CN114621958B - Single-stranded DNA aptamer sequence for specifically recognizing ATP and application thereof - Google Patents
Single-stranded DNA aptamer sequence for specifically recognizing ATP and application thereof Download PDFInfo
- Publication number
- CN114621958B CN114621958B CN202210142316.9A CN202210142316A CN114621958B CN 114621958 B CN114621958 B CN 114621958B CN 202210142316 A CN202210142316 A CN 202210142316A CN 114621958 B CN114621958 B CN 114621958B
- Authority
- CN
- China
- Prior art keywords
- atp
- aptamer
- ssdna
- specifically recognizing
- ssdna aptamer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108020004414 DNA Proteins 0.000 title claims abstract description 67
- 108091023037 Aptamer Proteins 0.000 title claims abstract description 65
- 102000053602 DNA Human genes 0.000 title claims abstract description 55
- 108020004682 Single-Stranded DNA Proteins 0.000 title abstract description 7
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910021389 graphene Inorganic materials 0.000 claims description 10
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 claims description 5
- 101100268548 Caenorhabditis elegans apl-1 gene Proteins 0.000 claims description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 4
- 108090000790 Enzymes Proteins 0.000 claims description 3
- 102000004190 Enzymes Human genes 0.000 claims description 3
- 239000003446 ligand Substances 0.000 claims description 3
- QCARNEYNHGMJLS-UHFFFAOYSA-N 4-[4-(dimethylaminodiazenyl)phenyl]benzoic acid Chemical compound CN(N=NC1=CC=C(C=C1)C1=CC=C(C(=O)O)C=C1)C QCARNEYNHGMJLS-UHFFFAOYSA-N 0.000 claims description 2
- COCMHKNAGZHBDZ-UHFFFAOYSA-N 4-carboxy-3-[3-(dimethylamino)-6-dimethylazaniumylidenexanthen-9-yl]benzoate Chemical compound C=12C=CC(=[N+](C)C)C=C2OC2=CC(N(C)C)=CC=C2C=1C1=CC(C([O-])=O)=CC=C1C(O)=O COCMHKNAGZHBDZ-UHFFFAOYSA-N 0.000 claims description 2
- NJYVEMPWNAYQQN-UHFFFAOYSA-N 5-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21 NJYVEMPWNAYQQN-UHFFFAOYSA-N 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- -1 dimethylaminoazobenzoyl Chemical group 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000002105 nanoparticle Substances 0.000 claims description 2
- 239000002135 nanosheet Substances 0.000 claims description 2
- 238000010791 quenching Methods 0.000 claims description 2
- 230000000171 quenching effect Effects 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 2
- MGIODCZGPVDROX-UHFFFAOYSA-N Cy5-bifunctional dye Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCN1C2=CC=C(S(O)(=O)=O)C=C2C(C)(C)C1=CC=CC=CC(C(C1=CC(=CC=C11)S([O-])(=O)=O)(C)C)=[N+]1CCCCCC(=O)ON1C(=O)CCC1=O MGIODCZGPVDROX-UHFFFAOYSA-N 0.000 claims 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 claims 1
- 238000012216 screening Methods 0.000 abstract description 43
- 239000011324 bead Substances 0.000 abstract description 13
- 238000005516 engineering process Methods 0.000 abstract description 9
- 238000012165 high-throughput sequencing Methods 0.000 abstract description 5
- 238000005457 optimization Methods 0.000 abstract description 2
- 239000002773 nucleotide Substances 0.000 abstract 1
- 125000003729 nucleotide group Chemical group 0.000 abstract 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 68
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 67
- 239000006228 supernatant Substances 0.000 description 20
- 239000012148 binding buffer Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- XTWYTFMLZFPYCI-KQYNXXCUSA-N 5'-adenylphosphoric acid Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XTWYTFMLZFPYCI-KQYNXXCUSA-N 0.000 description 10
- XTWYTFMLZFPYCI-UHFFFAOYSA-N Adenosine diphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O XTWYTFMLZFPYCI-UHFFFAOYSA-N 0.000 description 10
- 230000003321 amplification Effects 0.000 description 10
- 238000003199 nucleic acid amplification method Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 108091034117 Oligonucleotide Proteins 0.000 description 6
- 108010090804 Streptavidin Proteins 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 238000007885 magnetic separation Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 108091008104 nucleic acid aptamers Proteins 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000000872 buffer Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000002795 fluorescence method Methods 0.000 description 4
- 239000006148 magnetic separator Substances 0.000 description 4
- 239000013076 target substance Substances 0.000 description 4
- 108091008102 DNA aptamers Proteins 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine group Chemical group [C@@H]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C=NC=2C(N)=NC=NC12 OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 230000029918 bioluminescence Effects 0.000 description 2
- 238000005415 bioluminescence Methods 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 108010043137 Actomyosin Proteins 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 101100175482 Glycine max CG-3 gene Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108091008103 RNA aptamers Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 239000005082 bioluminescent agent Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 108010065404 endodeoxyribonuclease Bpu10I Proteins 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/115—Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6811—Selection methods for production or design of target specific oligonucleotides or binding molecules
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B50/00—Methods of creating libraries, e.g. combinatorial synthesis
- C40B50/06—Biochemical methods, e.g. using enzymes or whole viable microorganisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/16—Aptamers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6439—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Engineering & Computer Science (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域Technical field
本发明属于生物化学与分子生物学领域,尤其是指一种特异性识别ATP的单链DNA适配体序列及其应用。The invention belongs to the field of biochemistry and molecular biology, and in particular refers to a single-stranded DNA aptamer sequence that specifically recognizes ATP and its application.
背景技术Background technique
腺苷三磷酸(adenosine triphosphate,ATP)由腺嘌呤、核糖和3个磷酸基团连接而成,是所有活细胞内普遍存在的一种高能化合物。ATP作为核酸合成的起始物质,是在碳水化合物的氧化反应和糖酵解过程中形成的,参与许多生化过程的调节,是突触的媒介。同时ATP也参与代谢过程,通过与肌动球蛋白相互作用,分解成二磷酸腺苷(ADP)和磷酸基团,在这种情况下,能量被释放出来,大部分能量被肌肉用来执行机械工作,合成蛋白质、尿素和代谢中间产物。所以ATP是生物各项生命活动所需能量的提供者,也在细胞代谢的调节和整合中起着至关重要的作用,并且在体内ATP水平的动态变化反映了疾病或癌变的发展,例如帕金森氏病、心血管疾病等,因此在生物反应检测中ATP是一项重要的检测指标。Adenosine triphosphate (ATP), composed of adenine, ribose and three phosphate groups, is a high-energy compound ubiquitous in all living cells. ATP, as the starting material for nucleic acid synthesis, is formed during the oxidation reaction of carbohydrates and glycolysis. It participates in the regulation of many biochemical processes and is the mediator of synapses. At the same time, ATP is also involved in the metabolic process. By interacting with actomyosin, it is broken down into adenosine diphosphate (ADP) and phosphate groups. In this case, energy is released, and most of the energy is used by the muscles to execute machinery. Works to synthesize proteins, urea and metabolic intermediates. Therefore, ATP is the provider of energy required for various life activities of organisms, and also plays a vital role in the regulation and integration of cell metabolism. Dynamic changes in ATP levels in the body reflect the development of disease or cancer, such as PA Kinson's disease, cardiovascular disease, etc. Therefore, ATP is an important detection indicator in biological response detection.
目前国内外报道的ATP检测方法主要有生物发光法,高效液相色谱法、荧光法、生物传感法、分光光度法等。生物发光法的优点是灵敏度高、选择性强、使用相对容易,但需要昂贵且不稳定的生物发光剂。高效液相色谱法可以同时快速分离和测定ATP及其类似物,但设备昂贵难以普及,对实验人员要求较高,对样品的预处理比较复杂,并且分析费时,难以满足轻便高效的现场检测。适配体因其成本低廉,稳定性高等优点在ATP检测领域广泛使用。ATP适配体是广泛应用于生物传感的模式适配体之一,1993年Szostak等首次报道ATP的RNA适配体,并于1995年筛选出第一条DNA适配体。但是,目前常用的经典ATP DNA适配体特异性较差,不能区分腺苷5’位上的磷酸取代基,即不能区分ATP与ADP、AMP、cAMP,这对ATP的准确测定和生物体能荷状态评估造成了极大的影响。At present, the ATP detection methods reported at home and abroad mainly include bioluminescence method, high performance liquid chromatography, fluorescence method, biosensing method, spectrophotometry, etc. The advantages of bioluminescence are high sensitivity, strong selectivity, and relative ease of use, but it requires expensive and unstable bioluminescent agents. High-performance liquid chromatography can quickly separate and measure ATP and its analogues at the same time, but the equipment is expensive and difficult to popularize, it requires high experimental personnel, the pretreatment of samples is complex, and the analysis is time-consuming, making it difficult to meet the needs of lightweight and efficient on-site detection. Aptamers are widely used in the field of ATP detection due to their low cost and high stability. ATP aptamers are one of the model aptamers widely used in biosensing. Szostak et al. first reported the RNA aptamer of ATP in 1993, and screened the first DNA aptamer in 1995. However, the currently commonly used classic ATP DNA aptamers have poor specificity and cannot distinguish the phosphate substituent at the 5' position of adenosine, that is, they cannot distinguish ATP from ADP, AMP, and cAMP, which poses a problem for the accurate measurement of ATP and the energy charge of organisms. Status assessment has had a dramatic impact.
指数富集的配体系统进化技术(systematic evolution of ligands byexponential enrichment,简称为SELEX)是一种从随机寡核苷酸文库中体外筛选能与各种靶标物质特异性结合的寡聚核苷酸片段的分子生物学技术。靶标物质可以是蛋白质、细胞、小分子、金属离子、核酸或者药物,筛选得到的寡聚核苷酸片段被称为适配体。SELEX技术的基本原理是构建人工合成的随机寡核苷酸文库,将其与靶标物质孵育,保留与靶标物质相互作用的序列,经多轮扩增及筛选,即可获得高亲和力和特异性的核酸适配体。核酸适配体具有亲和力高、特异性和稳定性强、成本低廉、易于修饰等优点。Systematic evolution of ligands by exponential enrichment (SELEX) is an in vitro screening of oligonucleotide fragments that can specifically bind to various target substances from random oligonucleotide libraries. molecular biology techniques. The target substance can be a protein, cell, small molecule, metal ion, nucleic acid or drug. The oligonucleotide fragment obtained by screening is called an aptamer. The basic principle of SELEX technology is to construct a synthetic random oligonucleotide library, incubate it with the target substance, and retain the sequences that interact with the target substance. After multiple rounds of amplification and screening, high affinity and specificity can be obtained. Nucleic acid aptamers. Nucleic acid aptamers have the advantages of high affinity, strong specificity and stability, low cost, and easy modification.
发明内容Contents of the invention
为解决上述技术问题,本发明提供特异性识别ATP的ssDNA适配体,通过磁珠SELEX技术,借助磁性分离获得与靶分子特异性结合的高亲和力寡核苷酸序列,经过10轮筛选和相应的反筛选后,进行高通量测序获得适配体序列,并通过序列截短优化获得最优适配体序列。这些适配体是ATP的新型识别元件,具有稳定性良好、灵敏度高、成本低、易制备、易修饰和标记的高特异性的优势,并能应用于多种检测方法的构建。In order to solve the above technical problems, the present invention provides an ssDNA aptamer that specifically recognizes ATP. Through magnetic bead SELEX technology, a high-affinity oligonucleotide sequence that specifically binds to the target molecule is obtained through magnetic separation. After 10 rounds of screening and corresponding After reverse screening, high-throughput sequencing was performed to obtain the aptamer sequence, and the optimal aptamer sequence was obtained through sequence truncation optimization. These aptamers are new recognition elements for ATP. They have the advantages of good stability, high sensitivity, low cost, easy preparation, modification and labeling, and high specificity, and can be used in the construction of a variety of detection methods.
本发明的第一个目的是提供一种特异性识别ATP的单链DNA适配体序列,所述ssDNA适配体为ap1、ap3、ap4、ap7、ap9或ap1-1,所述ap1、ap3、ap4、ap7、ap9或ap1-1的序列由SEQ ID NO.1-SEQ ID NO.6所示。The first object of the present invention is to provide a single-stranded DNA aptamer sequence that specifically recognizes ATP. The ssDNA aptamer is ap1, ap3, ap4, ap7, ap9 or ap1-1. The ap1, ap3 , ap4, ap7, ap9 or apl-1 sequences are shown by SEQ ID NO.1-SEQ ID NO.6.
序列具体为:ap1(SEQ ID NO.1):5′-TAGGGAATTCGTCGACGGATCCCGTGGCGTCTGCAACGGAAAAGAATTTATCTTGTCCTGCAGGTCGACGCATGCGCCG-3′The specific sequence is: ap1 (SEQ ID NO. 1): 5′-TAGGGAATTCGTCGACGGATCCCGTGGCGTCTGCAACGGAAAAGAATTTATCTTGTCCTGCAGGTCGACGCATGCGCCG-3′
ap3(SEQ ID NO.2):5′-TAGGGAATTCGTCGACGGATCCCGAAGGACAGAAAGATACATCTGATGACGATTACACTGCAGGTCGACGCATGCGCCG-3′ap3(SEQ ID NO.2):5′-TAGGGAATTCGTCGACGGATCCCGAAGGACAGAAAGATACATCTGATGACGATTACACTGCAGGTCGACGCATGCGCCG-3′
ap4(SEQ ID NO.3):5′-TAGGGAATTCGTCGACGGATCCTACCCGTTGCTGCAGGATCCTGAGATCGCCTCTGTCTGCAGGTCGACGCATGCGCCG-3′ap4 (SEQ ID NO.3):5′-TAGGGAATTCGTCGACGGATCCTACCCGTTGCTGCAGGATCCTGAGATCGCCTCTGTCTGCAGGTCGACGCATGCGCCG-3′
ap7(SEQ ID NO.4):5′-TAGGGAATTCGTCGACGGATCCATCCCCACGACGGTCAAGGCCGCGTGCCGGTAGGGCTGCAGGTCGACGCATGCGCCG-3′ap7 (SEQ ID NO.4):5′-TAGGGAATTCGTCGACGGATCCATCCCCACGACGTCAAGGCCGCGTGCCGGTAGGGCTGCAGGTCGACGCATGCGCCG-3′
ap9(SEQ ID NO.5):5′-TAGGGAATTCGTCGACGGATCCAAAAGCGTCTGCTGTGACGGGACAAAACCGGTGCTCTGCAGGTCGACGCATGCGCCG-3′ap9 (SEQ ID NO.5):5′-TAGGGAATTCGTCGACGGATCCAAAAGCGTCTGCTGTGACGGGACAAAACCGGTGCTCTGCAGGTCGACGCATGCGCCG-3′
ap1-1(SEQ ID NO.6):5′-TGGCGTCTGCATGCAGGTCGACGCATGCGCCG-3′.ap1-1 (SEQ ID NO. 6): 5′-TGGCGTCTGCATGCAGGTCGACGCATGCGCCG-3′.
在本发明的一个实施例中,所述ssDNA适配体能够被提高稳定性的基团,和/或提供检测信号的荧光基团、同位素、电化学标记物、酶标记物,和/或用于形成组合物的亲和配基、巯基所修饰。In one embodiment of the present invention, the ssDNA aptamer can be modified with a group that improves stability, and/or a fluorescent group that provides a detection signal, an isotope, an electrochemical label, an enzyme label, and/or with a Modified by the affinity ligand and sulfhydryl group forming the composition.
本发明的第二个目的是提供所述的ssDNA适配体在特异性识别ATP中的应用。The second object of the present invention is to provide the application of the ssDNA aptamer in specifically recognizing ATP.
本发明的第三个目的是提供一种用于特异性识别ATP的组合物,包括所述的ssDNA适配体中的一种或多种。The third object of the present invention is to provide a composition for specifically recognizing ATP, including one or more of the ssDNA aptamers.
本发明的第四个目的是提供一种用于特异性识别ATP的试剂盒,包括所述的ssDNA适配体中的一种或多种。The fourth object of the present invention is to provide a kit for specifically recognizing ATP, including one or more of the ssDNA aptamers.
本发明的第五个目的是提供一种用于特异性识别ATP的试纸,包括所述的ssDNA适配体中的一种或多种。The fifth object of the present invention is to provide a test strip for specifically recognizing ATP, including one or more of the ssDNA aptamers.
本发明的第六个目的是提供一种用于特异性识别ATP的芯片,包括所述的ssDNA适配体中的一种或多种。The sixth object of the present invention is to provide a chip for specifically recognizing ATP, including one or more of the ssDNA aptamers.
本发明的第七个目的是提供一种用于特异性识别ATP的荧光生物传感器,包括所述的ssDNA适配体中的一种或多种;还包括荧光基团和荧光淬灭剂。The seventh object of the present invention is to provide a fluorescent biosensor for specifically recognizing ATP, which includes one or more of the ssDNA aptamers; and also includes a fluorescent group and a fluorescence quencher.
在本发明的一个实施例中,所述荧光淬灭剂为氧化石墨烯、金纳米颗粒、二氧化锰纳米片、4-(4’-二甲基氨基偶氮苯基)苯甲酸或二甲氨基偶氮苯甲酰。In one embodiment of the invention, the fluorescence quenching agent is graphene oxide, gold nanoparticles, manganese dioxide nanosheets, 4-(4'-dimethylaminoazophenyl) benzoic acid or dimethyl Aminoazobenzoyl.
在本发明的一个实施例中,所述荧光基团选自6-羧基荧光素、CY3、六氯-6-甲基荧光素、6-羧基四甲基罗丹明、ROX、CY5、异硫氰酸荧光素或5-羧基荧光素。In one embodiment of the invention, the fluorescent group is selected from 6-carboxyfluorescein, CY3, hexachloro-6-methylfluorescein, 6-carboxytetramethylrhodamine, ROX, CY5, isothiocyanine Acid fluorescein or 5-carboxyfluorescein.
本发明的第八个目的是提供一种特异性识别ATP的单链DNA适配体的筛选方法,具体包括以下步骤:The eighth object of the present invention is to provide a screening method for single-stranded DNA aptamers that specifically recognize ATP, specifically including the following steps:
(a)ssDNA文库:5′-TAGGGAATTCGTCGACGGATCC-N35-CTGCAGGTCGACGCATGCGCCG-3′,其中N代表碱基A,T,C,G中任一个;(a) ssDNA library: 5′-TAGGGAATTCGTCGACGGATCC-N35-CTGCAGGTCGACGCATGCGCCG-3′, where N represents any one of the bases A, T, C, and G;
正向引物Ⅰ-1:5′-FAM-TAGGGAATTCGTCGACGGAT-3′;Forward primer I-1: 5′-FAM-TAGGGAATTCGTCGACGGAT-3′;
正向引物Ⅰ-2:5′-TAGGGAATTCGTCGACGGAT-3′;Forward primer I-2: 5′-TAGGGAATTCGTCGACGGAT-3′;
反向引物Ⅱ-1:5′-biotin-CGGCGCATGCGTCGACCTG-3′;Reverse primer II-1: 5′-biotin-CGGCGCATGCGTCGACCTG-3′;
反向引物Ⅱ-2:5′-CGGCGCATGCGTCGACCTG-3′;Reverse primer II-2: 5′-CGGCGCATGCGTCGACCTG-3′;
(b)使步骤(a)中的引物Ⅰ-2与Ⅱ-1对ssDNA文库按照以下条件进行PCR扩增:ssDNA1pmol,正向引物10pmol,反向引物10pmol,12.5μLMax DNA聚合酶,去离子水9.5μL;工作温度循环为95℃300s,95℃30s,55℃30s,72℃15s,扩增循环数为15;(b) PCR amplify the ssDNA library using primers I-2 and II-1 in step (a) according to the following conditions: 1 pmol of ssDNA, 10 pmol of forward primer, 10 pmol of reverse primer, 12.5 μL Max DNA polymerase, 9.5 μL of deionized water; the working temperature cycle is 95°C for 300s, 95°C for 30s, 55°C for 30s, and 72°C for 15s, and the number of amplification cycles is 15;
(c)链霉亲和素磁珠:粒径1-2μm,浓度为5mg·mL-1,用PBS缓冲液清洗3-7次;(c) Streptavidin magnetic beads: particle size 1-2 μm, concentration 5 mg·mL -1 , washed 3-7 times with PBS buffer;
(d)使步骤(c)的链霉亲和素磁珠与步骤(b)中扩增的DNA在适宜的条件下结合,适宜的条件包括室温20-30℃,结合时间1-3h;(d) Combine the streptavidin magnetic beads in step (c) with the DNA amplified in step (b) under appropriate conditions. The appropriate conditions include room temperature 20-30°C and a binding time of 1-3 hours;
(e)使步骤(d)中的混合物用磁力架进行分离后,去上清,再用结合Tris缓冲液清洗3-7次,然后与ATP溶液混合,在室温20-30℃孵育1-3h;(e) After the mixture in step (d) is separated using a magnetic stand, remove the supernatant, wash it 3-7 times with binding Tris buffer, then mix it with ATP solution, and incubate it at room temperature 20-30°C for 1-3 hours. ;
(f)使步骤(e)中的混合物用磁力架进行分离后,取上清,收集上清中与ATP结合的ssDNA序列;(f) After the mixture in step (e) is separated using a magnetic stand, take the supernatant and collect the ssDNA sequence bound to ATP in the supernatant;
(g)重复步骤(b)~(f)4-8次;(g) Repeat steps (b) to (f) 4-8 times;
(h)引入反筛选,使步骤(d)中的混合物用磁力架进行分离后,去上清,再用结合Tris缓冲液清洗3-7次。然后与ADP、AMP溶液混合,在室温20-30℃孵育1-3h后,磁性分离去上清。随后加入ATP溶液,在室温20-30℃孵育1-3h,磁性分离后收集上清中与ATP结合的ssDNA序列。重复反筛2-6次;(h) Introduce counter-screening, separate the mixture in step (d) using a magnetic stand, remove the supernatant, and wash 3-7 times with binding Tris buffer. Then mix it with ADP and AMP solutions, incubate at room temperature 20-30°C for 1-3 hours, and then magnetically separate to remove the supernatant. Then add ATP solution and incubate at room temperature 20-30°C for 1-3 hours. After magnetic separation, collect the ssDNA sequence bound to ATP in the supernatant. Repeat reverse screening 2-6 times;
(i)重复步骤(b)~(f)1-5次;(i) Repeat steps (b) to (f) 1-5 times;
(j)收集经以上步骤得到的ATP和ssDNA的混合液,用正向引物Ⅰ-2和反向引物Ⅱ-2进行PCR扩增,随后进行高通量测序。(j) Collect the mixture of ATP and ssDNA obtained through the above steps, use forward primer I-2 and reverse primer II-2 to perform PCR amplification, and then perform high-throughput sequencing.
本发明进一步构建了基于适配体的荧光生物传感器,实现对ATP的检测。该检测方法将氧化石墨烯与链置换扩增技术相结合,当有ATP存在时,可以将包含有适配体序列的模板DNA从氧化石墨烯上竞争性的结合下来,诱导链置换扩增技术的发生,进而打开分子信标,荧光强度增加。ATP不存在时,适配体将被氧化石墨烯吸附,无法进行后续步骤。该传感器将ATP的浓度检测转化为荧光强度的测定。The present invention further constructs an aptamer-based fluorescent biosensor to detect ATP. This detection method combines graphene oxide with strand displacement amplification technology. When ATP is present, the template DNA containing the aptamer sequence can be competitively bound from the graphene oxide to induce strand displacement amplification technology. occurs, thereby turning on the molecular beacon, and the fluorescence intensity increases. In the absence of ATP, the aptamer will be adsorbed by graphene oxide and cannot proceed to subsequent steps. The sensor converts ATP concentration detection into fluorescence intensity measurement.
本发明利用磁珠-SELEX技术,在双链DNA分子中反义链的5’端修饰生物素,利用链霉亲和素和生物素之间的相互作用,将双链DNA分子修饰在磁珠表面,随后再与靶标分子孵育,与靶分子亲和力高的ssDNA序列被竞争性的结合下来从而游离在体系中,通过磁性分离,将ssDNA分离出并作为下一轮筛选的次级文库,经过多轮筛选后,最终保留下来的ssDNA序列与ATP具有较高的亲和力。同时,在筛选的最后几轮中引入反筛选手段,以ADP、AMP等干扰物为反筛选目标,从富集的对ATP有亲和力的序列中除去能同时结合ADP和AMP的序列,大大提高了适配体的特异性,最终获得了具有高亲和力、高特异性的ATP适配体。并进一步根据二级结构和分子对接模拟结果对适配体截短优化,最终得到最优适配体ap1-1。本发明为ATP检测提供了稳定性良好、亲和力高、易制备、易修饰和标记的高特异性适配体序列。The present invention uses magnetic bead-SELEX technology to modify biotin at the 5' end of the antisense strand in the double-stranded DNA molecule, and utilizes the interaction between streptavidin and biotin to modify the double-stranded DNA molecule on the magnetic beads. The surface is then incubated with the target molecule. The ssDNA sequence with high affinity to the target molecule is competitively bound and freed in the system. Through magnetic separation, the ssDNA is isolated and used as a secondary library for the next round of screening. After multiple After rounds of screening, the ssDNA sequence finally retained has a higher affinity for ATP. At the same time, counter-screening methods were introduced in the last few rounds of screening, using ADP, AMP and other interference substances as counter-screening targets, and removing sequences that can bind both ADP and AMP from the enriched sequences with affinity for ATP, which greatly improved the efficiency. The specificity of the aptamer was finally obtained with high affinity and high specificity ATP aptamer. The aptamer was further truncated and optimized based on the secondary structure and molecular docking simulation results, and finally the optimal aptamer ap1-1 was obtained. The present invention provides a highly specific aptamer sequence with good stability, high affinity, easy preparation, modification and labeling for ATP detection.
本发明的上述技术方案相比现有技术具有以下优点:The above technical solution of the present invention has the following advantages compared with the existing technology:
本发明采用磁珠-SELEX技术将寡核苷酸文库固定至磁珠上,通过竞争置换和扩增富集,结合反复严格的反筛选得到与ATP高特异结合的ssDNA适配体,为ATP的检测提供了稳定性良好、灵敏度高、成本低、易制备、易修饰和标记的高特异性检测识别元件和可能的检测方法。The present invention uses magnetic bead-SELEX technology to fix the oligonucleotide library to magnetic beads, and through competitive displacement and amplification enrichment, combined with repeated and strict reverse screening, ssDNA aptamers that bind highly specifically to ATP are obtained. The detection provides highly specific detection recognition elements and possible detection methods with good stability, high sensitivity, low cost, easy preparation, modification and labeling.
附图说明Description of the drawings
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中In order to make the content of the present invention easier to understand clearly, the present invention will be further described in detail below based on specific embodiments of the present invention and in conjunction with the accompanying drawings, wherein
图1:磁珠-SELEX筛选ATP特异性适配体原理图。Figure 1: Schematic diagram of magnetic bead-SELEX screening of ATP-specific aptamers.
图2:测定适配体序列ap1、ap3、ap4、ap7、ap9与ap1-1的Kd值的拟合曲线图。Figure 2: Fitting curve graph for determining Kd values of aptamer sequences ap1, ap3, ap4, ap7, ap9 and ap1-1.
图3:荧光法表征ap1-1以及文献报道的ATP适配体的特异性。Figure 3: Fluorescence method to characterize the specificity of ap1-1 and ATP aptamers reported in the literature.
图4:荧光适配体生物传感器法检测ATP的标准曲线图。Figure 4: Standard curve for detecting ATP using fluorescent aptamer biosensor method.
图5:荧光适配体生物传感器的特异性验证。Figure 5: Specificity verification of fluorescent aptamer biosensors.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific examples, so that those skilled in the art can better understand and implement the present invention, but the examples are not intended to limit the present invention.
本发明所使用的缓冲液材料信息:Buffer material information used in the present invention:
PBS缓冲液:137mmol·L-1NaCl,2.7mmol·L-1KCl,pH 7.4;PBS buffer: 137mmol·L -1 NaCl, 2.7mmol·L -1 KCl, pH 7.4;
Tris缓冲液:50mmol·L-1Tris-HCl,5mmol·L-1KCl,100mmol·L-1NaCl,1mmol·L- 1MgCl2,pH 7.4。Tris buffer: 50mmol·L -1 Tris-HCl, 5mmol·L -1 KCl, 100mmol·L -1 NaCl, 1mmol·L - 1 MgCl 2 , pH 7.4.
实施例1:随机ssDNA文库及其引物的构建Example 1: Construction of random ssDNA library and its primers
(a)构建长度79个碱基的随机ssDNA文库(a) Construct a random ssDNA library of 79 bases in length
5′-TAGGGAATTCGTCGACGGATCC-N35-CTGCAGGTCGACGCATGCGC CG-3′,其中N代表碱基A,T,C,G中任一个。5′-TAGGGAATTCGTCGACGGATCC-N35-CTGCAGGTCGACGCATGCGC CG-3′, where N represents any one of the bases A, T, C, and G.
(b)合成正向引物:(b) Synthesize forward primer:
正向引物1:5′-TAGGGAATTC GTCGACGGAT-3′;Forward primer 1: 5′-TAGGGAATTC GTCGACGGAT-3′;
正向引物2:5′-FAM-TAGGGAATTC GTCGACGGAT-3′;Forward primer 2: 5′-FAM-TAGGGAATTC GTCGACGGAT-3′;
(c)合成反向引物:(c) Synthesize reverse primer:
反向引物1:5′-CGGCGCATGC GTCGACCTG-3′;Reverse primer 1: 5′-CGGCGCATGC GTCGACCTG-3′;
反向引物2:5′-biotin-CGGCGCATGC GTCGACCTG-3′。Reverse primer 2: 5′-biotin-CGGCGCATGC GTCGACCTG-3′.
实施例2:核酸适配体的体外筛选Example 2: In vitro screening of nucleic acid aptamers
为筛选出与ATP有高亲和力和高特异性的ssDNA适配体,共进行了10轮核酸适配体的筛选,1-6轮为正筛,7-9轮引入反筛,第10轮再次正筛稳定筛选过程。In order to screen out ssDNA aptamers with high affinity and specificity for ATP, a total of 10 rounds of nucleic acid aptamer screening were conducted, with rounds 1-6 being forward screening, rounds 7-9 introducing reverse screening, and round 10 again. Positive screening stabilizes the screening process.
(a)25μL的PCR扩增体系如表1所示。(a) The 25 μL PCR amplification system is shown in Table 1.
扩增条件:95℃预变性5min;95℃变性30s;55℃退火30s;72℃延伸15s;72℃延伸5min;15个循环。Amplification conditions: pre-denaturation at 95°C for 5 minutes; denaturation at 95°C for 30 seconds; annealing at 55°C for 30 seconds; extension at 72°C for 15 seconds; extension at 72°C for 5 minutes; 15 cycles.
(b)体外筛选主要步骤:将链霉亲和素偶联好的磁珠用PBS buffer清洗5次后,将100μL初始文库PCR产物溶于100μL结合缓冲液中,再添加50μL链霉亲和素偶联好的磁珠,在室温下轻轻摇晃2h后将其放到磁力分离器上,去除上清液,用结合缓冲液清洗磁珠5次后,再添加3μL 100mmol·L-1的ATP溶液,在室温下继续轻轻摇晃2h,并将其放到磁力分离器上3min后,收集上清液投入到下一轮筛选,随着筛选轮数的增加,为了获得高亲和力的适配体,逐渐降低靶标浓度以增加筛选压力。同时,为了提高适配体的特异性,从第七轮开始引入反筛。(b) Main steps of in vitro screening: After washing the streptavidin-coupled magnetic beads with PBS buffer 5 times, dissolve 100 μL of the initial library PCR product in 100 μL of binding buffer, and then add 50 μL of streptavidin. After the coupled magnetic beads were gently shaken at room temperature for 2 hours, place them on a magnetic separator, remove the supernatant, wash the magnetic beads 5 times with binding buffer, and then add 3 μL of 100 mmol·L -1 ATP. Solution, continue to shake gently for 2 hours at room temperature, and place it on a magnetic separator for 3 minutes. After that, collect the supernatant and put it into the next round of screening. As the number of screening rounds increases, in order to obtain high-affinity aptamers , gradually reducing target concentration to increase screening pressure. At the same time, in order to improve the specificity of aptamers, reverse screening was introduced starting from the seventh round.
(c)反筛选:将上一轮制备的次级文库进行PCR扩增,取PCR产物100μL与100μL的结合缓冲液混合均匀,再添加50μL链霉亲和素偶联好的磁珠,在室温下轻轻摇晃2h后将其放到磁力分离器上,去除上清液,用结合缓冲液清洗磁珠5次后,再添加3μL 100mmol·L-1的ADP与AMP溶液,在室温下继续轻轻摇晃2h,磁性分离后弃上清,用结合缓冲液清洗3次,再加入3μL 100m mol·L-1的ATP溶液,在室温下继续摇晃2h,并将其放到磁力分离器上3min后,收集上清液作为下一轮筛选的次级文库。(c) Counter screening: Perform PCR amplification of the secondary library prepared in the previous round, mix 100 μL of PCR product with 100 μL of binding buffer, then add 50 μL of streptavidin-coupled magnetic beads, and incubate at room temperature. After gently shaking for 2 hours, place it on a magnetic separator, remove the supernatant, wash the magnetic beads 5 times with binding buffer, then add 3 μL of 100 mmol·L -1 ADP and AMP solution, and continue gently at room temperature. Shake gently for 2h, discard the supernatant after magnetic separation, wash 3 times with binding buffer, then add 3μL of 100mmol·L -1 ATP solution, continue shaking at room temperature for 2h, and place it on the magnetic separator for 3min. , the supernatant was collected as a secondary library for the next round of screening.
(d)筛选次数的确定:将每轮筛选得到的ssDNA次级文库用正向引物2与反向引物2进行PCR扩增。取40μL链霉亲和素修饰的磁珠,用结合缓冲液清洗三遍后,加入20μLPCR产物和80μL结合缓冲液,混合均匀后,至于摇床上室温孵育1h。随后,置于磁性分离架上,弃上清液,用结合缓冲液清洗三遍,除去未结合在磁珠上的dsDNA。随后,加入30μL 0.1mol·L-1的NaOH,于37℃水浴锅中孵育1h,dsDNA变性解链,可重复洗脱两次,经过磁性分离后,上清液中即为FAM修饰的ssDNA。取4pmol FAM修饰的ssDNA,加入100μL的结合缓冲液,混合均匀后于95℃变性10min,迅速冰浴5min,再室温放置10min。实验组加入2μL 1mmol·L-1的ATP溶液,对照组加入等体积的结合缓冲液,并用结合缓冲液将体系补至250μL,于25℃摇晃孵育1h。随后,向实验组和对照组中分别加入5μL氧化石墨烯溶液,混合均匀后,置于摇床上摇晃孵育50min。将混合液以12000rpm,离心12min,取上清液200μL,置于96孔板中使用多功能酶标仪测定荧光值(激发波长488nm,发射波长525nm)。实验组与对照组荧光值的差值即为ssDNA序列与ATP结合的荧光强度。直至荧光值达到稳定即可停止筛选。(d) Determination of the number of screenings: PCR amplify the ssDNA secondary library obtained in each round of screening using forward primer 2 and reverse primer 2. Take 40 μL of streptavidin-modified magnetic beads, wash them three times with binding buffer, add 20 μL of PCR product and 80 μL of binding buffer, mix evenly, and incubate on a shaker at room temperature for 1 hour. Subsequently, place it on a magnetic separation rack, discard the supernatant, and wash three times with binding buffer to remove dsDNA that is not bound to the magnetic beads. Subsequently, 30 μL of 0.1 mol·L -1 NaOH was added, and incubated in a 37°C water bath for 1 hour. The dsDNA was denatured and melted, and could be repeatedly eluted twice. After magnetic separation, the supernatant was FAM-modified ssDNA. Take 4 pmol of FAM-modified ssDNA, add 100 μL of binding buffer, mix evenly, denature at 95°C for 10 minutes, quickly ice bath for 5 minutes, and then leave at room temperature for 10 minutes. In the experimental group, 2 μL of 1 mmol·L -1 ATP solution was added, and in the control group, an equal volume of binding buffer was added, and the system was supplemented with binding buffer to 250 μL, and the system was shaken and incubated at 25°C for 1 h. Subsequently, 5 μL of graphene oxide solution was added to the experimental group and the control group respectively, mixed evenly, and placed on a shaker for shaking and incubation for 50 min. Centrifuge the mixture at 12,000 rpm for 12 min, take 200 μL of the supernatant, place it in a 96-well plate and use a multifunctional microplate reader to measure the fluorescence value (excitation wavelength 488 nm, emission wavelength 525 nm). The difference in fluorescence value between the experimental group and the control group is the fluorescence intensity of the ssDNA sequence combined with ATP. Screening can be stopped until the fluorescence value reaches a stable level.
(e)下一轮筛选根据上面的筛选方法重复进行,共进行了10轮核酸适配体的筛选,1-6轮为正筛,7-9轮引入反筛,第10轮再次正筛荧光强度趋于稳定。因此,第10轮筛选结束后即可停止筛选。(e) The next round of screening was repeated according to the above screening method. A total of 10 rounds of nucleic acid aptamer screening were conducted. Rounds 1-6 were forward screening, rounds 7-9 introduced reverse screening, and round 10 was another positive screening for fluorescence. Strength tends to stabilize. Therefore, screening can be stopped after the 10th round of screening.
实施例3:筛选得到的ssDNA克隆、测序Example 3: Screening and sequencing of ssDNA clones
ssDNA克隆测序:经过终轮筛选得到的ssDNA,用正向引物1和反向引物1进行PCR扩增,扩增产物送上海生工进行高通量测序。ssDNA cloning and sequencing: The ssDNA obtained after the final round of screening is amplified by PCR using forward primer 1 and reverse primer 1, and the amplified product is sent to Shanghai Sangon for high-throughput sequencing.
实施例4:用荧光法测定适配体序列的解离常数Kd值Example 4: Determination of the dissociation constant K d value of the aptamer sequence using fluorescence method
对实施例3中的高通量测序结果进行分析处理,挑选出ap1、ap3、ap4、ap7和ap9,以及截短序列ap1-1进行解离常数(Kd)测定。将有荧光基团6-羧基荧光素(FAM)修饰的不同浓度的适配体序列加入到结合缓冲液中,并用结合缓冲液补充体积至200μL,95℃变性10min,迅速冰浴10min。再将1μL 100mmol·L-1ATP溶液加入到溶液中,轻微震荡,室温摇动反应1h40min后,再加入氧化石墨烯,室温条件下孵育40min,将混合液以12000rpm离心12min,取上清。最后将全部上清液加入到96孔板中用酶标仪测其荧光强度。适配体序列的含量与荧光强度成正比。The high-throughput sequencing results in Example 3 were analyzed and processed, and ap1, ap3, ap4, ap7, ap9, and the truncated sequence ap1-1 were selected for measurement of dissociation constant (K d ). Add aptamer sequences of different concentrations modified with the fluorescent group 6-carboxyfluorescein (FAM) into the binding buffer, replenish the volume with binding buffer to 200 μL, denature at 95°C for 10 min, and quickly ice bath for 10 min. Then add 1 μL of 100 mmol·L -1 ATP solution into the solution, shake slightly, and react at room temperature for 1 h and 40 min. Then add graphene oxide and incubate at room temperature for 40 min. Centrifuge the mixture at 12,000 rpm for 12 min and take the supernatant. Finally, all the supernatant was added to a 96-well plate and its fluorescence intensity was measured with a microplate reader. The content of the aptamer sequence is directly proportional to the fluorescence intensity.
由方程:y=Bmax×free ssDNA/(Kd+free ssDNA),可对每一条适配体序列的Kd值进行分析。方程中y表示核酸适配体结合的ATP占总的ATP的比例,即饱和度;Bmax表示最大结合位点的数目,free ssDNA表示未与ATP结合的游离的ssDNA浓度。拟合曲线如图2所示,测得ap1、ap3、ap4、ap7、ap9及ap1-1的Kd值分别为81.66±10.52nmol·L-1、238.07±91.52nmol·L-1、101.71±11.89nmol·L-1、187.44±62.36nmol·L-1、167.99±16.38nmol·L-1和70.61±20.91nmol·L-1,均具有较高的亲和力,其中截断后的ap1-1与ATP具有最高的亲和力。According to the equation: y=Bmax×free ssDNA/(K d +free ssDNA), the K d value of each aptamer sequence can be analyzed. In the equation, y represents the proportion of ATP bound by the nucleic acid aptamer to the total ATP, that is, the degree of saturation; Bmax represents the number of maximum binding sites, and free ssDNA represents the concentration of free ssDNA that is not bound to ATP. The fitting curve is shown in Figure 2. The measured K d values of ap1, ap3, ap4, ap7, ap9 and ap1-1 are 81.66±10.52nmol·L -1 , 238.07±91.52nmol·L -1 and 101.71± respectively. 11.89nmol·L -1 , 187.44±62.36nmol·L -1 , 167.99±16.38nmol·L -1 and 70.61±20.91nmol·L -1 , all have high affinity, among which the truncated ap1-1 has high affinity with ATP. Has the highest affinity.
所述ap1、ap3、ap4、ap7、ap9或ap1-1的序列分别为:The sequences of ap1, ap3, ap4, ap7, ap9 or ap1-1 are respectively:
ap1:ap1:
5′-TAGGGAATTCGTCGACGGATCCCGTGGCGTCTGCAACGGAAAAGAATTTATCTTGTCCTGCAGGTCGACGCATGCGCCG-3′5′-TAGGGAATTCGTCGACGGATCCCGTGGCGTCTGCAACGGAAAAGAATTTATCTTGTCCTGCAGGTCGACGCATGCGCCG-3′
ap3:ap3:
5′-TAGGGAATTCGTCGACGGATCCCGAAGGACAGAAAGATACATCTGATGACGATTACACTGCAGGTCGACGCATGCGCCG-3′5′-TAGGGAATTCGTCGACGGATCCCGAAGGACAGAAAGATACATCTGATGACGATTACACTGCAGGTCGACGCATGCGCCG-3′
ap4:ap4:
5′-TAGGGAATTCGTCGACGGATCCTACCCGTTGCTGCAGGATCCTGAGATCGCCTCTGTCTGCAGGTCGACGCATGCGCCG-3′5′-TAGGGAATTCGTCGACGGATCCTACCCGTTGCTGCAGGATCCTGAGATCGCCTCTGTCTGCAGGTCGACGCATGCGCCG-3′
ap7:ap7:
5′-TAGGGAATTCGTCGACGGATCCATCCCCACGACGGTCAAGGCCGCGTGCCGGTAGGGCTGCAGGTCGACGCATGCGCCG-3′5′-TAGGGAATTCGTCGACGGATCCATCCCCACGACGTCAAGGCCGCGTGCCGTAGGGCTGCAGGTCGACGCATGCGCCG-3′
ap9:ap9:
5′-TAGGGAATTCGTCGACGGATCCAAAAGCGTCTGCTGTGACGGGACAAAACCGGTGCTCTGCAGGTCGACGCATGCGCCG-3′5′-TAGGGAATTCGTCGACGGATCCAAAAGCGTCTGCTGTGACGGGACAAAACCGGTGCTCTGCAGGTCGACGCATGCGCCG-3′
ap1-1:5′-TGGCGTCTGCATGCAGGTCGACGCATGCGCCG-3′ap1-1:5′-TGGCGTCTGCATGCAGGTCGACGCATGCGCCG-3′
实施例5:荧光法验证ap1-1的特异性Example 5: Fluorescence method to verify the specificity of apl-1
向荧光基团6-羧基荧光素(FAM)修饰的相同浓度的适配体中加入200μL结合缓冲液,95℃变性10min,迅速冰浴10min。再加入1μL 100mmol·L-1的ATP、ADP与AMP溶液,轻微震荡,室温反应1h 40min后,再加入氧化石墨烯,室温条件下孵育40min,将混合液以12000rpm离心12min,取上清。最后将全部上清液加入到96孔板中用酶标仪测其荧光强度。与文献报道的27nt的经典ATP适配体相比,ap1-1能明显区分ATP、ADP与AMP(图3);其中,文献是指Huizenga,D.E.;Szostak,J.W.A DNA aptamer that binds adenosineandATP.Biochemistry 1995,34,656-665,10.1021/bi00002a033.Add 200 μL of binding buffer to the aptamer modified with the fluorescent group 6-carboxyfluorescein (FAM) at the same concentration, denature at 95°C for 10 min, and quickly incubate on ice for 10 min. Then add 1 μL of 100 mmol·L -1 ATP, ADP and AMP solution, shake slightly, react at room temperature for 1 h and 40 min, then add graphene oxide, incubate at room temperature for 40 min, centrifuge the mixture at 12000 rpm for 12 min, and take the supernatant. Finally, all the supernatant was added to a 96-well plate and its fluorescence intensity was measured with a microplate reader. Compared with the 27nt classic ATP aptamer reported in the literature, ap1-1 can clearly distinguish ATP, ADP and AMP (Figure 3); among them, the literature refers to Huizenga, DE; Szostak, JWA DNA aptamer that binds adenosineandATP. Biochemistry 1995 ,34,656-665,10.1021/bi00002a033.
实施例6:构建荧光适配体生物传感器检测ATP标准品Example 6: Construction of fluorescent aptamer biosensor to detect ATP standard
该传感器引入链置换扩增技术,实现了信号的有效放大,当有ATP存在时,ATP能竞争性的将模板DNA从氧化石墨烯上结合下来,模板DNA与引物杂交后,诱导链置换扩增反应的发生,进而打开分子信标,荧光强度增加。ATP不存在时,适配体将被氧化石墨烯吸附,无法进行后续步骤。取2μL 100μmol·L-1的模板DNA与结合缓冲液混合,于95℃加热10min后迅速冰浴10min。加入5μL GO溶液,混匀后,于25℃摇晃孵育40min。随后,加入不同浓度的ATP溶液,继续25℃摇晃孵育1h 40min。将孵育后的混合溶液于12000rpm,离心15min后,回收上清液。取5μL上清液与3μmol·L-1引物、5U Bsm DNA聚合酶、8UNb.bpu10I核酸内切酶、1×Buffer R和250μmol·L-1dNTP混合,总体系为30μL。将体系混匀,于37℃孵育90min后,80℃孵育20min使酶失活。最后,将1μL 100μmol·L-1分子信标加入25μL上述链置换扩增产物中,并加缓冲液补足体系为100μL。将混合溶液置于金属浴95℃变性5min后,于25℃孵育1h30min。使用多功能酶标仪测定激发波长488nm,发射波长为525nm下的荧光强度。当ATP浓度在0.1μmol·L-1和25μmol·L-1之间时,荧光强度与ATP浓度之间呈良好的线性关系。线性回归方程为y=102.34x+3188.89(R2=0.9958),其中x表示ATP的浓度(μmol·L-1),y表示荧光强度。该传感器的检测限为33.85nmol·L-1(图4)。The sensor introduces strand displacement amplification technology to achieve effective signal amplification. When ATP is present, ATP can competitively bind the template DNA from graphene oxide. After the template DNA hybridizes with the primer, strand displacement amplification is induced. The reaction occurs, which in turn turns on the molecular beacon, and the fluorescence intensity increases. In the absence of ATP, the aptamer will be adsorbed by graphene oxide and cannot proceed to subsequent steps. Mix 2 μL of 100 μmol·L -1 template DNA with the binding buffer, heat at 95°C for 10 min, and then quickly ice bath for 10 min. Add 5 μL of GO solution, mix well, and incubate with shaking at 25°C for 40 min. Subsequently, ATP solutions of different concentrations were added, and the incubation was continued with shaking at 25°C for 1 h and 40 min. Centrifuge the incubated mixed solution at 12,000 rpm for 15 min, and recover the supernatant. Take 5 μL of the supernatant and mix it with 3 μmol·L -1 primer, 5U Bsm DNA polymerase, 8UNb.bpu10I endonuclease, 1×Buffer R and 250 μmol·L -1 dNTP. The total system is 30 μL. Mix the system, incubate at 37°C for 90 minutes, and then incubate at 80°C for 20 minutes to inactivate the enzyme. Finally, add 1 μL of 100 μmol·L -1 molecular beacon to 25 μL of the above strand displacement amplification product, and add buffer to make up the system to 100 μL. Place the mixed solution in a metal bath for denaturation at 95°C for 5 minutes, and then incubate at 25°C for 1 hour and 30 minutes. use The multifunctional microplate reader measures the fluorescence intensity at an excitation wavelength of 488nm and an emission wavelength of 525nm. When the ATP concentration is between 0.1 μmol·L -1 and 25 μmol·L -1 , there is a good linear relationship between fluorescence intensity and ATP concentration. The linear regression equation is y=102.34x+3188.89 (R 2 =0.9958), where x represents the concentration of ATP (μmol·L -1 ) and y represents the fluorescence intensity. The detection limit of this sensor is 33.85 nmol·L -1 (Figure 4).
实施例7:荧光适配体生物传感器的特异性验证Example 7: Specificity verification of fluorescent aptamer biosensor
为了验证荧光适配体生物传感器的特异性,应用ATP类似物包括ADP、AMP、GTP、UTP、CTP作为对照组,实验方法参照实施例6。如图5所示,在最佳检测条件下,ATP存在时的相对荧光强度明显高于其他对照组。因此,构建的荧光适配体传感器对ATP具有较高的特异性。In order to verify the specificity of the fluorescent aptamer biosensor, ATP analogues including ADP, AMP, GTP, UTP, and CTP were used as control groups. The experimental method was as described in Example 6. As shown in Figure 5, under optimal detection conditions, the relative fluorescence intensity in the presence of ATP was significantly higher than that of other control groups. Therefore, the constructed fluorescent aptamer sensor has high specificity for ATP.
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above-mentioned embodiments are only examples for clear explanation and are not intended to limit the implementation. For those of ordinary skill in the art, other changes or modifications may be made based on the above description. An exhaustive list of all implementations is neither necessary nor possible. The obvious changes or modifications derived therefrom are still within the protection scope of the present invention.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 江南大学<110> Jiangnan University
<120> 特异性识别ATP的单链DNA适配体序列及其应用<120> Single-stranded DNA aptamer sequence that specifically recognizes ATP and its application
<130> 6<130> 6
<160> 6<160> 6
<170> PatentIn version 3.3<170>PatentIn version 3.3
<210> 1<210> 1
<211> 79<211> 79
<212> DNA<212> DNA
<213> (人工合成)<213> (artificial synthesis)
<400> 1<400> 1
tagggaattc gtcgacggat cccgtggcgt ctgcaacgga aaagaattta tcttgtcctg 60tagggaattc gtcgacggat cccgtggcgt ctgcaacgga aaagaattta tcttgtcctg 60
caggtcgacg catgcgccg 79caggtcgacg catgcgccg 79
<210> 2<210> 2
<211> 79<211> 79
<212> DNA<212> DNA
<213> (人工合成)<213> (artificial synthesis)
<400> 2<400> 2
tagggaattc gtcgacggat cccgaaggac agaaagatac atctgatgac gattacactg 60tagggaattc gtcgacggat cccgaaggac agaaagatac atctgatgac gattacactg 60
caggtcgacg catgcgccg 79caggtcgacg catgcgccg 79
<210> 3<210> 3
<211> 79<211> 79
<212> DNA<212> DNA
<213> (人工合成)<213> (artificial synthesis)
<400> 3<400> 3
tagggaattc gtcgacggat cctacccgtt gctgcaggat cctgagatcg cctctgtctg 60tagggaattc gtcgacggat cctacccgtt gctgcaggat cctgagatcg cctctgtctg 60
caggtcgacg catgcgccg 79caggtcgacg catgcgccg 79
<210> 4<210> 4
<211> 79<211> 79
<212> DNA<212> DNA
<213> (人工合成)<213> (artificial synthesis)
<400> 4<400> 4
tagggaattc gtcgacggat ccatccccac gacggtcaag gccgcgtgcc ggtagggctg 60tagggaattc gtcgacggat ccatccccac gacggtcaag gccgcgtgcc ggtagggctg 60
caggtcgacg catgcgccg 79caggtcgacg catgcgccg 79
<210> 5<210> 5
<211> 79<211> 79
<212> DNA<212> DNA
<213> (人工合成)<213> (artificial synthesis)
<400> 5<400> 5
tagggaattc gtcgacggat ccaaaagcgt ctgctgtgac gggacaaaac cggtgctctg 60tagggaattc gtcgacggat ccaaaagcgt ctgctgtgac gggacaaac cggtgctctg 60
caggtcgacg catgcgccg 79caggtcgacg catgcgccg 79
<210> 6<210> 6
<211> 32<211> 32
<212> DNA<212> DNA
<213> (人工合成)<213> (artificial synthesis)
<400> 6<400> 6
tggcgtctgc atgcaggtcg acgcatgcgc cg 32tggcgtctgc atgcaggtcg acgcatgcgc cg 32
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210142316.9A CN114621958B (en) | 2022-02-16 | 2022-02-16 | Single-stranded DNA aptamer sequence for specifically recognizing ATP and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210142316.9A CN114621958B (en) | 2022-02-16 | 2022-02-16 | Single-stranded DNA aptamer sequence for specifically recognizing ATP and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114621958A CN114621958A (en) | 2022-06-14 |
CN114621958B true CN114621958B (en) | 2023-09-22 |
Family
ID=81897908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210142316.9A Active CN114621958B (en) | 2022-02-16 | 2022-02-16 | Single-stranded DNA aptamer sequence for specifically recognizing ATP and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114621958B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117487813B (en) * | 2023-12-19 | 2024-06-07 | 江南大学 | Single-stranded DNA aptamer sequence for specifically recognizing azithromycin and application thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102191250A (en) * | 2010-03-19 | 2011-09-21 | 中国人民解放军军事医学科学院毒物药物研究所 | DNA (Desoxyribonucleic Acid) ligand for specific binding with EPO (erythropoietin), preparation method thereof and application thereof |
CN107349176A (en) * | 2017-06-15 | 2017-11-17 | 中国药科大学 | A kind of nanogel of ATP response types release medicine and preparation method thereof |
CN110118761A (en) * | 2019-05-14 | 2019-08-13 | 中国矿业大学 | A kind of signal enhancing type human serum ATP fluorescent optical sensor |
CN110684773A (en) * | 2019-11-05 | 2020-01-14 | 江南大学 | ssDNA aptamer for specifically recognizing metronidazole and application thereof |
CN112557646A (en) * | 2021-01-21 | 2021-03-26 | 天津工业大学 | Fluorescent adenosine triphosphate sensor based on circulation of aptamer and enzymatic target |
CN113151283A (en) * | 2021-02-24 | 2021-07-23 | 江南大学 | ssDNA aptamer for specifically recognizing N-acetylneuraminic acid and application thereof |
-
2022
- 2022-02-16 CN CN202210142316.9A patent/CN114621958B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102191250A (en) * | 2010-03-19 | 2011-09-21 | 中国人民解放军军事医学科学院毒物药物研究所 | DNA (Desoxyribonucleic Acid) ligand for specific binding with EPO (erythropoietin), preparation method thereof and application thereof |
CN107349176A (en) * | 2017-06-15 | 2017-11-17 | 中国药科大学 | A kind of nanogel of ATP response types release medicine and preparation method thereof |
CN110118761A (en) * | 2019-05-14 | 2019-08-13 | 中国矿业大学 | A kind of signal enhancing type human serum ATP fluorescent optical sensor |
CN110684773A (en) * | 2019-11-05 | 2020-01-14 | 江南大学 | ssDNA aptamer for specifically recognizing metronidazole and application thereof |
CN112557646A (en) * | 2021-01-21 | 2021-03-26 | 天津工业大学 | Fluorescent adenosine triphosphate sensor based on circulation of aptamer and enzymatic target |
CN113151283A (en) * | 2021-02-24 | 2021-07-23 | 江南大学 | ssDNA aptamer for specifically recognizing N-acetylneuraminic acid and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114621958A (en) | 2022-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lauridsen et al. | A capture-SELEX strategy for multiplexed selection of RNA aptamers against small molecules | |
CN107760686B (en) | Aptamer of DKK-1 protein and application thereof | |
JP2012198225A (en) | Method for detecting target molecule | |
CN112779260B (en) | Aptamer of flavin mononucleotide, screening method and application thereof | |
CN101809164B (en) | Methods for detecting a target nucleotide sequence in a sample utilising a nuclease-aptamer complex | |
CN110684773B (en) | ssDNA aptamer specifically recognizing metronidazole and its application | |
CN111073892A (en) | A nucleic acid aptamer for recognizing grouper iridovirus-infected cells and its construction method and application | |
CN111662900A (en) | Sulfamethazine aptamer screening method, kit and application | |
EP2616557B1 (en) | Capture based nucleic acid detection | |
CN114621958B (en) | Single-stranded DNA aptamer sequence for specifically recognizing ATP and application thereof | |
CN110643611A (en) | A kind of nucleic acid aptamer and its construction method and its application in detecting grouper iridovirus | |
JP2019537443A (en) | Collective quantification of target proteins using next-generation sequencing and its applications | |
CN117487813B (en) | Single-stranded DNA aptamer sequence for specifically recognizing azithromycin and application thereof | |
CN114807147B (en) | Nucleic acid aptamer of aflatoxin B1 and its application | |
CN102732523A (en) | Aptamer for identifying zeatin through specifity, and screening method and application of aptamer | |
KR100828936B1 (en) | Biomolecule analysis method using single-stranded nucleic acid aptamer and gold-nanoparticles | |
CN111349631B (en) | Aptamer specifically binding to fintoxin-1 and its application | |
CN111363749B (en) | A nucleic acid aptamer for detecting Chinese soft-shelled turtle iridescent virus and its construction method and application | |
CN111454956B (en) | Nucleic acid aptamer for Chinese soft-shelled turtle iridovirus as well as construction method and application thereof | |
CN115838729B (en) | Aptamer AS2-3 of human thrombin protein, and screening method and application thereof | |
CN109897856B (en) | A set of oligonucleotide aptamers that specifically recognize spermine | |
CN112143732A (en) | ssDNA aptamer for specifically recognizing N-cadherin, and screening method and application thereof | |
KR100730359B1 (en) | Single-stranded nucleic acid aptamer specifically binding to food poisoning bacteria | |
EP3519571B1 (en) | Compositions, methods and systems for identifying candidate nucleic acid agent | |
WO2009113564A1 (en) | Luciferase-binding aptamer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |