CN111445951B - An optimization method for realizing the optimal sequence of low-cost high-throughput nucleic acid aptamers based on a label-free hybridization probe competition method - Google Patents
An optimization method for realizing the optimal sequence of low-cost high-throughput nucleic acid aptamers based on a label-free hybridization probe competition method Download PDFInfo
- Publication number
- CN111445951B CN111445951B CN202010185599.6A CN202010185599A CN111445951B CN 111445951 B CN111445951 B CN 111445951B CN 202010185599 A CN202010185599 A CN 202010185599A CN 111445951 B CN111445951 B CN 111445951B
- Authority
- CN
- China
- Prior art keywords
- aptamer
- nucleic acid
- sequence
- optimal
- label
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B25/00—ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
- G16B25/20—Polymerase chain reaction [PCR]; Primer or probe design; Probe optimisation
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Biophysics (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明属于分子生物学领域,涉及一种基于免标记杂交探针竞争法实现低成本高通量核酸适配体最优序列的优化方法,其包括包括提出亲和性评价标准,互补短链探针位置的选择,互补短链探针碱基数的优化,以及核酸适配体最优序列的优化等步骤。本发明提供的基于免标记杂交探针竞争法实现低成本高通量核酸适配体最优序列的优化方法可用于任何类型靶标的核酸适配体优化。本发明针对不同靶标或不同核酸适配体,表征方法简单且成本低廉、通量高。
The invention belongs to the field of molecular biology, and relates to an optimization method for realizing the optimal sequence of a low-cost high-throughput nucleic acid aptamer based on a label-free hybridization probe competition method. The selection of the needle position, the optimization of the number of bases of the complementary short-chain probe, and the optimization of the optimal sequence of the nucleic acid aptamer, etc. The optimization method for realizing the optimal sequence of low-cost high-throughput nucleic acid aptamers based on the label-free hybridization probe competition method provided by the present invention can be used for nucleic acid aptamer optimization of any type of target. The present invention is aimed at different targets or different nucleic acid aptamers, and the characterization method is simple, low in cost and high in throughput.
Description
技术领域technical field
本发明属于分子生物学领域,涉及一种基于免标记杂交探针竞争法实现低成本高通量核酸适配体最优序列的优化方法。The invention belongs to the field of molecular biology, and relates to an optimization method for realizing the optimal sequence of a low-cost high-throughput nucleic acid aptamer based on a label-free hybridization probe competition method.
背景技术Background technique
核酸适配体(Aptamer,也译为核酸识体、核酸适体、适配体)是指通过指数富集配体系统进化法(systematic evolution of ligands by exponential enrichment,SELEX),从人工合成的DNA或RNA文库中筛选出来的、能够对靶标高亲合性地结合和高特异性识别的单链寡核苷酸。随机文库的基本序列结构包括:中间随机序列长度为35-60个碱基,两端用于扩增的引物长度分别约为 20个碱基。最终筛选到的核酸适配体的总长度约60-100个碱基。Aptamer (also translated as nucleic acid recognition body, nucleic acid aptamer, aptamer) refers to the systematic evolution of ligands by exponential enrichment (systematic evolution of ligands by exponential enrichment, SELEX), from artificially synthesized DNA Or single-stranded oligonucleotides screened from RNA libraries that can bind to targets with high affinity and recognize them with high specificity. The basic sequence structure of a random library includes: the length of the random sequence in the middle is 35-60 bases, and the lengths of the primers used for amplification at both ends are about 20 bases respectively. The total length of the nucleic acid aptamers finally screened is about 60-100 bases.
核酸适配体可以形成独特的三维结构,这使得核酸适配体可以更好地和靶标相结合,核酸适配体的靶标小到离子、单分子,大到整个细胞。核酸适配体对于靶标具有很好的选择性和很强的亲和力,这使其具有超过传统识别元素的优势,在某种程度上可以与抗体相媲美。因此核酸适配体替代传统抗体在多种疾病的基础研究、药物筛选、临床诊断及疾病治疗中具有广泛的应用前景。Aptamers can form a unique three-dimensional structure, which enables aptamers to better bind to their targets. The targets of aptamers are as small as ions, single molecules, and as large as whole cells. Aptamers have good selectivity and strong affinity for targets, which give them advantages over traditional recognition elements and are comparable to antibodies to some extent. Therefore, nucleic acid aptamers instead of traditional antibodies have broad application prospects in basic research, drug screening, clinical diagnosis and disease treatment of various diseases.
在已报道研究中发现核酸适配体长度过长不利于形成稳定的结构,且易引起不必要的碱基错配,从而影响识别过程。通过去除与识别区域不相关对的非必要序列,仅保留识别的核心区域,可以使核酸适配体长度大大缩短;再通过解析可能的空间结构,增加提升结构稳定性的结构域,从而实现提高核酸适配体与靶标结合的亲和力和特异性。通过优化获得的高亲和性核酸适配体可以充分利用碱基,降低合成成本。当前,已被广泛应用的核酸适配体,例如凝血酶适配体、ATP适配体、IgE适配体等,其核心序列长度在15-30个碱基。现有大量已筛选出的核酸适配体由于序列过长无法获得充分利用,因此对于筛选到的核酸适配体进行序列优化,已成为其得到进一步应用的必经之路,而且是亟待解决的难题。In the reported studies, it has been found that the length of nucleic acid aptamers is not conducive to the formation of stable structures, and it is easy to cause unnecessary base mismatches, thereby affecting the recognition process. By removing the non-essential sequences that are not related to the recognition region, and retaining only the recognized core region, the length of the nucleic acid aptamer can be greatly shortened; and then by analyzing the possible spatial structure, increasing the structural domain to improve the structural stability, so as to achieve improved The affinity and specificity of nucleic acid aptamers to target binding. The high-affinity nucleic acid aptamer obtained by optimization can make full use of bases and reduce the synthesis cost. Currently, nucleic acid aptamers that have been widely used, such as thrombin aptamer, ATP aptamer, IgE aptamer, etc., have a core sequence length of 15-30 bases. A large number of nucleic acid aptamers that have been screened cannot be fully utilized due to their long sequences. Therefore, the sequence optimization of the screened nucleic acid aptamers has become the only way for their further application, and it is an urgent problem to be solved. problem.
对核酸适配体进行序列优化的方法包括生物信息学预测法、酶切保护实验、芯片分析法等。生物信息学预测法是基于热力学最小自由能等算法预测核酸适配体的二级结构,但由于各算法可预测到的核酸二级结构十分有限,其可靠性难以保证;酶切保护实验是利用核酶水解核酸适配体与靶标结合的复合物,这样可以得知核酸适配体与靶标结合的部分序列,但该方法无法得知核酸适配体中对稳定性起关键作用的非结合序列;芯片技术是将核酸适配体的截短片段制成芯片,利用荧光修饰靶标与芯片的结合信号,优选亲和力更好的优化序列,该方法准确性高,但成本过于昂贵。由于目前对于核酸适配体进行序列优化尚缺乏快速、准确、令人满意的方法,特别是通量和成本这两大难点。Methods for sequence optimization of nucleic acid aptamers include bioinformatics prediction methods, enzyme cleavage protection experiments, chip analysis methods, and the like. The bioinformatics prediction method predicts the secondary structure of nucleic acid aptamers based on algorithms such as thermodynamic minimum free energy, but the reliability of the nucleic acid secondary structure that can be predicted by each algorithm is very limited, and its reliability is difficult to guarantee. Ribozyme hydrolyzes the complex of the aptamer and the target, so that the partial sequence of the aptamer and the target can be obtained, but this method cannot know the non-binding sequence that plays a key role in the stability of the aptamer. ; Chip technology is to make the truncated fragment of nucleic acid aptamer into a chip, and use fluorescence to modify the binding signal between the target and the chip, and optimize the sequence with better affinity. This method has high accuracy, but the cost is too expensive. Due to the lack of fast, accurate and satisfactory methods for sequence optimization of nucleic acid aptamers, especially the two major difficulties of throughput and cost.
专利CN108387561A公开了一种基于碱基淬灭荧光原理实现低成本高通量核酸适配体最优序列的优化方法,其利用G碱基具有淬灭荧光素的特性,使用荧光素标记的短链核酸来高通量筛选、优化无修饰的核酸适配体。专利 CN108387561A所用的荧光素标记的短链核酸合成成本较高,虽然与双荧光标记的方法相比优化成本降低了一半,但是成本仍然较高,例如,互补短链探针的设计难度及合成成本相对较高,不适于高通量优化。Patent CN108387561A discloses an optimization method for realizing the optimal sequence of low-cost high-throughput nucleic acid aptamers based on the principle of base quenching fluorescence. Nucleic acid for high-throughput screening and optimization of unmodified aptamers. The fluorescein-labeled short-chain nucleic acid used in the patent CN108387561A has a high synthesis cost. Although the optimization cost is reduced by half compared with the double fluorescent labeling method, the cost is still relatively high. For example, the design difficulty and synthesis cost of complementary short-chain probes Relatively high, not suitable for high-throughput optimization.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是克服现有技术中操作复杂、通量较低、成本较高等问题,提供一种基于免标记杂交探针竞争法实现低成本高通量核酸适配体最优序列的优化方法。The technical problem to be solved by the present invention is to overcome the problems of complex operation, low throughput and high cost in the prior art, and to provide a low-cost and high-throughput nucleic acid aptamer optimal sequence based on a label-free hybridization probe competition method. optimization method.
为了达到上述目的,本发明提供的技术方案是:In order to achieve the above object, the technical scheme provided by the invention is:
一种基于免标记杂交探针竞争法实现低成本高通量核酸适配体最优序列的优化方法,其包括以下步骤:A method for optimizing the optimal sequence of low-cost high-throughput nucleic acid aptamers based on a label-free hybridization probe competition method, comprising the following steps:
步骤1、选取最优互补区及最优互补短链探针:Step 1. Select the optimal complementary region and the optimal complementary short-chain probe:
将已获得的长链核酸适配体作为候选核酸适配体,根据全长序列碱基数,规划出n个区,每个区包含20个碱基,每个区设计7-20个碱基的互补短链探针;在室温下将待表征的长链核酸适配体与浓度为0-1000nM的靶标分子在结合溶液中反应5-30分钟后,加入含有SYBR Green I的各互补短链探针进行反应,实验结果通过四参数方程进行拟合,四参数方程为:Using the obtained long-chain nucleic acid aptamers as candidate nucleic acid aptamers, according to the number of bases in the full-length sequence, plan n regions, each region contains 20 bases, and each region is designed with 7-20 bases The complementary short-chain probe; after the long-chain nucleic acid aptamer to be characterized and the target molecule with a concentration of 0-1000nM were reacted in the binding solution for 5-30 minutes at room temperature, each complementary short-chain containing SYBR Green I was added The probe reacts, and the experimental results are fitted by a four-parameter equation. The four-parameter equation is:
其中,IF为荧光响应值;COTA为靶标分子浓度;Amax表示四参数方程拟合后获得的最大值;Amin表示四参数方程拟合后获得的最小值;IC50表示四参数方程拟合后获得的半抑制值;式中的p为COTA为IC50时拟合曲线的斜率;Among them, IF is the fluorescence response value; C OTA is the concentration of target molecule; A max represents the maximum value obtained after fitting the four-parameter equation; A min represents the minimum value obtained after fitting the four-parameter equation; IC 50 represents the four-parameter equation Half-inhibition value obtained after fitting; p in the formula is the slope of the fitted curve when C OTA is IC 50 ;
通过工作曲线的解析获得各互补短链探针(Amax-Amin)/IC50值,选取 (Amax-Amin)/IC50值最大互补短链探针,为最优互补短链探针;The (A max -A min )/IC 50 value of each complementary short-chain probe was obtained through the analysis of the working curve, and the complementary short-chain probe with the largest (A max -A min )/IC 50 value was selected as the optimal complementary short-chain probe. Needle;
步骤2、初步获得较优核酸适配体:Step 2. Preliminarily obtain better nucleic acid aptamers:
步骤1)中确定的最优互补短链探针所对应区为核酸适配体的核心识别区,从原核酸适配的两端向核心区每次减少3个碱基,设计一系列新的核酸适配体,通过步骤1)的方法获得新核酸适配体的IC50值,选出IC50值最小的为较优核酸适配体;The corresponding region of the optimal complementary short-chain probe determined in step 1) is the core recognition region of the nucleic acid aptamer, and the two ends of the original nucleic acid aptamer are reduced by 3 bases each time to the core region, and a series of new aptamers are designed. For nucleic acid aptamers, the IC 50 value of the new nucleic acid aptamer is obtained by the method of step 1), and the optimal nucleic acid aptamer is selected with the smallest IC 50 value;
步骤3、获得最短核酸适配体序列:Step 3. Obtain the shortest aptamer sequence:
将步骤2)获得的较优核酸适配体从核酸适配两端向核心区每次减少一个碱基,设计一系列一碱基截短核酸适配体,采用步骤1)的方法,将步骤1)中确定的最优互补短链探针、靶标分子和各一碱基截短核酸适配体进行反应,获得各一碱基截短核酸适配体所对应的IC50值,选出IC50值最小的或IC50值较小但结构为尾端互补的为核酸适配体核心序列,即最短核酸适配体序列;The optimal nucleic acid aptamer obtained in step 2) is reduced by one base at a time from both ends of the nucleic acid aptamer to the core region, and a series of one-base truncated nucleic acid aptamers are designed. The optimal complementary short-chain probe, target molecule and each one-base truncated nucleic acid aptamer determined in 1) were reacted to obtain the corresponding IC 50 value of each one-base truncated nucleic acid aptamer, and the IC was selected. The core sequence of the nucleic acid aptamer with the smallest 50 value or the smaller IC 50 value but the structure is complementary to the tail end, that is, the shortest nucleic acid aptamer sequence;
步骤4、构造亲和性更高的核酸适配体:Step 4. Construct nucleic acid aptamers with higher affinity:
将步骤3)获得的最短核酸适配体序列,通过结构解析,增加结构稳定性的方法,获得亲和性更高的核酸适配体,即解析序列。The shortest nucleic acid aptamer sequence obtained in step 3) is subjected to structural analysis and the method of increasing the structural stability to obtain a nucleic acid aptamer with higher affinity, that is, the analyzed sequence.
进一步地,步骤1)所述的候选核酸适配体为一种序列或多种序列,包括 60-100个碱基。Further, the candidate nucleic acid aptamer described in step 1) is one sequence or multiple sequences, including 60-100 bases.
进一步地,步骤1)所述的互补短链探针长度为7-20个碱基。Further, the length of the complementary short-chain probe described in step 1) is 7-20 bases.
进一步地,步骤4)中所述的解析序列的长度为14-45个碱基。Further, the length of the analyzed sequence described in step 4) is 14-45 bases.
进一步地,步骤1)所述的结合溶液中NaCl的浓度为80-200nM;钙离子或者镁离子的浓度为1-30mM;Tris-HCl缓冲溶液的浓度为10-30mM,pH为5-10;表面活性剂为Tween20,其质量分数为0.01%-0.2%。Further, the concentration of NaCl in the binding solution described in step 1) is 80-200nM; the concentration of calcium ions or magnesium ions is 1-30mM; the concentration of Tris-HCl buffer solution is 10-30mM, and the pH is 5-10; The surfactant is Tween20, and its mass fraction is 0.01%-0.2%.
进一步地,步骤1)所述的靶标分子为小分子、大分子、细胞及病原体。Further, the target molecules in step 1) are small molecules, macromolecules, cells and pathogens.
与现有技术相比,本发明的有益效果为:本发明利用Sybr Green I只嵌入双链核酸时具有荧光响应的特性,使用免标记互补短链探针来高通量优化无修饰的核酸适配体。该方法以核酸适配体二级序列为基础,避免了生物信息学分析的不确定性,序列优化的准确性提高显著;同芯片方法及荧光标记法相比,本发明的方法合成成本显著降低。本方法可用于任何类型靶标的核酸适配体优化。本发明针对不同靶标或不同核酸适配体,表征方法简单且成本低廉、通量高。综上,本发明相对于现有技术进一步大幅度降低优化成本,通过免标记荧光染料SGI获得信号,大大降低互补短链探针的设计难度及合成成本,更适用于高通量优化。Compared with the prior art, the beneficial effects of the present invention are as follows: the present invention utilizes the characteristic of fluorescence response when Sybr Green I is only embedded in double-stranded nucleic acids, and uses label-free complementary short-chain probes for high-throughput optimization of unmodified nucleic acid adaptors. Ligand. The method is based on the secondary sequence of nucleic acid aptamer, which avoids the uncertainty of bioinformatics analysis, and the accuracy of sequence optimization is significantly improved; compared with the chip method and the fluorescent labeling method, the method of the present invention significantly reduces the synthesis cost. This method can be used for nucleic acid aptamer optimization for any type of target. The present invention is aimed at different targets or different nucleic acid aptamers, and the characterization method is simple, low in cost and high in throughput. To sum up, compared with the prior art, the present invention further greatly reduces the optimization cost, obtains signals through the label-free fluorescent dye SGI, greatly reduces the design difficulty and synthesis cost of complementary short-chain probes, and is more suitable for high-throughput optimization.
附图说明Description of drawings
图1为本发明进行核酸适配体序列优化的方法原理示意图。Fig. 1 is a schematic diagram of the method for optimizing the sequence of nucleic acid aptamers according to the present invention.
图2A和图2B为OTA Ap42加入不同长度短链探针时(Amax-Amin)/IC50值图。Figure 2A and Figure 2B are graphs of (A max - A min )/IC 50 values when OTA Ap42 is added with short-chain probes of different lengths.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清晰,以下结合附图及具体实施例对上述方案做进一步说明。应理解,该具体实施例是用于说明本发明而不限于限制本发明的范围。实施例中采用的实施条件可以根据候选核酸适配体及靶标的不同做进一步调整,未注明的实施条件通常为常规实验中的条件。In order to make the objectives, technical solutions and advantages of the present invention clearer, the above solutions are further described below with reference to the accompanying drawings and specific embodiments. It should be understood that the specific embodiments are used to illustrate the present invention and not to limit the scope of the present invention. The implementation conditions used in the examples can be further adjusted according to the difference of candidate nucleic acid aptamers and targets, and the unremarked implementation conditions are usually the conditions in routine experiments.
一种基于免标记杂交探针竞争法实现低成本高通量核酸适配体最优序列的优化方法包括提出亲和性评价标准,互补短链探针位置的选择,互补短链探针碱基数的优化,以及核酸适配体最优序列的优化,具体包括以下步骤:An optimization method for realizing the optimal sequence of low-cost high-throughput nucleic acid aptamers based on a label-free hybridization probe competition method includes proposing affinity evaluation criteria, selection of complementary short-chain probe positions, and complementary short-chain probe bases. The optimization of the number of nucleic acid aptamers and the optimization of the optimal sequence of nucleic acid aptamers specifically include the following steps:
(1)提出亲和性评价标准。在这一核酸适配体的识别体系中赭曲霉毒素A (OTA)、互补短链探针是竞争关系,所以互补短链探针与核酸适配体的亲和性将影响核酸适配体与OTA相互作用。为了获得与OTA竞争能力相近的互补短链探针,本发明提出了以下评价标准:(1) Propose the affinity evaluation criteria. In the recognition system of this nucleic acid aptamer, ochratoxin A (OTA) and the complementary short-chain probe are in a competitive relationship, so the affinity of the complementary short-chain probe and the nucleic acid aptamer will affect the relationship between the nucleic acid aptamer and the complementary short-chain probe. OTA interaction. In order to obtain complementary short-chain probes with similar competitiveness to OTA, the present invention proposes the following evaluation criteria:
A、评价互补短链探针时,通过工作曲线的解析获得(Amax-Amin)/IC50值,A. When evaluating complementary short-chain probes, the (A max -A min )/IC 50 value is obtained through the analysis of the working curve,
(Amax-Amin)/IC50越大则互补短链探针越优。The larger the ( Amax - Amin )/ IC50 , the better the complementary short-strand probe.
B、固定互补短链探针后,评价新型核酸适配体时,通过工作曲线的解析获得IC50值,IC50越小则型核酸适配体越优。B. After the complementary short-chain probe is immobilized, when evaluating the new nucleic acid aptamer, the IC 50 value is obtained through the analysis of the working curve. The smaller the IC 50 , the better the nucleic acid aptamer.
靶标为小分子、大分子、细胞及病原体等。室温下将待表征的核酸适配体与浓度为0-1000nM的靶标分子在结合溶液中反应5-30分钟后,加入含有SYBR Green I(SGI)的互补短链探针,所述的结合溶液包括溶剂和溶质,其中,溶剂为水;溶质包括浓度为80-200nMNaCl,浓度为1-30mM的钙离子或者浓度为 1-30mM的镁离子,浓度为10-30mM的Tris-HCl缓冲溶液,缓冲溶液pH为5-10,质量分数为0.01%-0.2%的表面活性剂Tween20。The targets are small molecules, macromolecules, cells and pathogens. After reacting the nucleic acid aptamer to be characterized with the target molecule with a concentration of 0-1000nM in the binding solution for 5-30 minutes at room temperature, a complementary short-chain probe containing SYBR Green I (SGI) was added, and the binding solution was Including solvent and solute, wherein the solvent is water; the solute includes 80-200nM NaCl, 1-30 mM calcium ion or 1-30 mM magnesium ion, 10-30 mM Tris-HCl buffer solution, buffer The pH of the solution is 5-10, and the mass fraction is 0.01%-0.2% surfactant Tween20.
实验结果,通过四参数方程进行拟合,四参数方程为:The experimental results are fitted by a four-parameter equation, and the four-parameter equation is:
其中,IF为荧光响应值;COTA为靶标分子浓度,这里是OTA的浓度;Amax表示四参数方程拟合后获得的最大值;Amin表示四参数方程拟合后获得的最小值; IC50表示四参数方程拟合后获得的半抑制值;式中的p为COTA为IC50时拟合曲线的斜率。Among them, IF is the fluorescence response value; C OTA is the concentration of target molecule, here is the concentration of OTA; A max represents the maximum value obtained after fitting the four-parameter equation; A min represents the minimum value obtained after fitting the four-parameter equation; IC 50 represents the half-inhibition value obtained after fitting a four-parameter equation; p in the formula is the slope of the fitted curve when C OTA is IC 50 .
(2)选取最优互补区,及最优互补短链探针。将已获得长链核酸适配体作为候选核酸适配体,根据全长序列碱基数,规划出n个区,每个区包含20个碱基,每个区设计7-20个碱基的互补短链探针,必要时可调整互补区域的位置。通过步骤(1)的方法获得不同互补短链探针的(Amax-Amin)/IC50值。通过对比 (Amax-Amin)/IC50值选取最大值,从而选取最优互补区,及最优互补短链探针。(2) Select the optimal complementary region and the optimal complementary short-chain probe. Taking the obtained long-chain nucleic acid aptamers as candidate nucleic acid aptamers, according to the number of bases in the full-length sequence, plan n regions, each region contains 20 bases, and each region is designed with 7-20 bases. Complementary short-strand probe, the position of the complementary region can be adjusted if necessary. The (A max -A min )/IC 50 values of different complementary short-chain probes were obtained by the method of step (1). The maximum value is selected by comparing (A max -A min )/IC 50 value, so as to select the optimal complementary region and the optimal complementary short-chain probe.
(3)初步获得较优核酸适配体。最优互补短链探针所对应区为核酸适配体的核心识别区,从原核酸适配的两端向核心区每次减少3个碱基,设计一系列新的核酸适配体,通过步骤(1)的方法获得新核酸适配体的IC50值,选出IC50值最小的为较优核酸适配体。(3) Preliminary acquisition of better nucleic acid aptamers. The corresponding region of the optimal complementary short-chain probe is the core recognition region of the nucleic acid aptamer. The two ends of the original nucleic acid aptamer are reduced by 3 bases each time to the core region, and a series of new nucleic acid aptamers are designed. The method of step (1) obtains the IC 50 value of the new nucleic acid aptamer, and selects the better nucleic acid aptamer with the smallest IC 50 value.
(4)获得最短核酸适配体序列。将步骤(3)获得的较优核酸适配体从核酸适配的两端向核心区每次减少一个碱基,设计一系列新的核酸适配体,通过步骤(1)的方法获得新设计的核酸适配体所对应的IC50值,选出IC50值最小的或IC50值较小但结构为尾端互补的为核酸适配体核心序列。(4) Obtain the shortest nucleic acid aptamer sequence. The optimal nucleic acid aptamer obtained in step (3) is reduced by one base at a time from the two ends of the nucleic acid aptamer to the core region, and a series of new nucleic acid aptamers are designed, and the new design is obtained by the method of step (1). The IC 50 value corresponding to the nucleic acid aptamer is selected, and the core sequence of the nucleic acid aptamer is selected with the smallest IC 50 value or with a smaller IC 50 value but the structure is complementary to the tail.
(5)构造亲和性更高的核酸适配体。将步骤(4)获得的最短的核酸适配体核心序列,通过结构解析,增加结构稳定性的方法,获得亲和性更高的核酸适配体。所述的解析序列的长度范围根据候选核酸适配体的不同进行调整,具体为14-45个碱基。(5) Construct nucleic acid aptamers with higher affinity. The shortest nucleic acid aptamer core sequence obtained in step (4) is subjected to structural analysis and a method of increasing structural stability to obtain a nucleic acid aptamer with higher affinity. The length range of the analyzed sequence is adjusted according to the different candidate nucleic acid aptamers, and is specifically 14-45 bases.
实施例Example
实施赭曲霉毒素A核酸适配体的序列优化方法示例:请参阅图1,为根据本发明的一种基于免标记杂交探针竞争法实现低成本高通量核酸适配体最优序列的优化方法流程示意图。主要包括以下步骤:Example of a sequence optimization method for implementing an ochratoxin A nucleic acid aptamer: please refer to FIG. 1 , which is an optimization of the optimal sequence of a low-cost high-throughput nucleic acid aptamer based on a label-free hybridization probe competition method according to the present invention. Schematic diagram of the method flow. It mainly includes the following steps:
一、选取最优互补区,及最优互补短链探针1. Select the optimal complementary region and the optimal complementary short-chain probe
已获得的OTA的核酸适配体序列为TGGTGGCTGTAGGTCAGCATCTGAT CGGGTGTGGGTGGCGTAAAGGGAGCATCGGACAACG(SEQ ID NO.1),共 61个碱基,将其分为3个区,每个区包含20个碱基。The obtained OTA aptamer sequence is TGGTGGCTGTAGGTCAGCATCTGAT CGGTGTGGGTGGCGTAAAGGGAGCATCGGACAACG (SEQ ID NO. 1), a total of 61 bases, which are divided into 3 regions, each region contains 20 bases.
在实际实验中发现,此序列的前20个碱基为引物,且其互补序列对于不同浓度的OTA无响应,所以将互补区设置在后42个碱基区域内(为满足每次剪切3个碱基,5’端多保留1个T碱基),因为碱基数较少且核心区在中间,所以本实施例中设计了10条位于中部的探针序列。In the actual experiment, it was found that the first 20 bases of this sequence were primers, and its complementary sequence did not respond to different concentrations of OTA, so the complementary region was set within the last 42 bases (in order to meet the requirements of each shearing 3 1 base, and 1 T base at the 5' end), because the number of bases is small and the core region is in the middle, 10 probe sequences located in the middle are designed in this example.
根据图2A和图2B的实验结果来看,B13的(Amax-Amin)/IC50值变化最大,在这个体系中核酸适配体与OTA的解离常数在200nM,所以其竞争分子(既互补短链探针)的解离常数也要在这个数量级。因为互补短链探针是将抑制OTA与核酸适配体相互作用,所以对于结合能力较弱的小分子,互补链的长度在7-20 个碱基。According to the experimental results of Figure 2A and Figure 2B, the (A max -A min )/IC 50 value of B13 changed the most. In this system, the dissociation constant of the nucleic acid aptamer and OTA was 200 nM, so its competitor molecule ( The dissociation constants of both complementary short-chain probes) are also in this order of magnitude. Because the complementary short-chain probe will inhibit the interaction between OTA and the nucleic acid aptamer, for small molecules with weak binding ability, the length of the complementary chain is 7-20 bases.
二、初步获得较优核酸适配体。2. Preliminary acquisition of better nucleic acid aptamers.
从原核酸适配的5’端向核心区每次减少三个碱基,设计一系列新的核酸适配体,通过步骤(1)的方法获得新核酸适配体的IC50值,选出IC50值最小的为较优核酸适配体。经过对实验数据分析,OTA Ap39L为从5’截短的较优核酸适配体。From the 5' end of the original nucleic acid aptamer to the core region, reduce three bases each time, design a series of new nucleic acid aptamers, obtain the IC 50 value of the new nucleic acid aptamer by the method of step (1), and select The aptamer with the smallest IC 50 value is the better aptamer. After analyzing the experimental data, OTA Ap39L is the better aptamer truncated from 5'.
三、从OTA Ap39L的3’端向核心区每次减少三个碱基,设计一系列新的核酸适配体,通过步骤(1)的方法获得新核酸适配体的IC50值,选出IC50值最小的为较优核酸适配体。经过对实验数据分析,OTA Ap39L-6为从3’截短的较优核酸适配体。3. Reduce three bases each time from the 3' end of OTA Ap39L to the core region, design a series of new nucleic acid aptamers, obtain the IC 50 value of the new nucleic acid aptamers by the method of step (1), and select The aptamer with the smallest IC 50 value is the better aptamer. After analyzing the experimental data, OTA Ap39L-6 is the better aptamer truncated from 3'.
四、获得最短核酸适配体序列。Fourth, obtain the shortest nucleic acid aptamer sequence.
经过对实验数据分析,相对于赭曲霉毒素A的核酸适配体OTA Ap39L-6、OTAAp39L-7、OTA Ap39L-8依旧具有很好的识别能力,而OTA Ap38L、OTA Ap39L-9、OTA Ap39L-10等核酸适配体的结合能力明显减弱。所以OTA Ap39L-8 是可用的最短序列。After analyzing the experimental data, the nucleic acid aptamers OTA Ap39L-6, OTA Ap39L-7 and OTA Ap39L-8 still have good recognition ability compared to ochratoxin A, while OTA Ap38L, OTA Ap39L-9, OTA Ap39L- The binding ability of nucleic acid aptamers such as 10 was significantly weakened. So OTA Ap39L-8 is the shortest sequence available.
五、构造亲和性更高的核酸适配体。Fifth, construct nucleic acid aptamers with higher affinity.
将步骤(四)获得的最短的核酸适配体核心序列,根据实验结果和前期工作,在这里认为核酸适配体识别赭曲霉毒素A以后形成反平行G四链体而31个碱基的分析结构将形成G四链体后尾链形成三对互补序列,互补的尾链结构对于整个系统的稳定性有利。所以在尾链上适当增加几对互补碱基,其IC50值进一步降低,这进一步证明形成的核酸适配体识别OTA后形成尾链是互补的结构,并且延长互补尾链有利于稳定结构。最终获得亲和性更好的新型核酸适配体 GG29CC、TATG29CATA、TATGG29CCATA。According to the shortest nucleic acid aptamer core sequence obtained in step (4), according to the experimental results and previous work, it is considered here that the nucleic acid aptamer recognizes ochratoxin A and forms an antiparallel G quadruplex and the analysis of 31 bases. The structure will form a G quadruplex and the tail chain will form three pairs of complementary sequences. The complementary tail chain structure is beneficial to the stability of the whole system. Therefore, when a few pairs of complementary bases are appropriately added to the tail chain, the IC 50 value is further reduced, which further proves that the formed aptamer recognizes OTA and forms a complementary tail chain, and extending the complementary tail chain is conducive to stabilizing the structure. Finally, new nucleic acid aptamers GG29CC, TATG29CATA and TATGG29CCATA with better affinity were obtained.
序列表sequence listing
<110> 大连理工大学<110> Dalian University of Technology
<120> 一种基于免标记杂交探针竞争法实现低成本高通量核酸适配体最优序列的优<120> An optimal method for realizing the optimal sequence of low-cost high-throughput nucleic acid aptamers based on a label-free hybridization probe competition method
化方法method
<130> 2020<130> 2020
<160> 25<160> 25
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 61<211> 61
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> OTA的核酸适配体序列<223> Nucleic acid aptamer sequence of OTA
<400> 1<400> 1
tggtggctgt aggtcagcat ctgatcgggt gtgggtggcg taaagggagc atcggacaac 60tggtggctgt aggtcagcat ctgatcgggt gtgggtggcg taaagggagc atcggacaac 60
g 61g 61
<210> 2<210> 2
<211> 42<211> 42
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> OTA Ap42<223> OTA Ap42
<400> 2<400> 2
tctgatcggg tgtgggtggc gtaaagggag catcggacaa cg 42tctgatcggg tgtgggtggc gtaaagggag catcggacaa cg 42
<210> 3<210> 3
<211> 17<211> 17
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> B17<223> B17
<400> 3<400> 3
accgcatttc cctcgta 17accgcatttc cctcgta 17
<210> 4<210> 4
<211> 16<211> 16
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> B16<223> B16
<400> 4<400> 4
ccgcatttcc ctcgta 16ccgcatttcc ctcgta 16
<210> 5<210> 5
<211> 15<211> 15
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> B15<223> B15
<400> 5<400> 5
cgcatttccc tcgta 15cgcatttccc tcgta 15
<210> 6<210> 6
<211> 14<211> 14
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> B14<223> B14
<400> 6<400> 6
gcatttccct cgta 14gcatttccct cgta 14
<210> 7<210> 7
<211> 13<211> 13
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> B13<223> B13
<400> 7<400> 7
catttccctc gta 13catttccctc gta 13
<210> 8<210> 8
<211> 12<211> 12
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> B12<223> B12
<400> 8<400> 8
atttccctcg ta 12atttccctcg ta 12
<210> 9<210> 9
<211> 11<211> 11
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> B11<223> B11
<400> 9<400> 9
tttccctcgt a 11tttccctcgt a 11
<210> 10<210> 10
<211> 10<211> 10
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> B10<223> B10
<400> 10<400> 10
ttccctcgta 10
<210> 11<210> 11
<211> 9<211> 9
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> B09<223> B09
<400> 11<400> 11
tccctcgta 9tccctcgta 9
<210> 12<210> 12
<211> 8<211> 8
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> B08<223> B08
<400> 12<400> 12
ccctcgta 8ccctcgta 8
<210> 13<210> 13
<211> 39<211> 39
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> OTA Ap39L<223> OTA Ap39L
<400> 13<400> 13
gatcgggtgt gggtggcgta aagggagcat cggacaacg 39gatcgggtgt gggtggcgta aagggagcat cggacaacg 39
<210> 14<210> 14
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> OTA Ap36L<223> OTA Ap36L
<400> 14<400> 14
cgggtgtggg tggcgtaaag ggagcatcgg acaacg 36cgggtgtggg tggcgtaaag ggagcatcgg acaacg 36
<210> 15<210> 15
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> OTA Ap39L-3<223> OTA Ap39L-3
<400> 15<400> 15
gatcgggtgt gggtggcgta aagggagcat cggaca 36gatcgggtgt gggtggcgta aagggagcat cggaca 36
<210> 16<210> 16
<211> 33<211> 33
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> OTA Ap39L-6<223> OTA Ap39L-6
<400> 16<400> 16
gatcgggtgt gggtggcgta aagggagcat cgg 33gatcgggtgt gggtggcgta aagggagcat cgg 33
<210> 17<210> 17
<211> 30<211> 30
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> OTA Ap39L-9<223> OTA Ap39L-9
<400> 17<400> 17
gatcgggtgt gggtggcgta aagggagcat 30gatcgggtgt gggtggcgta aagggagcat 30
<210> 18<210> 18
<211> 38<211> 38
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> OTA Ap38L<223> OTA Ap38L
<400> 18<400> 18
atcgggtgtg ggtggcgtaa agggagcatc ggacaacg 38atcgggtgtg ggtggcgtaa agggagcatc ggacaacg 38
<210> 19<210> 19
<211> 32<211> 32
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> OTA Ap39L-7<223> OTA Ap39L-7
<400> 19<400> 19
gatcgggtgt gggtggcgta aagggagcat cg 32gatcgggtgt gggtggcgta aagggagcat cg 32
<210> 20<210> 20
<211> 31<211> 31
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> OTA Ap39L-8<223> OTA Ap39L-8
<400> 20<400> 20
gatcgggtgt gggtggcgta aagggagcat c 31gatcgggtgt gggtggcgta aagggagcat c 31
<210> 21<210> 21
<211> 29<211> 29
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> OTA Ap39L-10<223> OTA Ap39L-10
<400> 21<400> 21
gatcgggtgt gggtggcgta aagggagca 29gatcgggtgt gggtggcgta aagggagca 29
<210> 22<210> 22
<211> 28<211> 28
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> OTA Ap39L-11<223> OTA Ap39L-11
<400> 22<400> 22
gatcgggtgt gggtggcgta aagggagc 28gatcgggtgt gggtggcgta aagggagc 28
<210> 23<210> 23
<211> 33<211> 33
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> GG29CC<223> GG29CC
<400> 23<400> 23
ggatcgggtg tgggtggcgt aaagggagca tcc 33ggatcgggtg tgggtggcgt aaagggagca tcc 33
<210> 24<210> 24
<211> 37<211> 37
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> TATG29CATA<223> TATG29CATA
<400> 24<400> 24
tatgatcggg tgtgggtggc gtaaagggag catcata 37tatgatcggg tgtgggtggc gtaaagggag catcata 37
<210> 25<210> 25
<211> 39<211> 39
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<223> TATGG29CCATA<223>TATGG29CCATA
<400> 25<400> 25
tatggatcgg gtgtgggtgg cgtaaaggga gcatccata 39tatggatcgg gtgtgggtgg cgtaaaggga gcatccata 39
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010185599.6A CN111445951B (en) | 2020-03-17 | 2020-03-17 | An optimization method for realizing the optimal sequence of low-cost high-throughput nucleic acid aptamers based on a label-free hybridization probe competition method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010185599.6A CN111445951B (en) | 2020-03-17 | 2020-03-17 | An optimization method for realizing the optimal sequence of low-cost high-throughput nucleic acid aptamers based on a label-free hybridization probe competition method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111445951A CN111445951A (en) | 2020-07-24 |
CN111445951B true CN111445951B (en) | 2022-09-20 |
Family
ID=71627563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010185599.6A Active CN111445951B (en) | 2020-03-17 | 2020-03-17 | An optimization method for realizing the optimal sequence of low-cost high-throughput nucleic acid aptamers based on a label-free hybridization probe competition method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111445951B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114965386A (en) * | 2021-02-19 | 2022-08-30 | 首都师范大学 | An engineering design method and a series of nucleic acid aptamers of Alternaria and a sensor using the same |
CN114674747A (en) * | 2022-03-29 | 2022-06-28 | 大连理工大学 | Fluorescence detection kit, method of use and application for nucleic acid aptamer detection of biological small molecules using G-quadruplex as quenching group |
CN116754762A (en) * | 2023-04-26 | 2023-09-15 | 国家粮食和物资储备局科学研究院 | Non-toxic quantitative analysis kit for mycotoxins based on nucleic acid aptamers and its application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002029379A2 (en) * | 2000-10-04 | 2002-04-11 | Celadon Laboratories, Inc. | Computer system for designing oligonucleotides used in biochemical methods |
CN104561013A (en) * | 2015-01-05 | 2015-04-29 | 中国人民解放军南京军区福州总医院 | Method for optimizing aptamer sequence based on high-throughput sequencing technology |
CN108387561A (en) * | 2018-01-18 | 2018-08-10 | 大连理工大学 | A kind of optimization method for realizing inexpensive high-throughput nucleic acid aptamers optimal sequence based on base quenching fluorescence principle |
-
2020
- 2020-03-17 CN CN202010185599.6A patent/CN111445951B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002029379A2 (en) * | 2000-10-04 | 2002-04-11 | Celadon Laboratories, Inc. | Computer system for designing oligonucleotides used in biochemical methods |
CN104561013A (en) * | 2015-01-05 | 2015-04-29 | 中国人民解放军南京军区福州总医院 | Method for optimizing aptamer sequence based on high-throughput sequencing technology |
CN108387561A (en) * | 2018-01-18 | 2018-08-10 | 大连理工大学 | A kind of optimization method for realizing inexpensive high-throughput nucleic acid aptamers optimal sequence based on base quenching fluorescence principle |
Non-Patent Citations (2)
Title |
---|
基于竞争触发滚环扩增的荧光适配体传感器高灵敏检测凝血酶;张松柏等;《分析化学》;20151115(第11期);全文 * |
核酸适配体荧光探针在生化分析和生物成像中的研究进展;黄子珂等;《应用化学》;20180110(第01期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111445951A (en) | 2020-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111445951B (en) | An optimization method for realizing the optimal sequence of low-cost high-throughput nucleic acid aptamers based on a label-free hybridization probe competition method | |
US20210398616A1 (en) | Methods and systems for aligning sequences in the presence of repeating elements | |
EP3192877B1 (en) | Vesicular adaptor and uses thereof in nucleic acid library construction and sequencing | |
EP3036344B1 (en) | Methods and systems for aligning sequences | |
US10832797B2 (en) | Method and system for quantifying sequence alignment | |
CN105624165B (en) | The biomolecule detecting method of cascade amplification strategy based on self-locking aptamer probe | |
US10385476B2 (en) | Methods and compositions for the selection and optimization of oligonucleotide tag sequences | |
WO2023036271A1 (en) | Method for constructing capture library having high test performance, and kit | |
JP2012198225A (en) | Method for detecting target molecule | |
JP7044270B2 (en) | A novel spike in oligonucleotide for normalization of sequence data | |
CN111073892A (en) | A nucleic acid aptamer for recognizing grouper iridovirus-infected cells and its construction method and application | |
CN108387561B (en) | A low-cost and high-throughput optimization method for the optimal sequence of nucleic acid aptamers based on the principle of base-quenching fluorescence | |
Feng et al. | Label-free optical bifunctional oligonucleotide probe for homogeneous amplification detection of disease markers | |
CN104894246B (en) | A kind of method of two nucleotides synthesis order-checking analysis multi-template PCR primer | |
CN110747514A (en) | High-throughput single-cell small RNA library construction method | |
CN117487813B (en) | Single-stranded DNA aptamer sequence for specifically recognizing azithromycin and application thereof | |
CN111363749B (en) | A nucleic acid aptamer for detecting Chinese soft-shelled turtle iridescent virus and its construction method and application | |
Lin-Sen et al. | Investigation of library input on aptamers selection efficiency using capillary electrophoresis | |
CN105950755B (en) | Method for detecting microRNA based on split recognition mode combined with cascade signal amplification strategy | |
RU2755495C2 (en) | Substrate molecule | |
CN114621958B (en) | Single-stranded DNA aptamer sequence for specifically recognizing ATP and application thereof | |
CN115838729B (en) | Aptamer AS2-3 of human thrombin protein, and screening method and application thereof | |
CN110818757A (en) | Nucleotide analogs and method for screening DNA polymerase | |
JP7652355B2 (en) | DESIGN APPARATUS, DESIGN METHOD, APTAMER PRODUCTION METHOD, AND PROGRAM | |
CN116769783B (en) | A nucleic acid aptamer specifically recognizing Shiga toxin type II B subunit and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |