CN111430788A - Composite solid electrolyte membrane, preparation method and solid lithium battery - Google Patents
Composite solid electrolyte membrane, preparation method and solid lithium battery Download PDFInfo
- Publication number
- CN111430788A CN111430788A CN202010275816.0A CN202010275816A CN111430788A CN 111430788 A CN111430788 A CN 111430788A CN 202010275816 A CN202010275816 A CN 202010275816A CN 111430788 A CN111430788 A CN 111430788A
- Authority
- CN
- China
- Prior art keywords
- solid
- lithium
- organic
- composite
- inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 95
- 239000012528 membrane Substances 0.000 title claims abstract description 88
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 57
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 239000007787 solid Substances 0.000 title claims description 11
- 239000011248 coating agent Substances 0.000 claims abstract description 35
- 238000000576 coating method Methods 0.000 claims abstract description 35
- 239000003792 electrolyte Substances 0.000 claims abstract description 34
- 229910003480 inorganic solid Inorganic materials 0.000 claims abstract description 23
- 229920000620 organic polymer Polymers 0.000 claims abstract description 21
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 18
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 18
- -1 polypropylene carbonate Polymers 0.000 claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 13
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims abstract description 10
- 229920000379 polypropylene carbonate Polymers 0.000 claims abstract description 6
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 5
- 239000004417 polycarbonate Substances 0.000 claims abstract description 5
- 239000002002 slurry Substances 0.000 claims description 30
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 18
- 239000002033 PVDF binder Substances 0.000 claims description 18
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 10
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 9
- 239000007774 positive electrode material Substances 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000002227 LISICON Substances 0.000 claims description 3
- 239000002228 NASICON Substances 0.000 claims description 3
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 claims description 3
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000002223 garnet Substances 0.000 claims description 3
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 claims description 3
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 3
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims description 3
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 claims description 3
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical group [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 229920000166 polytrimethylene carbonate Polymers 0.000 claims description 3
- GGOVLNOXFVYTPN-UHFFFAOYSA-M C(C(=O)O)(=O)[O-].B(O)(F)F.[Li+] Chemical compound C(C(=O)O)(=O)[O-].B(O)(F)F.[Li+] GGOVLNOXFVYTPN-UHFFFAOYSA-M 0.000 claims description 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims 1
- 150000002148 esters Chemical class 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 9
- 238000013461 design Methods 0.000 abstract description 3
- 229920000915 polyvinyl chloride Polymers 0.000 abstract description 3
- 239000004800 polyvinyl chloride Substances 0.000 abstract description 3
- 125000005911 methyl carbonate group Chemical class 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 14
- 239000011267 electrode slurry Substances 0.000 description 8
- 239000005518 polymer electrolyte Substances 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 239000006258 conductive agent Substances 0.000 description 5
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 5
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000011149 active material Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910013075 LiBF Inorganic materials 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000010669 acid-base reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种复合固态电解质膜、制备方法及固态锂电池,复合固态电解质膜包含:支撑膜、涂覆在支撑膜的正极侧表面的有机无机复合涂层A、以及涂覆在支撑膜的负极侧表面的有机无机复合涂层B;涂层A包含有机聚合物A、锂盐、纳米无机固态电解质,有机聚合物A为聚偏氟乙烯、聚偏氟乙烯类共聚物、聚丙烯腈、聚氯乙烯中的一种或两种以上;涂层B包含有机聚合物B、锂盐、纳米无机固态电解质;有机聚合物B为聚氧化乙烯、聚碳酸丙烯酯、聚碳酸酯、聚三亚甲基碳酸酯中的一种或两种以上。本发明针对固态锂电池中正负极层对电解质膜的不同需求,以氧化石墨烯膜作为支撑,分别在其两侧设计含不同聚合物基团的电解质膜,进一步了提高电池的综合性能。
The invention discloses a composite solid-state electrolyte membrane, a preparation method and a solid-state lithium battery. The composite solid-state electrolyte membrane comprises: a supporting membrane, an organic-inorganic composite coating A coated on the positive side surface of the supporting membrane, and a coating on the supporting membrane The organic-inorganic composite coating B on the negative side surface of , one or more of polyvinyl chloride; coating B contains organic polymer B, lithium salt, nano-inorganic solid electrolyte; organic polymer B is polyethylene oxide, polypropylene carbonate, polycarbonate, polysanya One or more of methyl carbonates. Aiming at the different requirements of the positive and negative electrode layers for the electrolyte membrane in the solid-state lithium battery, the present invention uses the graphene oxide membrane as a support, and designs electrolyte membranes containing different polymer groups on both sides of the graphene oxide membrane, thereby further improving the comprehensive performance of the battery.
Description
技术领域technical field
本发明涉及固态锂电池技术领域,具体涉及一种复合固态电解质膜、制备方法及固态锂电池。The invention relates to the technical field of solid-state lithium batteries, in particular to a composite solid-state electrolyte membrane, a preparation method and a solid-state lithium battery.
背景技术Background technique
锂离子电池已经广泛地应用于国民经济的诸多方面。然而,随着消费电子产品和电动汽车对锂离子电池能量密度和安全性能要求的不断提升,开发兼顾两者性能的高性能锂离子电池迫在眉睫。然而,传统液态锂离子电池由于采用液态电解液,存在易泄漏、易挥发、易燃烧等安全隐患,安全性有待进一步提高。与此同时,液态锂电池的能量密度已经接近其上限。因此尽快实现从液态锂离子电池到全固态锂电池的转变,是解决电池安全性能和能量密度的重要途径。研发高性能全固态电解质成为科研界和产业界共同关注的焦点。全固态电解质分为无机全固态电解质和全固态聚合物电解质两大类。无机全固态电解质在较宽温度范围内能保持化学稳定性,并且机械强度更好,室温离子电导率更高,但其脆性较大,加工性能不好。相比较而言,固态聚合物电解质离子电导率偏低,但其成型容易,更适宜大规模生产,因此发展前景更好。Lithium-ion batteries have been widely used in many aspects of the national economy. However, with the continuous improvement of the energy density and safety performance requirements of lithium-ion batteries in consumer electronics and electric vehicles, it is urgent to develop high-performance lithium-ion batteries that take into account both performances. However, traditional liquid lithium-ion batteries have potential safety hazards such as easy leakage, volatility, and combustion due to the use of liquid electrolytes, and the safety needs to be further improved. Meanwhile, the energy density of liquid lithium batteries is approaching its upper limit. Therefore, realizing the transition from liquid lithium-ion batteries to all-solid-state lithium batteries as soon as possible is an important way to solve battery safety performance and energy density. The development of high-performance all-solid-state electrolytes has become the focus of both scientific research and industry. All-solid-state electrolytes are divided into two categories: inorganic all-solid-state electrolytes and all-solid-state polymer electrolytes. Inorganic all-solid-state electrolytes can maintain chemical stability in a wide temperature range, and have better mechanical strength and higher ionic conductivity at room temperature, but they are more brittle and have poor processability. In comparison, solid polymer electrolytes have low ionic conductivity, but they are easy to form and more suitable for mass production, so they have better development prospects.
根据聚合物基体的基团,聚合物电解质可以分为聚氧化乙烯、聚酯基类、聚偏氟乙烯类、聚丙烯腈类等聚合物。聚氧化乙烯聚合物电解质的结构有利于离子快速的迁移、电化学稳定性高、对众多锂盐有优良的溶剂化能力,但其室温离子电导率低。聚碳酸酯类聚合物具有良好的室温离子电导率、界面相容性和化学稳定性,但是机械性能不佳。聚偏氟乙烯类和聚丙烯腈类聚合物有较宽的电化学窗口和较高的室温离子电导率,但与锂的界面兼容性差。由此可以看出,目前固态聚合物电解质面临的主要问题是室温离子电导率低(普遍低于10-4S/cm)、界面阻抗大、机械强度不高。According to the groups of the polymer matrix, polymer electrolytes can be divided into polyethylene oxide, polyester-based, polyvinylidene fluoride, polyacrylonitrile and other polymers. The structure of polyethylene oxide polymer electrolyte is conducive to the rapid migration of ions, high electrochemical stability, and excellent solvation ability for many lithium salts, but its room temperature ionic conductivity is low. Polycarbonate polymers have good room temperature ionic conductivity, interfacial compatibility and chemical stability, but poor mechanical properties. Polyvinylidene fluoride and polyacrylonitrile polymers have wide electrochemical windows and high room temperature ionic conductivity, but have poor interfacial compatibility with lithium. It can be seen from this that the main problems facing solid polymer electrolytes are low ionic conductivity at room temperature (generally lower than 10 -4 S/cm), high interface impedance and low mechanical strength.
因此,需要对聚合物固态电解质进行改性复合,对其结构进行设计及优化,使固态电解质膜同时具备良好的离子电导率、界面兼容性、化学稳定性及机械性能,适应固态电池的发展需求,进一步研制出综合性能优异的固态锂电池。Therefore, it is necessary to modify and compound the polymer solid electrolyte, design and optimize its structure, so that the solid electrolyte membrane has good ionic conductivity, interface compatibility, chemical stability and mechanical properties at the same time to meet the development needs of solid-state batteries. , and further developed a solid-state lithium battery with excellent comprehensive performance.
发明内容SUMMARY OF THE INVENTION
鉴于此,本发明的第一个目的是在于提供一种同时具备良好的离子电导率、界面兼容性、热稳定性及机械性能的复合固态电解质膜及其制备方法,解决现有固态聚合物电解质膜的缺陷;本发明的第二个目的是在于提供一种包含上述复合固态电解质膜的固态锂电池,有效提高固态锂电池的循环稳定性、倍率性能及热稳定性能。In view of this, the first object of the present invention is to provide a composite solid electrolyte membrane and a preparation method thereof with good ionic conductivity, interface compatibility, thermal stability and mechanical properties at the same time, so as to solve the problem of existing solid polymer electrolytes. The defects of the membrane; the second purpose of the present invention is to provide a solid-state lithium battery comprising the above-mentioned composite solid-state electrolyte membrane, which can effectively improve the cycle stability, rate performance and thermal stability performance of the solid-state lithium battery.
为了达到上述目的,本发明提供了一种复合固态电解质膜,其包含:支撑膜、涂覆在所述的支撑膜的正极侧表面的有机无机复合涂层A、以及涂覆在所述的支撑膜的负极侧表面的有机无机复合涂层B;其中,所述的有机无机复合涂层A包含:有机聚合物A、锂盐、纳米无机固态电解质,所述的有机聚合物A为聚偏氟乙烯、聚偏氟乙烯类共聚物、聚丙烯腈、聚氯乙烯中的一种或两种以上;所述的有机无机复合涂层B包含:有机聚合物B、锂盐、纳米无机固态电解质;所述的有机聚合物B为聚氧化乙烯、聚碳酸丙烯酯、聚碳酸酯、聚三亚甲基碳酸酯中的一种或两种以上。In order to achieve the above object, the present invention provides a composite solid electrolyte membrane, which comprises: a support membrane, an organic-inorganic composite coating A coated on the positive electrode side surface of the support membrane, and a coating on the support membrane The organic-inorganic composite coating B on the negative side surface of the membrane; wherein, the organic-inorganic composite coating A comprises: an organic polymer A, a lithium salt, and a nano-inorganic solid electrolyte, and the organic polymer A is polyvinylidene fluoride One or more of ethylene, polyvinylidene fluoride copolymer, polyacrylonitrile, and polyvinyl chloride; the organic-inorganic composite coating B includes: organic polymer B, lithium salt, and nano-inorganic solid electrolyte; The organic polymer B is one or more of polyethylene oxide, polypropylene carbonate, polycarbonate and polytrimethylene carbonate.
较佳地,所述的支撑膜为氧化石墨烯膜。Preferably, the support film is a graphene oxide film.
较佳地,所述的支撑膜的厚度为10~50μm。Preferably, the thickness of the support film is 10-50 μm.
较佳地,所述的有机无机复合涂层A的厚度为30~100μm,所述的有机无机复合涂层B的厚度为30~100μm。Preferably, the thickness of the organic-inorganic composite coating A is 30-100 μm, and the thickness of the organic-inorganic composite coating B is 30-100 μm.
较佳地,所述的锂盐包含:双三氟甲基亚胺锂、双氟磺酰亚胺锂、高氯酸锂、六氟磷酸锂、四氟硼酸锂、二草酸硼酸锂草酸二氟硼酸锂、二氟磷酸锂中的一种或两种以上。Preferably, the lithium salt comprises: lithium bistrifluoromethylimide, lithium bisfluorosulfonimide, lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium bisoxalatoborate, lithium oxalatedifluoroborate, One or more of lithium difluorophosphates.
较佳地,所述的纳米无机固态电解质为NASICON型无机固态电解质、石榴石型固态电解质及LISICON型无机固态电解质中的一种。Preferably, the nano inorganic solid electrolyte is one of NASICON type inorganic solid electrolyte, garnet type solid electrolyte and LISICON type inorganic solid electrolyte.
本发明还提供了上述的复合固态电解质膜的制备方法,其包含以下步骤:The present invention also provides the above-mentioned preparation method of the composite solid electrolyte membrane, which comprises the following steps:
步骤1:将有机聚合物A、锂盐、纳米无机固态电解质和溶剂混合得到有机无机复合浆料A,浆料固含量为2~8%;Step 1: mixing organic polymer A, lithium salt, nano-inorganic solid electrolyte and solvent to obtain organic-inorganic composite slurry A, the solid content of the slurry is 2-8%;
步骤2:将有机聚合物B、锂盐、纳米无机固态电解质和溶剂混合得到有机无机复合浆料B,浆料固含量为2~8%;Step 2: mixing organic polymer B, lithium salt, nano-inorganic solid electrolyte and solvent to obtain organic-inorganic composite slurry B, the solid content of the slurry is 2-8%;
步骤3:将所述的有机无机复合浆料A和所述的有机无机复合浆料B分别涂覆于支撑膜的两侧,干燥后得到复合固态电解质膜。Step 3: The organic-inorganic composite slurry A and the organic-inorganic composite slurry B are respectively coated on both sides of the support membrane, and a composite solid-state electrolyte membrane is obtained after drying.
较佳地,所述的溶剂为乙腈、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、丙酮中的一种或两种以上的混合物。Preferably, the solvent is one or a mixture of two or more selected from acetonitrile, N,N-dimethylformamide, N-methylpyrrolidone and acetone.
本发明还提供了一种固态锂电池,其包含:上述的复合固态电解质膜。The present invention also provides a solid-state lithium battery, comprising: the above-mentioned composite solid-state electrolyte membrane.
较佳地,该电池的正极层中的正极活性材料为钴酸锂、锰酸锂、磷酸铁锂、镍钴锰三元材料和镍钴铝三元材料中的一种。Preferably, the positive electrode active material in the positive electrode layer of the battery is one of lithium cobalt oxide, lithium manganate, lithium iron phosphate, nickel-cobalt-manganese ternary material and nickel-cobalt-aluminum ternary material.
相比现有技术,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
(1)本发明提供的复合固态电解质膜具有类似于三明治的结构,采用氧化石墨烯膜作为支撑膜,具有以下三点优势:(1) The composite solid-state electrolyte membrane provided by the present invention has a structure similar to a sandwich, and adopts a graphene oxide film as a supporting film, which has the following three advantages:
①增加固态电解质膜的机械性能;①Increase the mechanical properties of the solid electrolyte membrane;
②将复合涂层涂覆于氧化石墨烯膜的表面,氧化石墨烯上富集的官能团可以干扰聚合物链的重组并通过路易斯酸碱反应与聚合物的极性基团相互作用,带来更高的离子电导率;② Coating the composite coating on the surface of the graphene oxide film, the enriched functional groups on graphene oxide can interfere with the reorganization of the polymer chain and interact with the polar groups of the polymer through Lewis acid-base reaction, bringing about more high ionic conductivity;
③氧化石墨烯上的共价氧官能团与极性溶剂有优异的相容性,氧化石墨烯的存在一方面可以改善有机聚合物、锂盐、纳米无机固态电解质与溶剂的相容性,更加利于成膜,另一方面有利于稳定有机无机复合聚合物膜所形成的骨架,维持其原始孔结构,提高固态电解质膜的电化学稳定性及热稳定性。③ The covalent oxygen functional groups on graphene oxide have excellent compatibility with polar solvents. On the one hand, the existence of graphene oxide can improve the compatibility of organic polymers, lithium salts, nano-inorganic solid electrolytes and solvents, which is more conducive to Film formation, on the other hand, is beneficial to stabilize the skeleton formed by the organic-inorganic composite polymer film, maintain its original pore structure, and improve the electrochemical stability and thermal stability of the solid electrolyte membrane.
(2)本发明提供的固态锂电池中,复合固态电解质膜靠近正极层一侧的涂层中主要含有聚偏氟乙烯类、聚丙烯腈类聚合物,其可以带来较高的离子电导率和较宽的电化学窗口,适用于各类甚至高压正极材料,从而提高固态电池活性物质的容量发挥及倍率性能;靠近锂负极层一侧的涂层中主要含有聚偏氟乙烯类、聚丙烯腈类聚合物,具有较好的界面相容性,对锂稳定,从而提高固态电池的循环稳定性。(2) In the solid-state lithium battery provided by the present invention, the coating on the side of the composite solid-state electrolyte membrane near the positive electrode layer mainly contains polyvinylidene fluoride and polyacrylonitrile polymers, which can bring higher ionic conductivity and a wide electrochemical window, suitable for all kinds of even high-voltage cathode materials, thereby improving the capacity and rate performance of solid-state battery active materials; the coating near the lithium anode layer mainly contains polyvinylidene fluoride, polypropylene Nitrile polymers have good interfacial compatibility and are stable to lithium, thereby improving the cycle stability of solid-state batteries.
附图说明Description of drawings
图1为本发明固态锂电池的结构示意图。FIG. 1 is a schematic structural diagram of a solid-state lithium battery of the present invention.
图2为本发明实施例1所制备的复合固态电解质膜的SEM图。FIG. 2 is a SEM image of the composite solid electrolyte membrane prepared in Example 1 of the present invention.
图3为本发明实施例1所制备的复合固态电解质膜和单层电解质膜在室温下的离子电导率测试阻抗对比图。FIG. 3 is a comparison diagram of the ionic conductivity test impedance of the composite solid electrolyte membrane and the single-layer electrolyte membrane prepared in Example 1 of the present invention at room temperature.
图4为本发明实施例3所制备的锂固态电池的循环性能曲线。4 is a cycle performance curve of the lithium solid-state battery prepared in Example 3 of the present invention.
图5为本发明实施例3所制备的锂固态电池的倍率性能曲线。FIG. 5 is a rate performance curve of the lithium solid-state battery prepared in Example 3 of the present invention.
具体实施方式Detailed ways
以下结合附图和实施例对本发明的技术方案做进一步的说明。The technical solutions of the present invention will be further described below with reference to the accompanying drawings and embodiments.
如图1所示,为本发明提供的一种固态锂电池的截面示意图,该电池主体由正极层1、复合固态电解质膜2及金属锂3依次堆叠形成。所述的复合固态电解质膜2包括:支撑膜22、在支撑膜22靠近正极层1一侧涂覆的有机无机复合涂层A21及靠近负极(靠近金属锂3)一侧涂覆的有机无机复合涂层B23。所述的有机无机复合涂层A21中包含有机聚合物A、锂盐、纳米无机固态电解质,所述的有机无机复合涂层B23中包含有机聚合物B、锂盐、纳米无机固态电解质。As shown in FIG. 1 , which is a schematic cross-sectional view of a solid-state lithium battery provided by the present invention, the battery body is formed by stacking a
所述的有机聚合物A为聚偏氟乙烯、聚偏氟乙烯类共聚物、聚丙烯腈、聚氯乙烯中的一种或多种。The organic polymer A is one or more of polyvinylidene fluoride, polyvinylidene fluoride copolymer, polyacrylonitrile, and polyvinyl chloride.
所述的有机聚合物B为聚氧化乙烯、聚碳酸丙烯酯、聚碳酸酯、聚三亚甲基碳酸酯中的一种或多种。The organic polymer B is one or more of polyethylene oxide, polypropylene carbonate, polycarbonate and polytrimethylene carbonate.
所述的支撑膜为氧化石墨烯膜。The support film is a graphene oxide film.
所述支撑膜的厚度为10~50μm,涂层A的厚度为30~100μm,涂层B的厚度为30~100μm。The thickness of the support film is 10-50 μm, the thickness of the coating layer A is 30-100 μm, and the thickness of the coating layer B is 30-100 μm.
所述的锂盐为双三氟甲基亚胺锂(LiTFSI)、双氟磺酰亚胺锂(LiFSI)、高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、二草酸硼酸锂(LiBOB)、草酸二氟硼酸锂(LiDFOB)、二氟磷酸锂(LiPF2O2)中的一种或多种。The lithium salt is lithium bistrifluoromethylimide (LiTFSI), lithium bisfluorosulfonimide (LiFSI), lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF ) 4 ), one or more of lithium dioxalate borate (LiBOB), lithium difluoroborate oxalate (LiDFOB), and lithium difluorophosphate (LiPF 2 O 2 ).
所述的纳米无机固态电解质为NASICON型无机固态电解质、石榴石型固态电解质及LISICON型无机固态电解质中的一种。The nano inorganic solid electrolyte is one of NASICON type inorganic solid electrolyte, garnet type solid electrolyte and LISICON type inorganic solid electrolyte.
正极层是由正极活性材料、导电剂、粘结剂混合均匀后压片制成。所述的正极层活性材料为钴酸锂、锰酸锂、磷酸铁锂、镍钴锰三元材料和镍钴铝三元材料中的一种。The positive electrode layer is made of the positive electrode active material, the conductive agent, and the binder mixed evenly and then pressed into a tablet. The positive electrode layer active material is one of lithium cobalt oxide, lithium manganate, lithium iron phosphate, nickel-cobalt-manganese ternary material and nickel-cobalt-aluminum ternary material.
本发明中的复合固态电解质膜采用氧化石墨烯膜作为支撑层,可有效提高复合电解质膜的离子电导率、热稳定性及机械性能。正负极层分别与不同特性的复合涂层电解质接触,可在有效提高正极活性物质利用率的同时改善界面兼容性,抑制金属锂的副反应。将该复合固态电解质膜应用于固态锂电池,可带来容量发挥、循环稳定性、倍率性能及热稳定性的综合提升。The composite solid electrolyte membrane in the present invention adopts a graphene oxide membrane as a support layer, which can effectively improve the ionic conductivity, thermal stability and mechanical properties of the composite electrolyte membrane. The positive and negative electrode layers are respectively in contact with the composite coating electrolyte with different characteristics, which can effectively improve the utilization rate of the positive electrode active material while improving the interface compatibility and suppress the side reaction of metallic lithium. The application of the composite solid electrolyte membrane to solid lithium batteries can bring about comprehensive improvements in capacity development, cycle stability, rate performance and thermal stability.
本发明具体制备方法如下:The specific preparation method of the present invention is as follows:
(1)正极极片的制备(1) Preparation of positive electrode sheet
步骤1:将粘结剂、导电剂、正极活性材料依次添加到NMP溶剂中进行分散搅拌,得到正极浆料;步骤2:采用涂布机将正极浆料涂布在铝箔上,涂布机的烘干温度为120℃,收卷后的极片在100℃的真空烘箱中干燥24h,对干燥后的电极片进行辊压,冲切得到正极极片;Step 1: Add the binder, the conductive agent, and the positive electrode active material to the NMP solvent in sequence to disperse and stir to obtain a positive electrode slurry; Step 2: Use a coating machine to coat the positive electrode slurry on the aluminum foil, and the coating machine The drying temperature is 120 °C, the coiled pole pieces are dried in a vacuum oven at 100 °C for 24 hours, the dried electrode pieces are rolled, and the positive pole pieces are obtained by punching;
(2)复合固态电解质膜的制备(2) Preparation of composite solid electrolyte membrane
步骤1:将有机聚合物A、锂盐、纳米无机固态电解质和溶剂混合得到有机无机复合浆料A,浆料固含量为2~8%;步骤2:将有机聚合物B、锂盐、纳米无机固态电解质和溶剂混合得到有机无机复合浆料B,浆料固含量为2~8%;步骤3:将有机无机复合浆料A和有机无机复合浆料B分别涂覆于支撑膜的两侧,干燥后得到复合固态电解质膜。Step 1: Mix organic polymer A, lithium salt, nano-inorganic solid electrolyte and solvent to obtain organic-inorganic composite slurry A, and the solid content of the slurry is 2-8%; Step 2: Combine organic polymer B, lithium salt, nanometer The inorganic solid electrolyte and the solvent are mixed to obtain an organic-inorganic composite slurry B, and the solid content of the slurry is 2-8%; Step 3: The organic-inorganic composite slurry A and the organic-inorganic composite slurry B are respectively coated on both sides of the supporting membrane , and the composite solid electrolyte membrane was obtained after drying.
(3)固态电池的制备(3) Preparation of solid-state batteries
依次将正极层、复合固态电解质膜及金属锂采用堆叠的方式填入扣式电池不锈钢壳,在手套箱中组装成纽扣电池并进行测试。The positive electrode layer, the composite solid electrolyte membrane and the metal lithium were sequentially filled into the stainless steel shell of the button battery in a stacked manner, and the button battery was assembled and tested in the glove box.
以下结合实施例和附图对本发明的具体实施方式作进一步地说明。The specific embodiments of the present invention will be further described below with reference to the embodiments and the accompanying drawings.
实施例1:Example 1:
(1)正极极片制备(1) Preparation of positive electrode plate
步骤1:粘结剂PVDF、导电剂SuperP、正极活性材料LiFePO4按质量比10:10:80依次添加到NMP溶剂中进行分散搅拌,得到正极浆料;步骤2:采用涂布机将正极浆料涂布在铝箔上,涂布机的烘干温度为120℃,收卷后的极片在100℃的真空烘箱中干燥24h,对干燥后的电极片进行辊压,冲切得到正极极片;Step 1: The binder PVDF, the conductive agent SuperP, and the positive electrode active material LiFePO 4 are sequentially added to the NMP solvent in a mass ratio of 10:10:80 for dispersion and stirring to obtain a positive electrode slurry; Step 2: Use a coating machine to coat the positive electrode slurry The material is coated on the aluminum foil, the drying temperature of the coating machine is 120 °C, the coiled pole piece is dried in a vacuum oven at 100 °C for 24 hours, the dried electrode piece is rolled and punched to obtain the positive pole piece ;
(2)复合固态电解质膜的制备(2) Preparation of composite solid electrolyte membrane
步骤1:将0.3g聚偏氟乙烯PVDF、0.1gLiTFSI、0.05gLi7La3Zr2O12和10gDMF混合得到有机无机复合浆料A;步骤2:将0.3g聚环氧乙烷PEO、0.1g LiTFSI、0.05g Li7La3Zr2O12和10g乙腈混合得到有机无机复合浆料B;步骤3:将有机无机复合浆料A和有机无机复合浆料B分别涂覆于支撑膜的两侧,放入真空干燥箱中干燥12h后干燥后得到复合固态电解质膜。Step 1: Mix 0.3g polyvinylidene fluoride PVDF, 0.1g LiTFSI, 0.05g Li 7 La 3 Zr 2 O 12 and 10g DMF to obtain organic-inorganic composite slurry A; Step 2: Mix 0.3g polyethylene oxide PEO, 0.1g LiTFSI, 0.05g Li 7 La 3 Zr 2 O 12 and 10g acetonitrile were mixed to obtain organic-inorganic composite slurry B; Step 3: Apply organic-inorganic composite slurry A and organic-inorganic composite slurry B on both sides of the supporting membrane respectively , put it in a vacuum drying box to dry for 12h, and then dry to obtain a composite solid electrolyte membrane.
(3)固态电池的制备(3) Preparation of solid-state batteries
依次将正极层、复合固态电解质膜及金属锂采用堆叠的方式填入扣式电池不锈钢壳,在手套箱中组装成纽扣电池并进行测试。The positive electrode layer, the composite solid electrolyte membrane and the metal lithium were sequentially filled into the stainless steel shell of the button battery in a stacked manner, and the button battery was assembled and tested in the glove box.
通过本实施例1所制备得到的复合固态电解质膜的SEM图如图2所示,朝上一面为涂层A,可以看出,氧化石墨烯的存在使得涂层A的有机无机电解质膜在形成过程中保留了完好的孔结构,具有较好的稳定性,也为锂离子的传输提供便利。The SEM image of the composite solid-state electrolyte membrane prepared in Example 1 is shown in Figure 2, and the upper side is the coating layer A. It can be seen that the presence of graphene oxide makes the organic-inorganic electrolyte membrane of the coating layer A in the formation of In the process, the intact pore structure is retained, which has good stability and facilitates the transport of lithium ions.
图3为单层电解质膜和本发明实施例1所制备的复合固态电解质膜在室温下的离子电导率测试阻抗对比图。经过计算可以得出,本发明实施例1所制备的复合固态电解质膜的室温离子电导率可以达到8.1×10-4S/cm,而单层电解质膜在室温下的离子电导率仅为3.9×10-4S/cm,室温离子电导率得到提升。FIG. 3 is a comparison diagram of the ionic conductivity test impedance of the single-layer electrolyte membrane and the composite solid-state electrolyte membrane prepared in Example 1 of the present invention at room temperature. After calculation, it can be concluded that the room temperature ionic conductivity of the composite solid electrolyte membrane prepared in Example 1 of the present invention can reach 8.1×10 -4 S/cm, while the ionic conductivity of the single-layer electrolyte membrane at room temperature is only 3.9× 10 -4 S/cm, the room temperature ionic conductivity was improved.
实施例2:Example 2:
(1)正极极片制备(1) Preparation of positive electrode plate
步骤1:粘结剂PVDF、导电剂SuperP、正极活性材料LiNi0.5Co0.2Mn0.3O2按质量比10:10:80依次添加到NMP溶剂中进行分散搅拌,得到正极浆料;步骤2:采用涂布机将正极浆料涂布在铝箔上,涂布机的烘干温度为120℃,收卷后的极片在100℃的真空烘箱中干燥24h,对干燥后的电极片进行辊压,冲切得到正极极片;Step 1: The binder PVDF, the conductive agent SuperP, and the positive electrode active material LiNi 0.5 Co 0.2 Mn 0.3 O 2 are sequentially added to the NMP solvent in a mass ratio of 10:10:80 for dispersion and stirring to obtain a positive electrode slurry; step 2: using The coating machine coats the positive electrode slurry on the aluminum foil. The drying temperature of the coating machine is 120 ° C. The coiled pole piece is dried in a vacuum oven at 100 ° C for 24 hours. Die cutting to get the positive pole piece;
(2)复合固态电解质膜的制备(2) Preparation of composite solid electrolyte membrane
步骤1:将0.3g聚偏氟乙烯PVDF、0.1gLiTFSI、0.05gLi7La3Zr2O12和10gDMF混合得到有机无机复合浆料A;步骤2:将0.3g聚环氧乙烷PEO、0.1g LiTFSI、0.05g Li7La3Zr2O12和10g乙腈混合得到有机无机复合浆料B;步骤3:将有机无机复合浆料A和有机无机复合浆料B分别涂覆于支撑膜的两侧,放入真空干燥箱中干燥12h后干燥后得到复合固态电解质膜。Step 1: Mix 0.3g polyvinylidene fluoride PVDF, 0.1g LiTFSI, 0.05g Li 7 La 3 Zr 2 O 12 and 10g DMF to obtain organic-inorganic composite slurry A; Step 2: Mix 0.3g polyethylene oxide PEO, 0.1g LiTFSI, 0.05g Li 7 La 3 Zr 2 O 12 and 10g acetonitrile were mixed to obtain organic-inorganic composite slurry B; Step 3: Apply organic-inorganic composite slurry A and organic-inorganic composite slurry B on both sides of the supporting membrane respectively , put it in a vacuum drying box to dry for 12h, and then dry to obtain a composite solid electrolyte membrane.
(3)固态电池的制备(3) Preparation of solid-state batteries
依次将正极层、复合固态电解质膜及金属锂采用堆叠的方式填入扣式电池不锈钢壳,在手套箱中组装成纽扣电池并进行测试。The positive electrode layer, the composite solid electrolyte membrane and the metal lithium were sequentially filled into the stainless steel shell of the button battery in a stacked manner, and the button battery was assembled and tested in the glove box.
实施例3:Example 3:
(1)正极极片制备(1) Preparation of positive electrode plate
步骤1:粘结剂PVDF、导电剂SuperP、正极活性材料LiNi0.5Co0.2Mn0.3O2按质量比10:10:80依次添加到NMP溶剂中进行分散搅拌,得到正极浆料;步骤2:采用涂布机将正极浆料涂布在铝箔上,涂布机的烘干温度为120℃,收卷后的极片在100℃的真空烘箱中干燥24h,对干燥后的电极片进行辊压,冲切得到正极极片;Step 1: The binder PVDF, the conductive agent SuperP, and the positive electrode active material LiNi 0.5 Co 0.2 Mn 0.3 O 2 are sequentially added to the NMP solvent in a mass ratio of 10:10:80 for dispersion and stirring to obtain a positive electrode slurry; step 2: using The coating machine coats the positive electrode slurry on the aluminum foil. The drying temperature of the coating machine is 120 ° C. The coiled pole piece is dried in a vacuum oven at 100 ° C for 24 hours. Die cutting to get the positive pole piece;
(2)复合固态电解质膜的制备(2) Preparation of composite solid electrolyte membrane
步骤1:将0.3g聚丙烯腈PAN、0.1g LiClO4、0.05gLi7La3Zr2O12和10g乙腈混合得到有机无机复合浆料A;步骤2:将0.3g聚丙烯碳酸酯PPC、0.1gLiTFSI、0.05g Li7La3Zr2O12和10g乙腈混合得到有机无机复合浆料B;步骤3:将有机无机复合浆料A和有机无机复合浆料B分别涂覆于支撑膜的两侧,放入真空干燥箱中干燥12h后干燥后得到复合固态电解质膜。Step 1: Mix 0.3g polyacrylonitrile PAN, 0.1g LiClO 4 , 0.05g Li 7 La 3 Zr 2 O 12 and 10g acetonitrile to obtain organic-inorganic composite slurry A; Step 2: Mix 0.3g polypropylene carbonate PPC, 0.1g Mix gLiTFSI, 0.05g Li 7 La 3 Zr 2 O 12 and 10g acetonitrile to obtain organic-inorganic composite slurry B; Step 3: apply organic-inorganic composite slurry A and organic-inorganic composite slurry B on both sides of the supporting membrane respectively , put it in a vacuum drying box to dry for 12h, and then dry to obtain a composite solid electrolyte membrane.
(3)固态电池的制备(3) Preparation of solid-state batteries
依次将正极层、复合固态电解质膜及金属锂采用堆叠的方式填入扣式电池不锈钢壳,在手套箱中组装成纽扣电池并进行测试。The positive electrode layer, the composite solid electrolyte membrane and the metal lithium were sequentially filled into the stainless steel shell of the button battery in a stacked manner, and the button battery was assembled and tested in the glove box.
通过本实施例3所制备的固态锂电池的循环性能曲线如图4所示,电池以15mA/g的电流密度,室温下在2.8~4.3V电压区间进行充放电循环,首次放电比容量为164.0mAh/g,高于常规单层固态电解质膜的固态电池(124.9mAh/g),活性物质利用率明显提升,且循环20圈之后容量仍可以保持在162.8.0mAh/g,而单层固态电解质膜固态电池的容量则快速衰减至80.1mAh/g,复合膜的使用显著改善了固态电池的循环稳定性。The cycle performance curve of the solid-state lithium battery prepared in Example 3 is shown in Figure 4. The battery was charged and discharged at a current density of 15 mA/g and at room temperature in a voltage range of 2.8 to 4.3 V. The specific capacity of the first discharge was 164.0 mAh/g, which is higher than that of the solid-state battery with conventional single-layer solid-state electrolyte membrane (124.9mAh/g), the utilization rate of active materials is significantly improved, and the capacity can still be maintained at 162.8.0mAh/g after 20 cycles, while the single-layer solid-state electrolyte The capacity of the membrane solid-state battery rapidly decays to 80.1 mAh/g, and the use of the composite membrane significantly improves the cycle stability of the solid-state battery.
图5为通过本发明实施例3所制备的固态锂电池的倍率性能曲线,即使在相对较高的1C倍率下,含复合固态电解质膜的固态电池也可以获得111.4mAh g-1的稳定容量,这远高于使用单层固态电解质膜的固态电池(48.7mAhg-1)的容量。这得益于复合膜较高的离子电导率,不仅可以实现电池中正极和固态电解质膜之间的快速离子传输,而且可以确保稳定的界面接触。Figure 5 is the rate performance curve of the solid-state lithium battery prepared by Example 3 of the present invention. Even at a relatively high rate of 1C, the solid-state battery containing the composite solid-state electrolyte membrane can obtain a stable capacity of 111.4mAh g -1 , This is much higher than the capacity of a solid-state battery (48.7 mAhg -1 ) using a single-layer solid-state electrolyte membrane. This benefits from the high ionic conductivity of the composite membrane, which not only enables fast ion transport between the cathode and the solid electrolyte membrane in the battery, but also ensures stable interfacial contact.
综上所述,聚合物电解质膜或单层有机无机复合电解质膜作为固态锂电池电解质膜时,往往存在机械性能差、离子电导率低或界面相容性差的问题,无法兼顾各项性能的发挥。针对于此,本发明针对固态锂电池中正负极层对电解质膜的不同需求,以氧化石墨烯膜作为支撑,分别在其靠近正负极两侧设计含不同聚合物基团的有机无机复合电解质膜,得到具有高室温离子电导率、强界面兼容性、较好的热稳定性及机械性能的复合固态电解质膜,从而进一步提高电池的综合性能。In summary, when polymer electrolyte membranes or single-layer organic-inorganic composite electrolyte membranes are used as electrolyte membranes for solid-state lithium batteries, there are often problems of poor mechanical properties, low ionic conductivity or poor interfacial compatibility, and cannot take into account the performance of various properties. . In view of this, the present invention aims at the different requirements for the electrolyte membrane of the positive and negative electrode layers in the solid-state lithium battery, and uses the graphene oxide film as a support to design organic-inorganic composite electrolyte membranes containing different polymer groups on both sides of the positive and negative electrodes. , to obtain a composite solid electrolyte membrane with high room temperature ionic conductivity, strong interface compatibility, good thermal stability and mechanical properties, thereby further improving the overall performance of the battery.
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。While the content of the present invention has been described in detail by way of the above preferred embodiments, it should be appreciated that the above description should not be construed as limiting the present invention. Various modifications and alternatives to the present invention will be apparent to those skilled in the art upon reading the foregoing. Accordingly, the scope of protection of the present invention should be defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010275816.0A CN111430788A (en) | 2020-04-09 | 2020-04-09 | Composite solid electrolyte membrane, preparation method and solid lithium battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010275816.0A CN111430788A (en) | 2020-04-09 | 2020-04-09 | Composite solid electrolyte membrane, preparation method and solid lithium battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111430788A true CN111430788A (en) | 2020-07-17 |
Family
ID=71556126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010275816.0A Pending CN111430788A (en) | 2020-04-09 | 2020-04-09 | Composite solid electrolyte membrane, preparation method and solid lithium battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111430788A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112038687A (en) * | 2020-08-05 | 2020-12-04 | 浙江南都电源动力股份有限公司 | Double-layer composite solid electrolyte membrane and preparation method thereof |
CN112331913A (en) * | 2020-12-28 | 2021-02-05 | 郑州中科新兴产业技术研究院 | Composite solid electrolyte, preparation method and application |
CN112366293A (en) * | 2020-11-10 | 2021-02-12 | 广东天劲新能源科技股份有限公司 | Solid metal lithium battery and preparation method thereof |
CN112768763A (en) * | 2021-01-04 | 2021-05-07 | 长沙矿冶研究院有限责任公司 | Sandwich structure solid electrolyte membrane and preparation method thereof |
CN112838266A (en) * | 2021-03-23 | 2021-05-25 | 上海电气集团股份有限公司 | Composite electrolyte membrane, preparation method and application thereof, and solid-state lithium battery |
CN113178614A (en) * | 2021-04-21 | 2021-07-27 | 深圳市合壹新能技术有限公司 | Composite solid electrolyte, solid lithium battery and preparation method |
CN113241476A (en) * | 2021-04-14 | 2021-08-10 | 东北师范大学 | Asymmetric-structure polymer-based solid electrolyte membrane, preparation method and application thereof, and polymer-based solid lithium battery |
CN113258032A (en) * | 2021-04-19 | 2021-08-13 | 浙江锋锂新能源科技有限公司 | Negative electrode material, negative electrode slurry, battery cell, low-temperature-resistant battery and preparation method thereof |
CN113363559A (en) * | 2021-03-26 | 2021-09-07 | 万向一二三股份公司 | Multilayer composite solid electrolyte, preparation method thereof and all-solid-state lithium battery |
CN114639869A (en) * | 2022-03-25 | 2022-06-17 | 厦门海辰新能源科技有限公司 | Solid electrolyte, preparation method and application thereof |
CN114725486A (en) * | 2022-04-06 | 2022-07-08 | 东风汽车集团股份有限公司 | High-strength solid electrolyte membrane and preparation method and application thereof |
CN114976216A (en) * | 2022-08-01 | 2022-08-30 | 湖南大学 | Preparation method of solid lithium battery with sandwich-shaped solid electrolyte |
CN115084637A (en) * | 2022-05-19 | 2022-09-20 | 吉林省东驰新能源科技有限公司 | Inorganic-organic composite solid electrolyte and application thereof |
CN116130759A (en) * | 2023-04-17 | 2023-05-16 | 江苏华富储能新技术股份有限公司 | Preparation method of sandwich structure composite solid polymer electrolyte |
US11817552B2 (en) * | 2021-08-24 | 2023-11-14 | Kunming University Of Science And Technology | Method for plasma modification of sodium super ionic conductor type solid electrolyte |
US12068450B2 (en) * | 2021-07-23 | 2024-08-20 | Ming Chi University Of Technology | Method for fabricating gallium-doped lithium lanthanum zirconium oxide, and all-solid-state battery including the same |
CN118970150A (en) * | 2024-09-13 | 2024-11-15 | 昆明理工大学 | A carbon nanohorn inorganic filler composite solid electrolyte and its preparation method and application |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108767311A (en) * | 2018-04-28 | 2018-11-06 | 浙江锋锂新能源科技有限公司 | A kind of preparation method of the composite electrolyte membrane of solid state battery |
CN109244540A (en) * | 2018-11-19 | 2019-01-18 | 中国科学院宁波材料技术与工程研究所 | A kind of solid polymer electrolyte, preparation method and lithium ion battery |
CN109638349A (en) * | 2018-12-04 | 2019-04-16 | 中国科学院山西煤炭化学研究所 | A kind of organic-inorganic nanocomposite solid electrolyte diaphragm and its preparation method and application |
CN110247112A (en) * | 2019-06-25 | 2019-09-17 | 哈尔滨工业大学 | A kind of high wettability sulfide based composite electrolyte and the preparation method and application thereof of " sandwich " structure |
CN110581314A (en) * | 2018-06-08 | 2019-12-17 | 郑州宇通集团有限公司 | Multilayer-structure composite solid electrolyte membrane, preparation method thereof and solid battery |
CN110931849A (en) * | 2019-06-12 | 2020-03-27 | 北京当升材料科技股份有限公司 | Gradient composite solid electrolyte, preparation method thereof and solid lithium battery |
-
2020
- 2020-04-09 CN CN202010275816.0A patent/CN111430788A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108767311A (en) * | 2018-04-28 | 2018-11-06 | 浙江锋锂新能源科技有限公司 | A kind of preparation method of the composite electrolyte membrane of solid state battery |
CN110581314A (en) * | 2018-06-08 | 2019-12-17 | 郑州宇通集团有限公司 | Multilayer-structure composite solid electrolyte membrane, preparation method thereof and solid battery |
CN109244540A (en) * | 2018-11-19 | 2019-01-18 | 中国科学院宁波材料技术与工程研究所 | A kind of solid polymer electrolyte, preparation method and lithium ion battery |
CN109638349A (en) * | 2018-12-04 | 2019-04-16 | 中国科学院山西煤炭化学研究所 | A kind of organic-inorganic nanocomposite solid electrolyte diaphragm and its preparation method and application |
CN110931849A (en) * | 2019-06-12 | 2020-03-27 | 北京当升材料科技股份有限公司 | Gradient composite solid electrolyte, preparation method thereof and solid lithium battery |
CN110247112A (en) * | 2019-06-25 | 2019-09-17 | 哈尔滨工业大学 | A kind of high wettability sulfide based composite electrolyte and the preparation method and application thereof of " sandwich " structure |
Non-Patent Citations (1)
Title |
---|
黄杰: "《复合电解质及原位固态电池的研》", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112038687A (en) * | 2020-08-05 | 2020-12-04 | 浙江南都电源动力股份有限公司 | Double-layer composite solid electrolyte membrane and preparation method thereof |
CN112366293A (en) * | 2020-11-10 | 2021-02-12 | 广东天劲新能源科技股份有限公司 | Solid metal lithium battery and preparation method thereof |
CN112331913A (en) * | 2020-12-28 | 2021-02-05 | 郑州中科新兴产业技术研究院 | Composite solid electrolyte, preparation method and application |
CN112331913B (en) * | 2020-12-28 | 2022-09-09 | 郑州中科新兴产业技术研究院 | Composite solid electrolyte, preparation method and application |
CN112768763A (en) * | 2021-01-04 | 2021-05-07 | 长沙矿冶研究院有限责任公司 | Sandwich structure solid electrolyte membrane and preparation method thereof |
CN112838266A (en) * | 2021-03-23 | 2021-05-25 | 上海电气集团股份有限公司 | Composite electrolyte membrane, preparation method and application thereof, and solid-state lithium battery |
CN113363559A (en) * | 2021-03-26 | 2021-09-07 | 万向一二三股份公司 | Multilayer composite solid electrolyte, preparation method thereof and all-solid-state lithium battery |
CN113241476A (en) * | 2021-04-14 | 2021-08-10 | 东北师范大学 | Asymmetric-structure polymer-based solid electrolyte membrane, preparation method and application thereof, and polymer-based solid lithium battery |
CN113241476B (en) * | 2021-04-14 | 2022-08-19 | 吉林省东驰新能源科技有限公司 | Asymmetric-structure polymer-based solid electrolyte membrane, preparation method and application thereof, and polymer-based solid lithium battery |
CN113258032A (en) * | 2021-04-19 | 2021-08-13 | 浙江锋锂新能源科技有限公司 | Negative electrode material, negative electrode slurry, battery cell, low-temperature-resistant battery and preparation method thereof |
CN113258032B (en) * | 2021-04-19 | 2024-02-02 | 浙江锋锂新能源科技有限公司 | Negative electrode material, negative electrode slurry, battery cell, low-temperature-resistant battery and preparation method of battery |
CN113178614A (en) * | 2021-04-21 | 2021-07-27 | 深圳市合壹新能技术有限公司 | Composite solid electrolyte, solid lithium battery and preparation method |
US12068450B2 (en) * | 2021-07-23 | 2024-08-20 | Ming Chi University Of Technology | Method for fabricating gallium-doped lithium lanthanum zirconium oxide, and all-solid-state battery including the same |
US11817552B2 (en) * | 2021-08-24 | 2023-11-14 | Kunming University Of Science And Technology | Method for plasma modification of sodium super ionic conductor type solid electrolyte |
CN114639869A (en) * | 2022-03-25 | 2022-06-17 | 厦门海辰新能源科技有限公司 | Solid electrolyte, preparation method and application thereof |
CN114725486A (en) * | 2022-04-06 | 2022-07-08 | 东风汽车集团股份有限公司 | High-strength solid electrolyte membrane and preparation method and application thereof |
CN115084637B (en) * | 2022-05-19 | 2023-07-14 | 吉林省东驰新能源科技有限公司 | Inorganic-organic composite solid electrolyte and application thereof |
CN115084637A (en) * | 2022-05-19 | 2022-09-20 | 吉林省东驰新能源科技有限公司 | Inorganic-organic composite solid electrolyte and application thereof |
CN114976216A (en) * | 2022-08-01 | 2022-08-30 | 湖南大学 | Preparation method of solid lithium battery with sandwich-shaped solid electrolyte |
CN116130759A (en) * | 2023-04-17 | 2023-05-16 | 江苏华富储能新技术股份有限公司 | Preparation method of sandwich structure composite solid polymer electrolyte |
CN118970150A (en) * | 2024-09-13 | 2024-11-15 | 昆明理工大学 | A carbon nanohorn inorganic filler composite solid electrolyte and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111430788A (en) | Composite solid electrolyte membrane, preparation method and solid lithium battery | |
CN110581311B (en) | Composite solid electrolyte membrane, preparation method thereof and solid battery | |
CN108258323B (en) | A kind of production method of high specific energy solid lithium battery | |
CN110581314B (en) | Multilayer-structure composite solid electrolyte membrane, preparation method thereof and solid battery | |
CN111525181A (en) | All-solid-state battery with low interface resistance and preparation method thereof | |
CN103311500B (en) | A kind of lithium ion battery negative electrode and manufacture method | |
CN107068947B (en) | Modified separator for lithium-sulfur battery and preparation method thereof | |
CN103904291B (en) | Aquo-lithium ion battery electrode and preparation method thereof, aquo-lithium ion battery | |
CN108232111A (en) | A kind of anode composite pole piece of solid state battery and preparation method thereof | |
CN109004173B (en) | Lithium-sulfur battery positive electrode and manufacturing method thereof | |
CN110034275A (en) | A kind of sulfide solid state battery buffer layer and preparation method thereof and solid state battery | |
CN103199301A (en) | Composite gel polymer electrolyte based on solid polymer electrolyte, and preparation method and application thereof | |
JP2023526525A (en) | SEPARATOR FOR ELECTROCHEMICAL DEVICE AND MANUFACTURING METHOD THEREOF | |
CN114709398B (en) | Sulfur-containing fast ion conductor coated graphite composite material and preparation method thereof | |
WO2020043151A1 (en) | Positive electrode plate, preparation method therefor, and lithium-ion rechargeable battery | |
CN114335701A (en) | A kind of composite solid electrolyte membrane and preparation method thereof | |
CN105047907A (en) | High-safety lithium ion battery | |
CN111883765A (en) | Lithium battery positive active material, preparation method thereof and lithium battery | |
CN114122406B (en) | Preparation method of graphene modified lithium iron phosphate and lithium iron phosphate | |
CN116014361A (en) | Lithium battery diaphragm, lithium battery and preparation method | |
WO2021127999A1 (en) | Secondary battery and apparatus containing secondary battery | |
CN103904362A (en) | Preparation method and application of ionic liquid electrolyte of safety-type lithium ion battery | |
CN117613377A (en) | Slow-release plasticized multilayer composite polymer electrolyte and solid-state lithium battery | |
CN217239505U (en) | Lithium ion battery positive pole piece and lithium ion battery | |
CN104577052A (en) | Electrochemical preparation method of polypyrrole/carbon fiber composite material electrode and application of polypyrrole/carbon fiber composite material electrode as positive electrode of lithium-ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200717 |