信息进行录入的基因信息采集模块;自动识别与标注单元包括表示标准细胞形态的细胞形态标准模块、对骨髓细胞的形态进行自动提取的骨髓细胞形态提取模块、将骨髓细胞影像的提取信息与细胞形态标准模块进行对比的细胞形态对比模块和对已识别的骨髓细胞形态进行自动标注的细胞形态自动标注模块;手动标注单元包括用于医师进行手动操作,对骨髓细胞影像进行手动标注的细胞形态手动标注模块、对医师手动进行标注信息进行储存的标注储存模块;数据分析单元包括计算有核细胞与成熟红细胞的比值的粒红细胞比值分析模块、计算每种细胞的数量在整个骨髓细胞总数的占比的细胞占比分析模块;影像辅助分级诊断单元包括一级、二级、三级和四级,一级包括正常骨髓象、非正常骨髓象,二级包括贫血骨髓象、增生性贫血骨髓象,三级包括IDA骨髓象、CL骨髓象、AL骨髓象,四级包括APL骨髓象、CML骨髓象。还包括数据预处理单元,数据预处理单元包括对影像采集模块采集的数据进行降噪和数据归一化处理的数据降噪模块、寻找与病理结果对应的病变并对图像进行病变标注的病变标注模块和病变分割模块。细胞数据统计单元包括细胞分类模块、细胞计数模块。细胞计数模块将骨髓细胞分为:中幼红细胞、晚幼红细胞、其他红系细胞、原始细胞、成熟淋巴细胞、其他淋系细胞、单核系细胞、早幼粒细胞、中幼粒细胞、晚幼粒细胞、杆状核细胞、分叶核细胞和其他粒系细胞。细胞数据分析单元还包括用于排出无用细胞干扰,准确高效的对骨髓细胞进行分类的误差校准模块。A bone marrow cell imaging artificial intelligence-assisted classification diagnosis system, as shown in Figure 1, includes a data acquisition unit, an automatic identification and labeling unit, a manual labeling unit, a cell data statistics unit, a data analysis and classification unit, an image-assisted classification and diagnosis unit, and a display. , a storage module and a processor, including a data acquisition unit, an automatic identification and labeling unit, a manual labeling unit, a cell data statistics unit, a data analysis and grading unit, an image-assisted grading diagnosis unit, a storage module and a display that are all connected in communication with the processor; The acquisition unit includes an image acquisition module for reading bone marrow cell images, a clinical information acquisition module for inputting patient clinical information, and a gene information acquisition module for inputting patient genetic information; the automatic identification and labeling unit includes a The cell morphology standard module for standard cell morphology, the bone marrow cell morphology extraction module for automatically extracting the morphology of bone marrow cells, the cell morphology comparison module for comparing the extracted information of bone marrow cell images with the cell morphology standard module, and the identified bone marrow cells. The cell morphology automatic labeling module for automatically labeling the morphology; the manual labeling unit includes a cell morphology manual labeling module for manual operation by physicians and manual labeling of bone marrow cell images, and a labeling storage module for manually labeling information for physicians. Storage module; data The analysis unit includes a granulocyte ratio analysis module that calculates the ratio of nucleated cells to mature red blood cells, and a cell ratio analysis module that calculates the proportion of each type of cell in the total number of bone marrow cells; the image-aided grading diagnosis unit includes first-level, second-level Grade 3, Grade 4 and Grade 4, Grade 1 includes normal bone marrow and abnormal bone marrow, Grade 2 includes bone marrow of anemia, and bone marrow of proliferative anemia, Grade 3 includes bone marrow of IDA, CL, and AL, and Grade 4 Including APL bone marrow, CML bone marrow. It also includes a data preprocessing unit. The data preprocessing unit includes a data noise reduction module that performs noise reduction and data normalization processing on the data collected by the image acquisition module, and a lesion label that searches for lesions corresponding to the pathological results and labels the images. module and lesion segmentation module. The cell data statistics unit includes a cell classification module and a cell counting module. The cytometry module classifies bone marrow cells into: erythroblasts, metamyelocytes, other erythroid cells, blasts, mature lymphocytes, other lymphoid cells, monocytes, promyelocytes, myelocytes, late Myeloid cells, rod-shaped nuclear cells, segmented nuclear cells and other myeloid cells. The cell data analysis unit also includes an error calibration module for removing unwanted cell interference and classifying bone marrow cells accurately and efficiently.
本发明的一种骨髓细胞影像人工智能辅助分级诊断系统的辅助诊断方法,包括以下步骤:A method for auxiliary diagnosis of a bone marrow cell imaging artificial intelligence-aided grading diagnosis system of the present invention includes the following steps:
A1、影像采集模块对骨髓细胞影像进行信息读取,临床信息采集模块对患者的临床信息进行录入,基因信息采集模块对患者的基因信息进行录入;A1. The image acquisition module reads information from bone marrow cell images, the clinical information acquisition module inputs the patient's clinical information, and the gene information acquisition module inputs the patient's genetic information;
A2、数据降噪模块对影像采集模块采集的数据进行降噪和数据归一化处理,寻找与病理结果对应的病变并对图像进行病变标注;A2. The data noise reduction module performs noise reduction and data normalization processing on the data collected by the image acquisition module, finds the lesions corresponding to the pathological results, and marks the lesions on the images;
A3、细胞形态提取模块对骨髓细胞的形态进行自动提取,细胞形态对比模块将骨髓细胞影像的提取信息与细胞形态标准模块进行对比,细胞形态自动标注模块对已识别的骨髓细胞形态进行自动标注;A3. The cell morphology extraction module automatically extracts the morphology of bone marrow cells, the cell morphology comparison module compares the extracted information of the bone marrow cell image with the cell morphology standard module, and the cell morphology automatic labeling module automatically labels the identified bone marrow cell morphology;
A4、医师进行手动操作,利用手动标注模块对骨髓细胞影像进行手动标注,标注储存模块对医师手动进行标注信息进行储存;A4. Physicians perform manual operations, use the manual labeling module to manually label the bone marrow cell images, and the labeling storage module stores the manually labeling information of the physicians;
A5、误差校准模块排出无用细胞干扰,准确高效的对骨髓细胞进行分类;A5. The error calibration module eliminates useless cell interference and accurately and efficiently classifies bone marrow cells;
A6、细胞计数模块将骨髓细胞分为:中幼红细胞、晚幼红细胞、其他红系细胞、原始细胞、成熟淋巴细胞、其他淋系细胞、单核系细胞、早幼粒细胞、中幼粒细胞、晚幼粒细胞、杆状核细胞、分叶核细胞和其他粒系细胞;A6. The cytometry module divides the bone marrow cells into: erythroid cells, metamyelocytes, other erythroid cells, blast cells, mature lymphocytes, other lymphoid cells, monocyte lineage cells, promyelocytes, and granulocytes , metamyelocytes, rod-shaped nuclear cells, lobulated nuclear cells and other myeloid cells;
A7、粒红细胞比值分析模块计算有核细胞与成熟红细胞的比值,细胞占比分析模块计算每种细胞的数量在整个骨髓细胞总数的占比;A7. The granulocyte ratio analysis module calculates the ratio of nucleated cells to mature red blood cells, and the cell ratio analysis module calculates the proportion of each type of cell in the total number of bone marrow cells;
A8、影像辅助分级诊断单元将骨髓象分为:一级、二级、三级和四级,一级包括正常骨髓象、非正常骨髓象,二级包括贫血骨髓象、增生性贫血骨髓象,三级包括IDA骨髓象、CL骨髓象、AL骨髓象,四级包括APL骨髓象、CML骨髓象。A8. The image-assisted grading diagnosis unit divides the bone marrow images into: first, second, third and fourth grades. The first grade includes normal bone marrow images and abnormal bone marrow images, and the second grade includes anemia bone marrow images and proliferative anemia bone marrow images. The third level includes IDA bone marrow, CL bone marrow, and AL bone marrow, and the fourth level includes APL bone marrow and CML bone marrow.
其中,本系统中的误差校准模块的误差校准方法,如图2所示,包括以下步骤:Among them, the error calibration method of the error calibration module in this system, as shown in Figure 2, includes the following steps:
B1、获取染色的骨髓细胞影像,并将骨髓细胞影像映射到HSV空间中,分离出S通道;B1. Obtain the stained bone marrow cell image, map the bone marrow cell image to the HSV space, and isolate the S channel;
B2、绘制S通道图像的直方图,根据阈值范围将S通道图像二值化,得到骨髓细胞的二值图像,并将二值图像进行形态学处理;B2. Draw the histogram of the S channel image, binarize the S channel image according to the threshold range, obtain the binary image of the bone marrow cells, and perform morphological processing on the binary image;
B3、用连通域的方法提取经形态学处理后的骨髓细胞图像的边缘像素点,找到骨髓细胞上下左右的边缘像素点,然后分割骨髓细胞;B3. Extract the edge pixels of the morphologically processed bone marrow cell image by the method of connected domain, find the edge pixels of the upper, lower, left, and right edge of the bone marrow cells, and then segment the bone marrow cells;
B4、挑选分割后骨髓细胞的图像,将每一类中特征明显的细胞图像作为训练细胞输入深度残差网络中,训练网络;B4. Select images of bone marrow cells after segmentation, and input cell images with obvious features in each category as training cells into the deep residual network to train the network;
B5、将挑选后剩余的细胞作为测试细胞,用softmax分类器为测试细胞打分;如果最大分数大于或等于设定阈值,则归为某类;如果最大分数小于设定阈值,则归入子分类中;B5. Use the remaining cells after selection as the test cells, and use the softmax classifier to score the test cells; if the maximum score is greater than or equal to the set threshold, it is classified into a certain category; if the maximum score is less than the set threshold, it is classified as a sub-class middle;
B6、取步骤S5中训练细胞以及子分类中细胞边缘的任一像素点为极点,建立极坐标系,将所有像素点用极坐标变换一一映射到直角坐标系中;B6, take any pixel point of the training cell and the cell edge in the sub-classification in step S5 as a pole, establish a polar coordinate system, and map all the pixel points to a rectangular coordinate system one by one with polar coordinate transformation;
B7、对于训练细胞,遍历细胞的边缘像素点,每个像素点产生一张变换后的图像,每张图像有n个像素点,即变换n次;对于子分类中细胞,每张图像只变换一次;B7. For the training cells, traverse the edge pixels of the cells, each pixel generates a transformed image, each image has n pixels, that is, transform n times; for the cells in the sub-category, each image only transforms once;
B8、将训练细胞变换后的图像作为子分类网络的输入,重新训练深度残差网络,并保存网络参数;将子分类中细胞变换后的图像作为测试数据,用softmax分类器再次打分:如果细胞图像的最大得分大于或等于设定阈值,则该细胞图像归为某一子分类;如果最大得分小于设定阈值,则该细胞图像归为未分类细胞。若未分类细胞占比大于设定的未分类阈值5%,则再将未分类细胞进行分割并分级,包括以下步骤,B8. Use the transformed image of the training cell as the input of the sub-classification network, retrain the deep residual network, and save the network parameters; take the transformed image of the cell in the sub-classification as the test data, and use the softmax classifier to score again: if the cell If the maximum score of the image is greater than or equal to the set threshold, the cell image is classified as a subclass; if the maximum score is less than the set threshold, the cell image is classified as unclassified cells. If the proportion of unsorted cells is greater than the set unsorted threshold of 5%, the unsorted cells are then segmented and graded, including the following steps:
C1、将为分类细胞取经形态学处理后的骨髓细胞图像的边缘像素点,找到骨髓细胞上下左右的边缘像素点,分割骨髓细胞;C1. Take the edge pixels of the morphologically processed bone marrow cell image for the classified cells, find the edge pixels of the upper, lower, left and right edge of the bone marrow cells, and segment the bone marrow cells;
C2、将分割后的骨髓细胞图像作为训练细胞输入深度残差网络,训练网络;C2. Input the segmented bone marrow cell images as training cells into the deep residual network to train the network;
C3、再利用softmax分类器为测试细胞打分,若最大分数大于或等于设定阈值,则归为某类;若最大分数小于设定阈值,则归入最终未分类细胞;C3. Then use the softmax classifier to score the test cells. If the maximum score is greater than or equal to the set threshold, it will be classified into a certain category; if the maximum score is less than the set threshold, it will be classified into the final unclassified cell;
C4、若最终未分类细胞占比小于设定的未分类阈值5%,则停止,若最终未分类细胞占比大于设定的未分类阈值,则继续C1步骤,直到最终未分类细胞占比小于设定的未分类阈值。C4. If the final proportion of unsorted cells is less than 5% of the set unsorted threshold, stop; if the final unsorted cell proportion is greater than the set unsorted threshold, continue step C1 until the final unsorted cell proportion is less than The set unclassified threshold.
本发明使用过程如下:The use process of the present invention is as follows:
利用数据采集单元对骨髓细胞影像进行信息读取,对患者的临床信息进行录入,患者的基因信息进行录入;然后利用数据降噪模块对影像采集模块采集的数据进行降噪和数据归一化处理,寻找与病理结果对应的病变并对图像进行病变标注;再对骨髓细胞的形态进行自动提取,细胞形态对比模块将骨髓细胞影像的提取信息与细胞形态标准模块进行对比,细胞形态自动标注模块对已识别的骨髓细胞形态进行自动标注;并将细胞计数模块将骨髓细胞分为:中幼红细胞、晚幼红细胞、其他红系细胞、原始细胞、成熟淋巴细胞、其他淋系细胞、单核系细胞、早幼粒细胞、中幼粒细胞、晚幼粒细胞、杆状核细胞、分叶核细胞和其他粒系细胞;计算出有核细胞与成熟红细胞的比值,细胞占比分析模块计算每种细胞的数量在整个骨髓细胞总数的占比;最后将影像辅助分级诊断单元将骨髓象分为:一级、二级、三级、四级,整个系统能够对骨髓细胞影像进行智能的分级诊断,降低影像医师工作量。Use the data acquisition unit to read the information of the bone marrow cell image, enter the clinical information of the patient, and enter the genetic information of the patient; then use the data noise reduction module to denoise and normalize the data collected by the image acquisition module. , find the lesions corresponding to the pathological results and mark the lesions on the images; then automatically extract the morphology of the bone marrow cells, and the cell morphology comparison module compares the extracted information of the bone marrow cell images with the cell morphology standard module, and the cell morphology automatic labeling module compares The identified bone marrow cell morphology is automatically marked; and the cell counting module divides the bone marrow cells into: erythroblasts, metaplastic erythrocytes, other erythroid cells, blast cells, mature lymphocytes, other lymphoid cells, and monocytic cells , promyelocytes, myelocytes, metamyelocytes, rod-nucleated cells, lobulated nucleated cells and other myeloid cells; calculate the ratio of nucleated cells to mature red blood cells, and the cell proportion analysis module calculates each The proportion of the number of cells in the total number of bone marrow cells; finally, the image-aided grading diagnosis unit divides the bone marrow image into: first, second, third, and fourth. Reduce the workload of the radiologist.
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。本发明未详细描述的技术、形状、构造部分均为公知技术。The above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be modified or equivalently replaced. Without departing from the spirit and scope of the technical solutions of the present invention, all of them should be included in the scope of the claims of the present invention. The technology, shape, and structural part that are not described in detail in the present invention are all well-known technologies.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010126812.6A CN111476754B (en) | 2020-02-28 | 2020-02-28 | A bone marrow cell imaging artificial intelligence-assisted grading diagnosis system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010126812.6A CN111476754B (en) | 2020-02-28 | 2020-02-28 | A bone marrow cell imaging artificial intelligence-assisted grading diagnosis system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111476754A true CN111476754A (en) | 2020-07-31 |
CN111476754B CN111476754B (en) | 2022-12-09 |
Family
ID=71748011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010126812.6A Active CN111476754B (en) | 2020-02-28 | 2020-02-28 | A bone marrow cell imaging artificial intelligence-assisted grading diagnosis system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111476754B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112201336A (en) * | 2020-09-28 | 2021-01-08 | 暨南大学 | A remote consultation system and method based on AI diagnosis |
CN113408480A (en) * | 2021-07-13 | 2021-09-17 | 上海交通大学医学院附属瑞金医院 | Artificial intelligent auxiliary diagnosis system for blood diseases based on bone marrow cell morphology |
CN113945558A (en) * | 2021-09-29 | 2022-01-18 | 杭州智微信息科技有限公司 | Method for judging myeloproliferation degree |
CN114121291A (en) * | 2021-10-26 | 2022-03-01 | 泰康保险集团股份有限公司 | Disease grading prediction method and device, electronic equipment and storage medium |
CN114298231A (en) * | 2021-12-31 | 2022-04-08 | 杭州智微信息科技有限公司 | Classification management system for bone marrow cells |
CN114627308A (en) * | 2022-02-28 | 2022-06-14 | 华南理工大学 | A method and system for extracting morphological features of bone marrow cells |
CN114697547A (en) * | 2022-02-14 | 2022-07-01 | 上海奕瑞光电子科技股份有限公司 | Image diagnosis system and image risk processing method |
CN115578598A (en) * | 2022-10-26 | 2023-01-06 | 北京大学第三医院(北京大学第三临床医学院) | Bone marrow cell identification method and system based on convolutional neural network |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1646910A (en) * | 2002-04-09 | 2005-07-27 | 学校法人东海大学 | Method for judging leukemia, preleukemia, or non-leukemic malignant blood disease, and diagnostic agent |
CN101705302A (en) * | 2009-11-05 | 2010-05-12 | 北京大学人民医院 | Kit for assisting to diagnose multiple myeloma |
CN102298700A (en) * | 2011-06-09 | 2011-12-28 | 华东师范大学 | Method for recognizing and positioning cells in bone marrow pathology image |
CN105821002A (en) * | 2016-02-16 | 2016-08-03 | 复旦大学附属华山医院 | Highly aggressive human acute B lymphocytic leukemia cell strain with add(11)(q23) chromosome abnormality |
US20160223554A1 (en) * | 2011-08-05 | 2016-08-04 | Nodality, Inc. | Methods for diagnosis, prognosis and methods of treatment |
WO2017046747A1 (en) * | 2015-09-15 | 2017-03-23 | Acerta Pharma B.V. | Therapeutic combinations of a cd19 inhibitor and a btk inhibitor |
WO2017126420A1 (en) * | 2016-01-19 | 2017-07-27 | コニカミノルタ株式会社 | Image processing device and program |
CN108038472A (en) * | 2017-12-27 | 2018-05-15 | 杭州智微信息科技有限公司 | A kind of exchange method of bone marrow examination domain software fast finding abnormal cell |
CN108338990A (en) * | 2018-04-11 | 2018-07-31 | 中国医学科学院基础医学研究所 | Application of the water-soluble realgar solid dispersions in preparing hematopoietic progenitor erythroid differentiation derivant |
CN108961208A (en) * | 2018-05-21 | 2018-12-07 | 江苏康尚生物医疗科技有限公司 | A kind of aggregation leucocyte segmentation number system and method |
CN109166105A (en) * | 2018-08-01 | 2019-01-08 | 中国人民解放军南京军区南京总医院 | The malignancy of tumor risk stratification assistant diagnosis system of artificial intelligence medical image |
WO2019016169A1 (en) * | 2017-07-16 | 2019-01-24 | Imec Vzw | Cell recognition |
CN109360198A (en) * | 2018-10-08 | 2019-02-19 | 北京羽医甘蓝信息技术有限公司 | Bone marrwo cell sorting method and sorter based on deep learning |
CN109754398A (en) * | 2019-01-14 | 2019-05-14 | 武汉兰丁医学高科技有限公司 | A kind of computer based myeloplast automark method and system |
CN110060229A (en) * | 2019-05-29 | 2019-07-26 | 武汉兰丁医学高科技有限公司 | A kind of cell automatic positioning dividing method of myeloplast |
-
2020
- 2020-02-28 CN CN202010126812.6A patent/CN111476754B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1646910A (en) * | 2002-04-09 | 2005-07-27 | 学校法人东海大学 | Method for judging leukemia, preleukemia, or non-leukemic malignant blood disease, and diagnostic agent |
CN101705302A (en) * | 2009-11-05 | 2010-05-12 | 北京大学人民医院 | Kit for assisting to diagnose multiple myeloma |
CN102298700A (en) * | 2011-06-09 | 2011-12-28 | 华东师范大学 | Method for recognizing and positioning cells in bone marrow pathology image |
US20160223554A1 (en) * | 2011-08-05 | 2016-08-04 | Nodality, Inc. | Methods for diagnosis, prognosis and methods of treatment |
WO2017046747A1 (en) * | 2015-09-15 | 2017-03-23 | Acerta Pharma B.V. | Therapeutic combinations of a cd19 inhibitor and a btk inhibitor |
WO2017126420A1 (en) * | 2016-01-19 | 2017-07-27 | コニカミノルタ株式会社 | Image processing device and program |
CN105821002A (en) * | 2016-02-16 | 2016-08-03 | 复旦大学附属华山医院 | Highly aggressive human acute B lymphocytic leukemia cell strain with add(11)(q23) chromosome abnormality |
WO2019016169A1 (en) * | 2017-07-16 | 2019-01-24 | Imec Vzw | Cell recognition |
CN108038472A (en) * | 2017-12-27 | 2018-05-15 | 杭州智微信息科技有限公司 | A kind of exchange method of bone marrow examination domain software fast finding abnormal cell |
CN108338990A (en) * | 2018-04-11 | 2018-07-31 | 中国医学科学院基础医学研究所 | Application of the water-soluble realgar solid dispersions in preparing hematopoietic progenitor erythroid differentiation derivant |
CN108961208A (en) * | 2018-05-21 | 2018-12-07 | 江苏康尚生物医疗科技有限公司 | A kind of aggregation leucocyte segmentation number system and method |
CN109166105A (en) * | 2018-08-01 | 2019-01-08 | 中国人民解放军南京军区南京总医院 | The malignancy of tumor risk stratification assistant diagnosis system of artificial intelligence medical image |
CN109360198A (en) * | 2018-10-08 | 2019-02-19 | 北京羽医甘蓝信息技术有限公司 | Bone marrwo cell sorting method and sorter based on deep learning |
CN109754398A (en) * | 2019-01-14 | 2019-05-14 | 武汉兰丁医学高科技有限公司 | A kind of computer based myeloplast automark method and system |
CN110060229A (en) * | 2019-05-29 | 2019-07-26 | 武汉兰丁医学高科技有限公司 | A kind of cell automatic positioning dividing method of myeloplast |
Non-Patent Citations (7)
Title |
---|
RETA C等: ""Segmentation and Classification of Bone Marrow Cells Images Using Contextual Information for Medical Diagnosis of Acute Leukemias "", 《PLOS ONE》 * |
TA-CHUANYUMD 等: ""Automatic Bone Marrow Cell Identification and Classification By Deep Neural Network"", 《BLOOD》 * |
吴胜: ""为你揭秘——检验科细胞形态学检查"", 《健康人生》 * |
师婷婷: ""面向急性白血病诊断的骨髓细胞形态学自动检验关键技术研究"", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》 * |
王红: ""定量探讨双源双能量CT在正常椎体骨髓成像及白血病疗效评估中的价值研究"", 《中国优秀硕士学位论文全文数据库 (医药卫生科技辑)》 * |
纪红燕: ""CD82在儿童急性白血病中异常表达及作用机制研究"", 《中国博士学位论文全文数据库 (医药卫生科技辑)》 * |
赵瑾 等: ""CAP骨髓细胞形态学能力比对检验结果分析"", 《标记免疫分析与临床》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112201336A (en) * | 2020-09-28 | 2021-01-08 | 暨南大学 | A remote consultation system and method based on AI diagnosis |
CN112201336B (en) * | 2020-09-28 | 2023-08-11 | 暨南大学 | A remote consultation system and method based on AI diagnosis |
CN113408480A (en) * | 2021-07-13 | 2021-09-17 | 上海交通大学医学院附属瑞金医院 | Artificial intelligent auxiliary diagnosis system for blood diseases based on bone marrow cell morphology |
CN113945558A (en) * | 2021-09-29 | 2022-01-18 | 杭州智微信息科技有限公司 | Method for judging myeloproliferation degree |
CN113945558B (en) * | 2021-09-29 | 2024-05-24 | 杭州智微信息科技有限公司 | Method for judging myeloproliferation degree |
CN114121291A (en) * | 2021-10-26 | 2022-03-01 | 泰康保险集团股份有限公司 | Disease grading prediction method and device, electronic equipment and storage medium |
CN114298231A (en) * | 2021-12-31 | 2022-04-08 | 杭州智微信息科技有限公司 | Classification management system for bone marrow cells |
CN114298231B (en) * | 2021-12-31 | 2025-02-07 | 杭州智微信息科技有限公司 | A classification management system for bone marrow cells |
CN114697547A (en) * | 2022-02-14 | 2022-07-01 | 上海奕瑞光电子科技股份有限公司 | Image diagnosis system and image risk processing method |
CN114627308A (en) * | 2022-02-28 | 2022-06-14 | 华南理工大学 | A method and system for extracting morphological features of bone marrow cells |
CN115578598A (en) * | 2022-10-26 | 2023-01-06 | 北京大学第三医院(北京大学第三临床医学院) | Bone marrow cell identification method and system based on convolutional neural network |
CN115578598B (en) * | 2022-10-26 | 2023-09-05 | 北京大学第三医院(北京大学第三临床医学院) | Bone marrow cell identification method and system based on convolutional neural network |
Also Published As
Publication number | Publication date |
---|---|
CN111476754B (en) | 2022-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111476754B (en) | A bone marrow cell imaging artificial intelligence-assisted grading diagnosis system and method | |
CN108573490B (en) | Intelligent film reading system for tumor image data | |
CN111325103B (en) | Cell labeling system and method | |
CN112101451B (en) | Breast cancer tissue pathological type classification method based on generation of antagonism network screening image block | |
Dundar et al. | Computerized classification of intraductal breast lesions using histopathological images | |
CN110335665A (en) | It is a kind of applied to medical image auxiliary diagnosis analysis to scheme to search drawing method and system | |
Li et al. | A hierarchical conditional random field-based attention mechanism approach for gastric histopathology image classification | |
CN110232410A (en) | The organ-tissue Pathologic image analysis method and analytical equipment of multi-layer | |
CN108596174A (en) | A kind of lesion localization method of skin disease image | |
CN110910371A (en) | Automatic classification method and device for liver tumors based on physiological indicators and image fusion | |
CN111767952A (en) | An interpretable method for classifying benign and malignant pulmonary nodules | |
CN112419396B (en) | Automatic thyroid ultrasonic video analysis method and system | |
CN113160185A (en) | Method for guiding cervical cell segmentation by using generated boundary position | |
CN113658151A (en) | Mammary gland lesion magnetic resonance image classification method and device and readable storage medium | |
CN113269799A (en) | A cervical cell segmentation method based on deep learning | |
CN110379509A (en) | A kind of Breast Nodules aided diagnosis method and system based on DSSD | |
CN117036288A (en) | Tumor subtype diagnosis method for full-slice pathological image | |
CN112116559A (en) | Digital pathological image intelligent analysis method based on deep learning | |
CN116525075A (en) | Method and system for computer-aided diagnosis of thyroid nodules based on few-sample learning | |
CN111815554A (en) | A cervical cell image segmentation method based on edge search MRF model | |
CN118469950A (en) | Lung cancer intelligent detection system based on image processing and machine learning | |
CN118297973A (en) | Automatic lung lobe segmentation method based on lung blood vessel clustering | |
CN113435469A (en) | Kidney tumor enhanced CT image automatic identification system based on deep learning and training method thereof | |
CN112767349A (en) | Reticulocyte recognition method and system | |
CN116228759B (en) | Computer-aided diagnosis system and apparatus for renal cell carcinoma type |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |