CN108258323B - A kind of production method of high specific energy solid lithium battery - Google Patents
A kind of production method of high specific energy solid lithium battery Download PDFInfo
- Publication number
- CN108258323B CN108258323B CN201810091488.1A CN201810091488A CN108258323B CN 108258323 B CN108258323 B CN 108258323B CN 201810091488 A CN201810091488 A CN 201810091488A CN 108258323 B CN108258323 B CN 108258323B
- Authority
- CN
- China
- Prior art keywords
- solid
- positive electrode
- negative electrode
- lithium battery
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007787 solid Substances 0.000 title claims abstract description 76
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000003792 electrolyte Substances 0.000 claims abstract description 32
- 238000000576 coating method Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000011248 coating agent Substances 0.000 claims abstract description 19
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 14
- 239000011148 porous material Substances 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 7
- 238000004804 winding Methods 0.000 claims abstract description 4
- 239000011267 electrode slurry Substances 0.000 claims description 50
- 239000002904 solvent Substances 0.000 claims description 39
- 239000008151 electrolyte solution Substances 0.000 claims description 34
- 229940021013 electrolyte solution Drugs 0.000 claims description 33
- 238000010438 heat treatment Methods 0.000 claims description 32
- 239000011230 binding agent Substances 0.000 claims description 31
- 239000003795 chemical substances by application Substances 0.000 claims description 29
- 239000006258 conductive agent Substances 0.000 claims description 29
- 239000005518 polymer electrolyte Substances 0.000 claims description 26
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 19
- 239000000945 filler Substances 0.000 claims description 19
- 229910003002 lithium salt Inorganic materials 0.000 claims description 19
- 159000000002 lithium salts Chemical class 0.000 claims description 19
- 239000007774 positive electrode material Substances 0.000 claims description 19
- 239000002033 PVDF binder Substances 0.000 claims description 12
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 12
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 239000001099 ammonium carbonate Substances 0.000 claims description 10
- 239000011889 copper foil Substances 0.000 claims description 10
- 239000011888 foil Substances 0.000 claims description 10
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 9
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 9
- 239000007773 negative electrode material Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical group O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 8
- 238000007731 hot pressing Methods 0.000 claims description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 7
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 7
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 6
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims description 6
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 6
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 5
- 229910013684 LiClO 4 Inorganic materials 0.000 claims description 5
- 239000006230 acetylene black Substances 0.000 claims description 5
- 239000004917 carbon fiber Substances 0.000 claims description 5
- 239000012621 metal-organic framework Substances 0.000 claims description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 5
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 5
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 claims description 4
- 239000005695 Ammonium acetate Substances 0.000 claims description 4
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 claims description 4
- 229940043376 ammonium acetate Drugs 0.000 claims description 4
- 235000019257 ammonium acetate Nutrition 0.000 claims description 4
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 4
- 239000002041 carbon nanotube Substances 0.000 claims description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 4
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 229910021385 hard carbon Inorganic materials 0.000 claims description 4
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 4
- 239000011256 inorganic filler Substances 0.000 claims description 4
- 239000003273 ketjen black Substances 0.000 claims description 4
- FRMOHNDAXZZWQI-UHFFFAOYSA-N lithium manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O-2].[Mn+2].[Ni+2].[Li+] FRMOHNDAXZZWQI-UHFFFAOYSA-N 0.000 claims description 4
- -1 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004800 polyvinyl chloride Substances 0.000 claims description 4
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 4
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 claims description 3
- 239000002210 silicon-based material Substances 0.000 claims description 3
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 3
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 3
- 239000011149 active material Substances 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052593 corundum Inorganic materials 0.000 claims description 2
- 239000012766 organic filler Substances 0.000 claims description 2
- 238000004806 packaging method and process Methods 0.000 claims description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims 1
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 claims 1
- 150000001805 chlorine compounds Chemical class 0.000 claims 1
- 229910052681 coesite Inorganic materials 0.000 claims 1
- 229910052906 cristobalite Inorganic materials 0.000 claims 1
- 150000002222 fluorine compounds Chemical class 0.000 claims 1
- 150000002825 nitriles Chemical class 0.000 claims 1
- 229920001155 polypropylene Polymers 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 claims 1
- 229910052682 stishovite Inorganic materials 0.000 claims 1
- 229910052905 tridymite Inorganic materials 0.000 claims 1
- 238000003475 lamination Methods 0.000 abstract description 9
- 239000007772 electrode material Substances 0.000 abstract description 2
- 229920000642 polymer Polymers 0.000 abstract description 2
- 229920000867 polyelectrolyte Polymers 0.000 abstract 2
- 238000004537 pulping Methods 0.000 description 13
- 238000003825 pressing Methods 0.000 description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- 239000007784 solid electrolyte Substances 0.000 description 8
- 239000002985 plastic film Substances 0.000 description 7
- 229920006255 plastic film Polymers 0.000 description 7
- 238000003466 welding Methods 0.000 description 7
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 6
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 6
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910021383 artificial graphite Inorganic materials 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000002174 Styrene-butadiene Substances 0.000 description 4
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 description 4
- 229920002239 polyacrylonitrile Polymers 0.000 description 4
- 229910004761 HSV 900 Inorganic materials 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 229910000572 Lithium Nickel Cobalt Manganese Oxide (NCM) Inorganic materials 0.000 description 2
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000000935 solvent evaporation Methods 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000006257 cathode slurry Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明属于锂离子电池领域,具体涉及一种高比能全固态锂电池的制作方法。The invention belongs to the field of lithium-ion batteries, and in particular relates to a method for manufacturing a high-specific-energy all-solid-state lithium battery.
背景技术Background technique
锂离子动力电池具有能量密度高、寿命长、绿色环保等优点,是目前应用最为广泛的新能源汽车动力源。随着锂电池新能源汽车的不断推广,传统的锂离子动力电池已经难以满足汽车对安全性、续航里程的要求。尤其是目前的锂离子动力电池采用的电解液多为易燃易爆类的有机溶剂体系,用于汽车领域安全隐患尤为突出,采用固态电解质制作的全固态锂离子动力电池能够大幅提高动力电池的安全性,受到了广泛关注。Lithium-ion power batteries have the advantages of high energy density, long life, and environmental protection, and are currently the most widely used power source for new energy vehicles. With the continuous promotion of lithium-ion battery new energy vehicles, traditional lithium-ion power batteries have been difficult to meet the safety and mileage requirements of vehicles. In particular, the electrolytes used in current lithium-ion power batteries are mostly flammable and explosive organic solvent systems, which pose a serious safety hazard when used in the automotive field. All-solid-state lithium-ion power batteries made of solid electrolytes can greatly improve the performance of power batteries. Security has received widespread attention.
全固态锂电池中的固态电解质与电极接触的紧密程度直接影响锂离子的传输,将电极片与固态电解质薄膜通过简单叠层、热压制备的固态锂电池,界面阻抗过大;在电极中添加固态电解质能够改善电解质/电极的界面接触,降低界面阻抗,但是电极中电解质添加量通常比较大(20%~30%质量比),会降低极片活性物质含量,导致极片比容量损失较大。The closeness of the contact between the solid electrolyte and the electrode in the all-solid lithium battery directly affects the transmission of lithium ions. The solid lithium battery prepared by simple lamination and hot pressing of the electrode sheet and the solid electrolyte film has too large interface impedance; Solid electrolyte can improve the electrolyte/electrode interface contact and reduce interface impedance, but the amount of electrolyte added to the electrode is usually relatively large (20% to 30% mass ratio), which will reduce the active material content of the pole piece, resulting in a large loss of specific capacity of the pole piece .
发明内容Contents of the invention
为了克服上述现有技术存在的缺陷,本发明的目的在于提供一种高比能全固态锂电池的制作方法,本发明无需在极片涂覆过程中添加电解质便可以改善电解质与电极片的界面接触,在保持极片高比容量的前提下,降低了电极/电解质界面电阻。In order to overcome the above-mentioned defects in the prior art, the object of the present invention is to provide a method for manufacturing a high-specific-energy all-solid-state lithium battery. The present invention can improve the interface between the electrolyte and the electrode sheet without adding electrolyte during the electrode sheet coating process. Contact, on the premise of maintaining a high specific capacity of the pole piece, reduces the electrode/electrolyte interface resistance.
为达到上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种高比能全固态锂电池的制作方法,包括以下步骤:A method for manufacturing a high-specific-energy all-solid-state lithium battery, comprising the following steps:
步骤一:将正极活性材料、导电剂、粘结剂、造孔剂按比例溶解在溶剂中,制备成正极浆料,将正极浆料涂敷于正极集流体上,经热处理和辊压处理得到正极片;Step 1: Dissolving the positive electrode active material, conductive agent, binder, and pore-forming agent in a solvent in proportion to prepare a positive electrode slurry, coating the positive electrode slurry on the positive electrode current collector, and obtaining Positive plate;
步骤二:将负极材料、导电剂、粘结剂、造孔剂按比例溶解在溶剂中,制备成负极浆料,将负极浆料涂覆于负极集流体上,经热处理和辊压处理得到负极片;Step 2: Dissolving the negative electrode material, conductive agent, binder, and pore-forming agent in the solvent in proportion to prepare negative electrode slurry, coating the negative electrode slurry on the negative electrode current collector, and obtaining the negative electrode through heat treatment and rolling treatment piece;
步骤三:将聚合物电解质、填料、锂盐按比例溶解于溶剂中,制备若干不同固含量的电解质溶液;将电解质溶液按照固含量从低到高的顺序依次涂覆在正极片和负极片的一侧表面,每次涂覆后均进行热处理,最后得到单侧带有电解质层的正极片和负极片;Step 3: Dissolve the polymer electrolyte, filler, and lithium salt in the solvent in proportion to prepare several electrolyte solutions with different solid contents; apply the electrolyte solutions on the positive and negative electrodes sequentially in order of solid content from low to high One side surface, after each coating, heat treatment is carried out, and finally a positive electrode sheet and a negative electrode sheet with an electrolyte layer on one side are obtained;
步骤四:采用卷绕或叠片的方式,将步骤三制作的单侧带有电解质层的正极片和负极片组装成全固态锂离子电池电芯,经热压和封装得到全固态锂离子电池。Step 4: By winding or stacking, assemble the positive electrode sheet and negative electrode sheet with an electrolyte layer on one side produced in step 3 into an all-solid lithium-ion battery cell, and obtain an all-solid-state lithium-ion battery after hot pressing and packaging.
进一步地,步骤一和步骤二中所述导电剂为导电碳黑、导电石墨、乙炔黑、科琴黑、碳纤维、碳纳米管和石墨烯中的一种或几种,所述粘结剂为聚偏二氟乙烯、聚乙烯醇、聚四氟乙烯、羧甲基纤维素钠和丁苯橡胶中的一种或几种,所述造孔剂为碳酸氢铵,醋酸铵,硝酸铵和碳酸铵中的一种或几种。Further, the conductive agent described in step 1 and step 2 is one or more of conductive carbon black, conductive graphite, acetylene black, Ketjen black, carbon fiber, carbon nanotube and graphene, and the binder is One or more of polyvinylidene fluoride, polyvinyl alcohol, polytetrafluoroethylene, sodium carboxymethyl cellulose and styrene-butadiene rubber, and the pore-forming agent is ammonium bicarbonate, ammonium acetate, ammonium nitrate and carbonic acid One or more of ammonium.
进一步地,步骤一中所述正极活性材料为磷酸铁锂、镍钴锰酸锂、镍钴铝酸锂、镍锰酸锂和富锂正极材料的一种或几种,所述溶剂为N-甲基吡咯烷酮,所述正极集流体为铝箔;Further, the positive electrode active material in step 1 is one or more of lithium iron phosphate, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminate, lithium nickel manganese oxide and lithium-rich positive electrode materials, and the solvent is N- Methylpyrrolidone, the positive current collector is aluminum foil;
步骤二中所述负极活性材料为石墨、硬碳和硅基材料的一种或几种,所述溶剂为去离子水,所述负极集流体为铜箔。In step 2, the negative electrode active material is one or more of graphite, hard carbon and silicon-based materials, the solvent is deionized water, and the negative electrode current collector is copper foil.
进一步地,所述正极浆料中各固体组分占总固体质量的百分比为:正极活性材料89%~97.9%,导电剂1%~5%,粘结剂1%~3%,造孔剂0.1%~3%,且正极浆料固含量为30%~80%。Further, the percentage of each solid component in the positive electrode slurry to the total solid mass is: positive electrode active material 89%-97.9%, conductive agent 1%-5%, binder 1%-3%, pore-forming agent 0.1% to 3%, and the positive electrode slurry has a solid content of 30% to 80%.
进一步地,所述负极浆料中各固体组分占总固体质量的百分比为:负极活性材料91%~98.4%,导电剂0.5%~3%,粘结剂1%~3%,造孔剂0.1%~3%,且负极浆料固含量为30%~60%。Further, the percentage of each solid component in the negative electrode slurry to the total solid mass is: negative electrode active material 91%-98.4%, conductive agent 0.5%-3%, binder 1%-3%, pore-forming agent 0.1% to 3%, and the solid content of the negative electrode slurry is 30% to 60%.
进一步地,步骤三中所述聚合物电解质为聚氧化乙烯系、聚甲基丙烯酸甲酯系、聚丙烯腈系、聚偏氟乙烯系和聚氯乙烯系中的一种或几种;所述填料为纳米Al2O3、纳米SiO2无机填料或金属有机框架材料有机填料;所述锂盐为LiCF3SO3、LiClO4、LiPF6和LiI中的一种或多种;所述溶剂为N-甲基吡咯烷酮。Further, the polymer electrolyte described in step three is one or more of polyethylene oxide, polymethyl methacrylate, polyacrylonitrile, polyvinylidene fluoride, and polyvinyl chloride; The filler is nano Al 2 O 3 , nano SiO 2 inorganic filler or metal organic framework material organic filler; the lithium salt is one or more of LiCF 3 SO 3 , LiClO 4 , LiPF 6 and LiI; the solvent is N-Methylpyrrolidone.
进一步地,所述电解质溶液的各固体组分占总固体质量的百分比为:聚合物电解质80%~98.5%,填料比例为0.5%~10%;锂盐比例为1%~10%;所述电解质溶液的固含量为1%~80%。Further, the percentage of each solid component of the electrolyte solution to the total solid mass is: 80% to 98.5% of the polymer electrolyte, 0.5% to 10% of the filler; 1% to 10% of the lithium salt; The solid content of the electrolyte solution is 1%-80%.
进一步地,步骤三中涂覆在正极片和负极片表面的聚合物电解质层的厚度为5-50μm,优选为10-20μm。Further, the thickness of the polymer electrolyte layer coated on the surface of the positive electrode sheet and the negative electrode sheet in step three is 5-50 μm, preferably 10-20 μm.
进一步地,步骤一中热处理温度80~140℃,处理时间为60~600s;步骤二中热处理温度60~120℃,处理时间为60~600s;步骤三中热处理温度60~120℃,处理时间为60~600s。Further, the heat treatment temperature in step 1 is 80-140°C, and the treatment time is 60-600s; the heat treatment temperature in step 2 is 60-120°C, and the treatment time is 60-600s; the heat treatment temperature in step 3 is 60-120°C, and the treatment time is 60~600s.
进一步地,步骤四中固态锂电池组装过程中的热压温度为80~160℃,压力为5~10Mpa,时间为1~200s。Further, in step 4, the hot-pressing temperature during the assembling process of the solid-state lithium battery is 80-160° C., the pressure is 5-10 MPa, and the time is 1-200 s.
与现有技术相比,本发明具有以下有益的技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:
相对传统方法的电极材料中固体电解质添加量过大,导致极片比容量损失过大的缺点,本发明在正负极极片涂覆过程中没有掺杂聚合物固体电解质,维持电极比容量基本不变;将聚合物电解质溶液涂布或喷涂在正极片和负极片表面,聚合物电解质溶液可通过造孔剂得到的孔隙渗透入极片内部,得到的极片与聚合物电解质界面接触面积较大,最后组装成电芯,通过热压处理后形成紧密的正极-电解质-负极三层结合体,能够有效降低固态锂电池的界面电阻;相对于液态电解质的锂电池具有较高的安全性。Compared with the traditional method of adding too much solid electrolyte to the electrode material, which leads to a large loss of the specific capacity of the pole piece, the present invention does not dope the polymer solid electrolyte during the coating process of the positive and negative pole pieces, and maintains the specific capacity of the electrode. unchanged; the polymer electrolyte solution is coated or sprayed on the surface of the positive electrode and the negative electrode, the polymer electrolyte solution can penetrate into the inside of the electrode through the pores obtained by the pore-forming agent, and the contact area between the obtained electrode and the polymer electrolyte interface is relatively small. Large, and finally assembled into a battery cell, a tight positive electrode-electrolyte-negative electrode three-layer combination is formed after hot-pressing treatment, which can effectively reduce the interface resistance of solid-state lithium batteries; compared with liquid electrolyte lithium batteries, it has higher safety.
具体实施方式Detailed ways
下面对本发明的实施方式做进一步详细描述:Embodiments of the present invention are described in further detail below:
一种高比能全固态锂电池的制作方法,包括以下步骤:A method for manufacturing a high-specific-energy all-solid-state lithium battery, comprising the following steps:
步骤(1):将正极活性材料、导电剂、粘结剂、造孔剂以一定比例溶解在溶剂中,制备成正极浆料,将正极浆料涂敷于正极集流体上,经热处理和辊压处理得到正极片;Step (1): Dissolve the positive electrode active material, conductive agent, binder, and pore-forming agent in a solvent in a certain proportion to prepare a positive electrode slurry, apply the positive electrode slurry on the positive electrode current collector, and heat-treat and roll Press treatment to obtain the positive electrode sheet;
步骤(2):将负极材料、导电剂、粘结剂、造孔剂以一定比例溶解在溶剂中,制备成负极浆料,将负极浆料涂覆于负极集流体上,经热处理和辊压处理得到负极片;Step (2): Dissolve the negative electrode material, conductive agent, binder, and pore-forming agent in a solvent in a certain proportion to prepare negative electrode slurry, apply the negative electrode slurry on the negative electrode current collector, and heat-treat and roll Process to obtain the negative electrode sheet;
步骤(3):将聚合物电解质、填料、锂盐等以一定比例溶解于溶剂中,制备几种不同固含量的电解质溶液;将电解质溶液按照固含量从低到高的顺序依次涂覆在极片的一侧表面,每次涂覆均需经过热处理,最后得到单侧带有电解质层的正极片和负极片;Step (3): Dissolve polymer electrolytes, fillers, lithium salts, etc. in a solvent in a certain proportion to prepare several electrolyte solutions with different solid contents; apply the electrolyte solutions on the electrodes in order of solid contents from low to high. One side surface of the sheet, heat treatment is required for each coating, and finally a positive electrode sheet and a negative electrode sheet with an electrolyte layer on one side are obtained;
步骤(4):采用卷绕、或叠片的方式,将步骤(3)制作的单侧带有电解质层的正极片和负极片组装成全固态锂离子电池;Step (4): Assemble the positive electrode sheet and negative electrode sheet with an electrolyte layer on one side produced in step (3) into an all-solid-state lithium-ion battery by winding or stacking;
步骤(1)、(2)中,所述导电剂为导电碳黑、导电石墨、乙炔黑、科琴黑、碳纤维、碳纳米管、石墨烯等中的一种或几种;粘结剂为聚偏二氟乙烯(PVDF)、聚乙烯醇(PVA)、聚四氟乙烯(PTFE)、羧甲基纤维素钠(CMC)、丁苯橡胶(SBR)等中的一种或几种;所述造孔剂为碳酸氢铵,醋酸铵,硝酸铵,碳酸铵中的一种或几种;In steps (1), (2), the conductive agent is one or more of conductive carbon black, conductive graphite, acetylene black, Ketjen black, carbon fiber, carbon nanotubes, graphene, etc.; the binding agent is One or more of polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polytetrafluoroethylene (PTFE), sodium carboxymethyl cellulose (CMC), styrene-butadiene rubber (SBR), etc.; The pore-forming agent is one or more of ammonium bicarbonate, ammonium acetate, ammonium nitrate, and ammonium carbonate;
步骤(1)中,所述正极活性材料包括磷酸铁锂、镍钴锰酸锂、镍钴铝酸锂、镍锰酸锂、富锂正极材料的一种或几种;所述溶剂为N-甲基吡咯烷酮(NMP);所述正极浆料的各固体组分占总固体质量的百分比为:正极活性材料89%~97.9%,导电剂1%~5%,粘结剂1%~3%,造孔剂0.1%~3%,其中造孔剂在正极浆料固体组分中最优质量比为0.5%-1.5%;浆料固含量可在30%~80%间调节;所述正极集流体为铝箔,热处理温度80~140℃,处理时间为60~600s;In step (1), the positive electrode active material includes one or more of lithium iron phosphate, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminate, lithium nickel manganese oxide, and lithium-rich positive electrode materials; the solvent is N- Methylpyrrolidone (NMP); the percentage of each solid component of the positive electrode slurry to the total solid mass is: 89% to 97.9% of the positive electrode active material, 1% to 5% of the conductive agent, and 1% to 3% of the binder , 0.1%-3% pore-forming agent, wherein the optimal mass ratio of pore-forming agent in the solid component of the positive electrode slurry is 0.5%-1.5%; the solid content of the slurry can be adjusted between 30%-80%; the positive electrode The current collector is aluminum foil, the heat treatment temperature is 80-140°C, and the treatment time is 60-600s;
步骤(2)中,所述负极活性材料包括石墨、硬碳、硅基材料的一种或几种;所述溶剂为去离子水;所述负极浆料的各固体组分占总固体质量的百分比为:负极活性材料91%~98.4%,导电剂0.5%~3%,粘结剂1%~3%,造孔剂0.1%~3%,其中造孔剂在负极浆料固体组分中最优质量比为0.5%-1.5%;浆料固含量可在30%~60%间调节;所述负极集流体为铜箔,热处理温度60~120℃,处理时间为60~600s;In step (2), the negative electrode active material includes one or more of graphite, hard carbon, and silicon-based materials; the solvent is deionized water; each solid component of the negative electrode slurry accounts for 1% of the total solid mass The percentages are: 91% to 98.4% of the negative active material, 0.5% to 3% of the conductive agent, 1% to 3% of the binder, and 0.1% to 3% of the pore forming agent, wherein the pore forming agent is in the solid component of the negative electrode slurry The optimal mass ratio is 0.5%-1.5%; the solid content of the slurry can be adjusted between 30% and 60%; the negative electrode current collector is copper foil, the heat treatment temperature is 60-120°C, and the treatment time is 60-600s;
步骤(3)中,所述聚合物电解质为聚氧化乙烯(PEO)系、聚甲基丙烯酸甲酯(PMMA)系、聚丙烯腈(PAN)系、聚偏氟乙烯(PVDF)系、聚氯乙烯(PVC)系等中的一种或几种,优选为PEO系;所述填料为纳米Al2O3、纳米SiO2无机填料或金属有机框架材料(MOFs)的一种或几种;所述锂盐包括LiCF3SO3、LiClO4、LiPF6、LiI等中的一种或多种;所述溶剂为N-甲基吡咯烷酮(NMP);所述电解质溶液的各固体组分占总固体质量的百分比为:聚合物电解质80%~98.5%,填料比例为0.5%~10%;锂盐比例为1%~10%;所述电解质溶液固含量可分别在1%~80%间调节;所述配置的不同固含量的电解质溶液为1~6种;所述电解质溶液的固含量为一种时,也可分多次进行多遍涂布;所述电解质溶液的涂覆方法包括浆料涂布法、喷涂法等;热处理温度60~120℃,处理时间为60~600s;所述涂覆在正极和负极极片表面的聚合物电解质层的厚度为5-50μm;所述涂覆在正极和负极极片表面的聚合物电解质层的厚度优选为10-20μm;In step (3), the polymer electrolyte is polyethylene oxide (PEO) based, polymethyl methacrylate (PMMA) based, polyacrylonitrile (PAN) based, polyvinylidene fluoride (PVDF) based, polychlorinated One or more of ethylene (PVC) series, etc., preferably PEO series; the filler is one or more of nano-Al 2 O 3 , nano-SiO 2 inorganic fillers or metal-organic framework materials (MOFs); the The lithium salt includes one or more of LiCF 3 SO 3 , LiClO 4 , LiPF 6 , LiI, etc.; the solvent is N-methylpyrrolidone (NMP); the solid components of the electrolyte solution account for the total solid The percentage by mass is: polymer electrolyte 80%-98.5%, the proportion of filler is 0.5%-10%; the proportion of lithium salt is 1%-10%; the solid content of the electrolyte solution can be adjusted between 1%-80% respectively; There are 1 to 6 kinds of electrolytic solutions with different solid contents in the configuration; when the solid content of the electrolytic solution is one, it can also be applied multiple times in multiple times; the coating method of the electrolytic solution includes slurry coating method, spraying method, etc.; the heat treatment temperature is 60-120°C, and the treatment time is 60-600s; the thickness of the polymer electrolyte layer coated on the surface of the positive and negative electrodes is 5-50 μm; The thickness of the polymer electrolyte layer on the surface of the positive and negative pole pieces is preferably 10-20 μm;
步骤(4)中,所述固态锂电池组装过程中所需的热压温度为80~160℃,压力为5~10Mpa,时间为1~200s。In step (4), the hot pressing temperature required in the assembling process of the solid-state lithium battery is 80-160° C., the pressure is 5-10 MPa, and the time is 1-200 s.
下面结合实施例对本发明做进一步详细描述:Below in conjunction with embodiment the present invention is described in further detail:
实施例1Example 1
(1)正极制浆按照以下质量比:镍钴锰酸锂(NCM523)正极材料97.9%,Super P Li导电剂1%,PVDF(HSV-900)粘结剂1%;碳酸氢铵造孔剂0.1%,通过双行星搅拌机,以NMP为溶剂制备成固含量65%的正极浆料。将正极浆料涂布到铝箔集流体上,经过140℃下热处理60s,后经辊压处理制得正极片;(1) Positive electrode pulping is according to the following mass ratio: nickel cobalt lithium manganese oxide (NCM523) positive electrode material 97.9%, Super P Li conductive agent 1%, PVDF (HSV-900) binder 1%; ammonium bicarbonate pore-forming agent 0.1%, through a double planetary mixer, using NMP as a solvent to prepare positive electrode slurry with a solid content of 65%. Coating the positive electrode slurry on the aluminum foil current collector, heat treatment at 140°C for 60s, and then roll pressing to obtain the positive electrode sheet;
(2)负极制浆按照以下质量比:人造石墨G9占98.4%,Super P Li导电剂0.5%,CMC(大赛璐)粘结剂1%,碳酸氢铵造孔剂0.1%,通过双行星搅拌机,以去离子水为溶剂制备成固含量45%的负极浆料。将负极浆料涂布到铜箔集流体上,经过120℃下热处理60s,后经辊压处理制得负极片;(2) Negative electrode pulping is according to the following mass ratio: 98.4% of artificial graphite G9, 0.5% of Super P Li conductive agent, 1% of CMC (Daicel) binder, 0.1% of ammonium bicarbonate pore-forming agent, through a double planetary mixer , using deionized water as a solvent to prepare negative electrode slurry with a solid content of 45%. Coating the negative electrode slurry on the copper foil current collector, heat treatment at 120°C for 60s, and then roll pressing to obtain the negative electrode sheet;
(3)电解质溶液按照以下质量比:PEO聚合物电解质98.5%,Al2O3填料比例为0.5%;LiPF6锂盐比例为1%;通过双行星搅拌机,以NMP为溶剂制备成固含量分别为1%和10%的电解质溶液。然后将上述电解液按照固含量高低依次喷涂法均匀的喷洒在正极和负极片的单侧表面上,经过120℃下热处理60s在极片上形成均匀的10μm厚的电解质层。(3) The electrolyte solution is prepared according to the following mass ratio: PEO polymer electrolyte 98.5%, Al 2 O 3 filler ratio 0.5%; LiPF 6 lithium salt ratio 1%; through a double planetary mixer, NMP is used as a solvent to prepare solid content respectively 1% and 10% electrolyte solutions. Then, the above-mentioned electrolyte solution was evenly sprayed on the surface of the positive electrode and the negative electrode sheet in sequence according to the solid content, and a uniform 10 μm thick electrolyte layer was formed on the electrode sheet after heat treatment at 120°C for 60s.
(4)将单侧带有电解质的正极片、负极片冲切,经叠片组装成2Ah软包电芯,焊接极耳后经过160℃,5Mpa热压处理1s,用铝塑膜封装组成全固态锂电池。(4) Die-cut the positive electrode sheet and negative electrode sheet with electrolyte on one side, and assemble them into a 2Ah soft-packed battery cell by lamination. After welding the tabs, they are hot-pressed at 160°C and 5Mpa for 1s, and packaged with aluminum-plastic film to form a complete battery. Solid state lithium battery.
实施例2Example 2
(1)正极制浆按照以下质量比:镍钴铝酸锂(NCA)正极材料89%,乙炔黑导电剂5%,PVA粘结剂3%;碳酸铵造孔剂3%,通过双行星搅拌机,以NMP为溶剂制备成固含量80%的正极浆料。将正极浆料涂布到铝箔集流体上,经过80℃下热处理600s,后经辊压处理制得正极片;(1) Positive electrode pulping is in accordance with the following mass ratio: nickel cobalt lithium aluminate (NCA) positive electrode material 89%, acetylene black conductive agent 5%, PVA binder 3%; ammonium carbonate pore-forming agent 3%, through a double planetary mixer , using NMP as a solvent to prepare positive electrode slurry with a solid content of 80%. Coating the positive electrode slurry on the aluminum foil current collector, heat treatment at 80°C for 600s, and then roll pressing to obtain the positive electrode sheet;
(2)负极制浆按照以下质量比:硅碳占91%,碳纳米管导电剂3%,SBR粘结剂3%,碳酸铵造孔剂3%,通过双行星搅拌机,以去离子水为溶剂制备成固含量60%的负极浆料。将负极浆料涂布到铜箔集流体上,经过60℃下热处理600s,后经辊压处理制得负极片;(2) Negative electrode pulping is according to the following mass ratio: silicon carbon accounts for 91%, carbon nanotube conductive agent 3%, SBR binding agent 3%, ammonium carbonate pore-forming agent 3%, pass through double planetary mixer, take deionized water as The solvent was prepared into negative electrode slurry with a solid content of 60%. Coating the negative electrode slurry on the copper foil current collector, heat treatment at 60°C for 600s, and then roll pressing to obtain the negative electrode sheet;
(3)电解质溶液按照以下质量比:PVC聚合物电解质80%,SiO2填料比例为10%;LiCF3SO3锂盐比例为10%;通过双行星搅拌机,以NMP为溶剂制备成固含量10%,40%,80%的电解质溶液。然后将上述电解液按照固含量高低依次喷涂法均匀的喷洒在正极和负极片的单侧表面上,经过60℃下热处理600s在极片上形成均匀的5μm厚的电解质层。(3) The electrolyte solution is in accordance with the following mass ratio: PVC polymer electrolyte 80%, SiO 2 filler ratio is 10%; LiCF 3 SO 3 lithium salt ratio is 10%; through a double planetary mixer, NMP is used as a solvent to prepare a solid content of 10% %, 40%, 80% electrolyte solution. Then, the above-mentioned electrolyte solution was evenly sprayed on the surface of the positive electrode and the negative electrode sheet in sequence according to the solid content, and a uniform 5 μm thick electrolyte layer was formed on the electrode sheet after heat treatment at 60°C for 600s.
(4)将单侧带有电解质的正极片、负极片冲切,经叠片组装成2Ah软包电芯,焊接极耳后经过80℃,10Mpa热压处理200s,用铝塑膜封装组成全固态锂电池。(4) Die-cut the positive electrode sheet and negative electrode sheet with electrolyte on one side, and assemble them into a 2Ah soft-packed battery cell by lamination. After welding the tabs, they are hot-pressed at 80°C and 10Mpa for 200s, and packaged with aluminum-plastic film to form a complete battery. Solid state lithium battery.
实施例3Example 3
(1)正极制浆按照以下质量比:镍锰酸锂正极材料95%,石墨烯导电剂2%,PTFE粘结剂1.5%;醋酸铵造孔剂1.5%,通过双行星搅拌机,以NMP为溶剂制备成固含量30%的正极浆料。将正极浆料涂布到铝箔集流体上,经过140℃下热处理60s,后经辊压处理制得正极片;(1) Positive electrode pulping is according to the following mass ratio: 95% of lithium nickel manganese oxide positive electrode material, 2% of graphene conductive agent, 1.5% of PTFE binder; The solvent was prepared into positive electrode slurry with a solid content of 30%. Coating the positive electrode slurry on the aluminum foil current collector, heat treatment at 140°C for 60s, and then roll pressing to obtain the positive electrode sheet;
(2)负极制浆按照以下质量比:硬碳占93%,Super P Li导电剂2%,CMC(大赛璐)粘结剂3.5%,醋酸铵造孔剂1.5%,通过双行星搅拌机,以去离子水为溶剂制备成固含量30%的负极浆料。将负极浆料涂布到铜箔集流体上,经过100℃下热处理350s,后经辊压处理制得负极片;(2) Negative electrode pulping is according to the following mass ratio: hard carbon accounts for 93%, Super P Li conductive agent 2%, CMC (Daicel) binder 3.5%, ammonium acetate pore-forming agent 1.5%, pass through double planetary mixer, with Deionized water was used as a solvent to prepare negative electrode slurry with a solid content of 30%. Coating the negative electrode slurry on the copper foil current collector, heat treatment at 100°C for 350s, and then roll pressing to obtain the negative electrode sheet;
(3)电解质溶液按照以下质量比:PAN聚合物电解质85%,MOFs填料比例为10%;LiClO4锂盐比例为5%;通过双行星搅拌机,以NMP为溶剂制备成固含量1%,5%,7%,12%,15%,20%的电解质溶液。然后将上述电解液按照固含量高低依次喷涂法均匀的喷洒在正极和负极片的单侧表面上,经过100℃下热处理120s在极片上形成均匀的50μm厚的电解质层。(3) The electrolyte solution is in accordance with the following mass ratio: PAN polymer electrolyte 85%, MOFs filler ratio is 10%; LiClO 4 lithium salt ratio is 5%; through double planetary mixer, NMP is used as solvent to prepare solid content 1%, 5 %, 7%, 12%, 15%, 20% electrolyte solution. Then, the above-mentioned electrolyte solution was evenly sprayed on the surface of the positive electrode and the negative electrode sheet in sequence according to the solid content, and a uniform 50 μm thick electrolyte layer was formed on the electrode sheet after heat treatment at 100°C for 120s.
(4)将单侧带有电解质的正极片、负极片冲切,经叠片组装成2Ah软包电芯,焊接极耳后经过120℃,6Mpa热压处理60s,用铝塑膜封装组成全固态锂电池。(4) Die-cut the positive electrode sheet and negative electrode sheet with electrolyte on one side, and assemble them into a 2Ah soft-packed battery cell by lamination. After welding the tabs, they are heat-pressed at 120°C and 6Mpa for 60s, and packaged with aluminum-plastic film to form a complete battery. Solid state lithium battery.
实施例4Example 4
(1)正极制浆按照以下质量比:磷酸铁锂正极材料93.5%,碳纤维导电剂3%,PVDF(HSV-900)粘结剂3%;硝酸铵造孔剂0.5%,通过双行星搅拌机,以NMP为溶剂制备成固含量65%的正极浆料。将正极浆料涂布到铝箔集流体上,经过100℃下热处理300s,后经辊压处理制得正极片;(1) Positive electrode pulping is according to the following mass ratio: 93.5% of lithium iron phosphate positive electrode material, 3% of carbon fiber conductive agent, 3% of PVDF (HSV-900) binder; 0.5% of ammonium nitrate pore-forming agent, passed through a double planetary mixer, A cathode slurry with a solid content of 65% was prepared using NMP as a solvent. Coating the positive electrode slurry on the aluminum foil current collector, heat treatment at 100°C for 300s, and then roll pressing to obtain the positive electrode sheet;
(2)负极制浆按照以下质量比:人造石墨G9占96%,科琴黑导电剂1%,CMC(大赛璐)粘结剂1%,SBR粘结剂1.5%,硝酸铵造孔剂0.5%,通过双行星搅拌机,以去离子水为溶剂制备成固含量45%的负极浆料。将负极浆料涂布到铜箔集流体上,经过60℃下热处理600s,后经辊压处理制得负极片;(2) Negative electrode pulping is in accordance with the following mass ratio: 96% of artificial graphite G9, 1% of Ketjen black conductive agent, 1% of CMC (Daicel) binder, 1.5% of SBR binder, and 0.5% of ammonium nitrate pore-forming agent %, through a double planetary mixer, using deionized water as a solvent to prepare a negative electrode slurry with a solid content of 45%. Coating the negative electrode slurry on the copper foil current collector, heat treatment at 60°C for 600s, and then roll pressing to obtain the negative electrode sheet;
(3)电解质溶液按照以下质量比:PVDF聚合物电解质90%,Al2O3填料比例为5%;LiI锂盐比例为5%;通过双行星搅拌机,以NMP为溶剂制备成固含量80%的电解质溶液。然后将电解质溶液通过喷涂法均匀的喷洒在正极和负极片的单侧表面上,经过80℃下热处理300s在极片上形成均匀的20μm厚的电解质层。(3) Electrolyte solution according to the following mass ratio: PVDF polymer electrolyte 90%, Al2O3 filler ratio is 5 %; LiI lithium salt ratio is 5%; through double planetary mixer, NMP is used as the solvent to prepare 80% solid content electrolyte solution. Then the electrolyte solution was evenly sprayed on the surface of one side of the positive electrode and the negative electrode sheet by spraying method, and a uniform 20 μm thick electrolyte layer was formed on the electrode sheet after heat treatment at 80°C for 300s.
(4)将单侧带有电解质的正极片、负极片冲切,经叠片组装成2Ah软包电芯,焊接极耳后经过100℃,8Mpa热压处理100s,用铝塑膜封装组成全固态锂电池。(4) Die-cut the positive electrode sheet and negative electrode sheet with electrolyte on one side, and assemble them into 2Ah soft-packed batteries by lamination. After welding the tabs, they are hot-pressed at 100°C and 8Mpa for 100s, and packaged with aluminum-plastic film to form a complete battery. Solid state lithium battery.
实施例5Example 5
(1)正极制浆按照以下质量比:富锂正极材料63%,磷酸铁锂正极材料30.5%,碳纤维导电剂2%,乙炔黑导电剂1%,PVDF(HSV-900)粘结剂2%;PVA粘结剂1%,硝酸铵造孔剂0.2%,碳酸氢铵造孔剂0.3%,通过双行星搅拌机,以NMP为溶剂制备成固含量65%的正极浆料。将正极浆料涂布到铝箔集流体上,经过120℃下热处理100s,后经辊压处理制得正极片;(1) Positive electrode pulping according to the following mass ratio: lithium-rich positive electrode material 63%, lithium iron phosphate positive electrode material 30.5%, carbon fiber conductive agent 2%, acetylene black conductive agent 1%, PVDF (HSV-900) binder 2% 1% of PVA binder, 0.2% of ammonium nitrate pore-forming agent, 0.3% of ammonium bicarbonate pore-forming agent, prepared into a positive electrode slurry with a solid content of 65% by using NMP as a solvent through a double planetary mixer. Coating the positive electrode slurry on the aluminum foil current collector, heat treatment at 120°C for 100s, and then roll pressing to obtain the positive electrode sheet;
(2)负极制浆按照以下质量比:人造石墨G9占66%,硅碳负极材料30%,导电碳黑1%,CMC(大赛璐)粘结剂1%,SBR粘结剂1%,硝酸铵造孔剂1%,通过双行星搅拌机,以去离子水为溶剂制备成固含量45%的负极浆料。将负极浆料涂布到铜箔集流体上,经过130℃下热处理90s,后经辊压处理制得负极片;(2) Negative electrode pulping according to the following mass ratio: artificial graphite G9 accounts for 66%, silicon carbon negative electrode material 30%, conductive carbon black 1%, CMC (Daicel) binder 1%, SBR binder 1%, nitric acid 1% ammonium pore-forming agent was prepared into a negative electrode slurry with a solid content of 45% by using a double planetary mixer and using deionized water as a solvent. Coating the negative electrode slurry on the copper foil current collector, heat treatment at 130°C for 90s, and then roll pressing to obtain the negative electrode sheet;
(3)电解质溶液按照以下质量比:PMMA电解质60%,PVA电解质30%,Al2O3填料比例为2%,SiO2填料比例3%;LiI锂盐比例为2%,LiClO4锂盐比例为3%;通过双行星搅拌机,以NMP为溶剂制备成固含量6%,80%的电解质溶液。然后将电解质溶液通过喷涂法均匀的喷洒在正极和负极片的单侧表面上,经过90℃下热处理150s在极片上形成均匀的25μm厚的电解质层。(3) The electrolyte solution is in accordance with the following mass ratio: PMMA electrolyte 60%, PVA electrolyte 30%, Al 2 O 3 filler ratio is 2%, SiO 2 filler ratio 3%; LiI lithium salt ratio is 2%, LiClO 4 lithium salt ratio 3%; through a double planetary mixer, NMP is used as a solvent to prepare an electrolyte solution with a solid content of 6% and 80%. Then, the electrolyte solution was evenly sprayed on the surface of one side of the positive electrode and the negative electrode sheet by spraying method, and a uniform 25 μm thick electrolyte layer was formed on the electrode sheet after heat treatment at 90° C. for 150 s.
(4)将单侧带有电解质的正极片、负极片冲切,经叠片组装成2Ah软包电芯,焊接极耳后经过105℃,8Mpa热压处理105s,用铝塑膜封装组成全固态锂电池。(4) Die-cut the positive electrode sheet and negative electrode sheet with electrolyte on one side, and assemble them into a 2Ah soft-packed battery cell by lamination. After welding the tabs, they are hot-pressed at 105°C and 8Mpa for 105s, and packaged with aluminum-plastic film to form a complete battery. Solid state lithium battery.
对比例1Comparative example 1
(1)正极制浆按照以下质量比:镍钴锰酸锂(NCM523)正极材料96%,Super PLi导电剂2%,HSV-900PVDF粘结剂2%;通过双行星搅拌机,以NMP为溶剂制备成固含量65%的正极浆料,将正极浆料涂布到铝箔集流体上,经过100℃下热处理60s,后经辊压处理制得正极片;(1) The positive electrode slurry is prepared according to the following mass ratio: nickel cobalt lithium manganese oxide (NCM523) positive electrode material 96%, Super PLi conductive agent 2%, HSV-900PVDF binder 2%; through a double planetary mixer, NMP is used as a solvent preparation Form a positive electrode slurry with a solid content of 65%, apply the positive electrode slurry to an aluminum foil current collector, heat-treat at 100°C for 60 seconds, and then roll to obtain a positive electrode sheet;
(2)负极制浆按照以下质量比:人造石墨G9占96%,Super P Li导电剂1%,CMC粘结剂1.5%,SBR粘结剂1.5%,通过双行星搅拌机,以去离子水为溶剂制备成固含量45%的负极浆料,将负极浆料涂布到铜箔集流体上,经过90℃下热处理60s,后经辊压处理制得负极片;(2) Negative electrode pulping is according to the following mass ratio: artificial graphite G9 accounts for 96%, Super P Li conductive agent 1%, CMC binder 1.5%, SBR binder 1.5%, pass through double planetary mixer, take deionized water as The solvent is prepared into a negative electrode slurry with a solid content of 45%, and the negative electrode slurry is coated on a copper foil current collector, after heat treatment at 90°C for 60s, and then rolled to obtain a negative electrode sheet;
(3)电解质溶液按照以下质量比:PEO聚合物电解质95%,Al2O3填料比例为2%;LiPF6锂盐比例为3%;以NMP为溶剂制备成固含量15%的电解质溶液,然后采用溶剂蒸发法制备成单独的电解质膜。(3) The electrolyte solution is in accordance with the following mass ratio: PEO polymer electrolyte 95%, Al 2 O 3 filler ratio is 2%; LiPF 6 lithium salt ratio is 3%; NMP is used as a solvent to prepare an electrolyte solution with a solid content of 15%, Then a separate electrolyte membrane was prepared by solvent evaporation method.
(4)将制备好的正极片、负极片、电解质片冲切,经叠片组装成2Ah软包电芯,焊接极耳后经过130℃,5Mpa热压处理30s,用铝塑膜封装组成全固态锂电池。(4) Die-cut the prepared positive electrode sheet, negative electrode sheet, and electrolyte sheet, and assemble them into a 2Ah soft-packed battery cell by lamination. After welding the tabs, they are hot-pressed at 130°C and 5Mpa for 30s, and packaged with aluminum-plastic film to form a complete battery. Solid state lithium battery.
对比例2Comparative example 2
(1)正极制浆按照以下质量比:磷酸铁锂正极材料80%,Super PLi导电剂2%,PEO固态电解质16%,Al2O3填料比例为1%,LiPF6锂盐比例为1%;通过双行星搅拌机,以NMP为溶剂制备成固含量65%的正极浆料,将正极浆料涂布到铝箔集流体上,经过100℃下热处理60s,后经辊压处理制得正极片;(1) Positive electrode pulping is based on the following mass ratio: 80% of lithium iron phosphate positive electrode material, 2% of Super PLi conductive agent, 16% of PEO solid electrolyte, 1% of Al 2 O 3 filler, and 1% of LiPF 6 lithium salt ; Prepare a positive electrode slurry with a solid content of 65% by using NMP as a solvent with a double planetary mixer, apply the positive electrode slurry to an aluminum foil current collector, heat-treat at 100°C for 60 seconds, and then roll to obtain a positive electrode sheet;
(2)负极制浆按照以下质量比:人造石墨G9占81%,Super P Li导电剂1%,PEO固态电解质16%,Al2O3填料比例为1%,LiPF6锂盐比例为1%;,通过双行星搅拌机,以NMP为溶剂制备成固含量45%的负极浆料,将负极浆料涂布到铜箔集流体上,经过90℃下热处理60s,后经辊压处理制得负极片;(2) Negative electrode pulping is based on the following mass ratio: 81% artificial graphite G9, 1% Super P Li conductive agent, 16% PEO solid electrolyte, 1% Al 2 O 3 filler, and 1% LiPF 6 lithium salt ;, through a double planetary mixer, NMP was used as a solvent to prepare a negative electrode slurry with a solid content of 45%, and the negative electrode slurry was coated on a copper foil current collector, and after heat treatment at 90°C for 60s, the negative electrode was obtained by rolling. piece;
(3)电解质溶液按照以下质量比:PEO聚合物电解质95%,Al2O3填料比例为2%;LiPF6锂盐比例为3%;以NMP为溶剂制备成固含量15%的电解质溶液,然后采用溶剂蒸发法制备成单独的电解质膜。(3) The electrolyte solution is in accordance with the following mass ratio: PEO polymer electrolyte 95%, Al 2 O 3 filler ratio is 2%; LiPF 6 lithium salt ratio is 3%; NMP is used as a solvent to prepare an electrolyte solution with a solid content of 15%, Then a separate electrolyte membrane was prepared by solvent evaporation method.
(5)将制备好的正极片、负极片、电解质片冲切,经叠片组装成2Ah软包电芯,焊接极耳后经过120℃,8Mpa热压处理20s,用铝塑膜封装组成全固态锂电池。(5) Die-cut the prepared positive electrode sheet, negative electrode sheet, and electrolyte sheet, and assemble them into a 2Ah soft-packed battery cell by lamination. After welding the tabs, they are hot-pressed at 120°C and 8Mpa for 20s, and packaged with aluminum-plastic film to form a complete battery. Solid state lithium battery.
将实施例1~4和对比例1~2制作的固态锂离子电池按以下方法测试放电容量、电池首效、直流内阻。The solid-state lithium-ion batteries produced in Examples 1-4 and Comparative Examples 1-2 were tested for discharge capacity, battery first effect, and DC internal resistance according to the following methods.
测试方法:testing method:
放电容量:电池0.2C恒流恒压充电至4.2V,恒压充电至电流≤0.05C截止,0.2C恒流放电至2.75V时的放电容量;Discharge capacity: the battery is charged at 0.2C constant current and constant voltage to 4.2V, charged at constant voltage until the current is ≤0.05C, and discharged at 0.2C constant current to 2.75V;
电池容量保持率:电池以1C恒流恒压充电至4.2V,恒压充电至电流≤0.05C截止,1C恒流放电至2.75V,首次放电容量与循环500圈后的放电容量之比;Battery capacity retention rate: the battery is charged to 4.2V with 1C constant current and constant voltage, charged at constant voltage until the current is ≤0.05C, discharged at 1C constant current to 2.75V, the ratio of the first discharge capacity to the discharge capacity after 500 cycles;
直流内阻:室温下,电池以1C恒流放电至2.75V,搁置60min;电池以1C恒流恒压充电至4.2V,恒压充电至电流≤0.05C截止,搁置60min;1C恒流放电30min;搁置60min;1C恒流放电10s,下限电压2.5V。记录脉冲放电过程的开路电压和电流,并计算直流内阻R。直流内阻计算公式如下:DC internal resistance: at room temperature, discharge the battery at 1C constant current to 2.75V, and leave it for 60 minutes; charge the battery at 1C constant current and constant voltage to 4.2V, charge it at constant voltage until the current ≤ 0.05C, and leave it for 60 minutes; discharge at 1C constant current for 30 minutes ;Stand aside for 60min; 1C constant current discharge for 10s, lower limit voltage 2.5V. Record the open circuit voltage and current during the pulse discharge process, and calculate the DC internal resistance R. The formula for calculating DC internal resistance is as follows:
其中,Vinitial和Vfinal分别为脉冲放电过程的起始和终止电压,Iinitial和Ifinal分别为脉冲放电过程的起始和终止电流。Among them, V initial and V final are the initial and final voltages of the pulse discharge process, respectively, and I initial and I final are the initial and final currents of the pulse discharge process, respectively.
表1为上述实施例和对比例放电容量、循环性能和直流内阻的测试结果Table 1 is the test results of above-mentioned embodiment and comparative example discharge capacity, cycle performance and DC internal resistance
由表1中实施例和对比例的测试结果可知,采用本发明中设计方案制备的固态锂电池,直流内阻较低,这是因为聚合物电解质采用涂布方式直接涂覆于正极片和负极片表面,少量聚合物电解质通过造孔剂形成的孔隙渗透到极片内部,增加了极片/电解质接触面积,不仅提高了极片的离子电导率,同时可一定程度上减小极片/电解质界面间的阻抗,电池的循环性能也有明显提升;而对于比较例中的常规方案,极片和电解质依靠热压形成接触面,两者的接触面积较小,所以电池内阻较大,电池的循环稳定性也较差;当正、负极极片中掺入的聚合物电解质较多时,还会大大降低电池的能量密度,如表1中所示,由比较例中常规技术制作的全固态锂电池放电容量较低。From the test results of the examples and comparative examples in Table 1, it can be seen that the solid-state lithium battery prepared by the design scheme of the present invention has a low DC internal resistance, because the polymer electrolyte is directly coated on the positive electrode sheet and the negative electrode by coating. On the surface of the sheet, a small amount of polymer electrolyte penetrates into the interior of the electrode sheet through the pores formed by the pore-forming agent, which increases the contact area of the electrode sheet/electrolyte, not only improves the ionic conductivity of the electrode sheet, but also reduces the electrode sheet/electrolyte to a certain extent. The impedance between the interfaces and the cycle performance of the battery are also significantly improved; while for the conventional scheme in the comparative example, the contact surface is formed between the pole piece and the electrolyte by hot pressing, and the contact area between the two is small, so the internal resistance of the battery is large, and the battery’s The cycle stability is also poor; when there are more polymer electrolytes mixed in the positive and negative pole pieces, the energy density of the battery will also be greatly reduced. As shown in Table 1, the all-solid-state lithium Battery discharge capacity is low.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810091488.1A CN108258323B (en) | 2018-01-30 | 2018-01-30 | A kind of production method of high specific energy solid lithium battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810091488.1A CN108258323B (en) | 2018-01-30 | 2018-01-30 | A kind of production method of high specific energy solid lithium battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108258323A CN108258323A (en) | 2018-07-06 |
CN108258323B true CN108258323B (en) | 2019-09-10 |
Family
ID=62742285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810091488.1A Active CN108258323B (en) | 2018-01-30 | 2018-01-30 | A kind of production method of high specific energy solid lithium battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108258323B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109301342B (en) * | 2018-10-22 | 2020-12-25 | 桑德新能源技术开发有限公司 | All-solid-state battery and preparation method thereof |
DE102019203057A1 (en) * | 2018-11-13 | 2020-05-14 | Volkswagen Aktiengesellschaft | Manufacturing method for an electrode precursor and electrode precursor and manufacturing method for an electrode paste |
CN109713218B (en) * | 2019-01-03 | 2022-04-05 | 浙江锋锂新能源科技有限公司 | Electrode plate, preparation method thereof and solid-state battery with electrode plate |
CN109888290B (en) * | 2019-03-19 | 2021-01-22 | 郑州中科新兴产业技术研究院 | A kind of high rate lithium ion battery, aging and chemical forming method |
CN110880620A (en) * | 2019-10-18 | 2020-03-13 | 南方科技大学 | Composite solid-state electrolyte and preparation method thereof, solid-state lithium battery and preparation method thereof |
CN111509186B (en) * | 2020-05-22 | 2021-02-02 | 清陶(昆山)能源发展有限公司 | A lithium-ion solid-state battery positive electrode and its preparation process and lithium-ion solid-state battery |
CN111653831B (en) * | 2020-06-22 | 2022-03-25 | 天能帅福得能源股份有限公司 | Preparation method of high-safety, high-temperature and long-life water-based lithium iron phosphate battery |
CN111916678B (en) * | 2020-09-15 | 2021-12-31 | 天目湖先进储能技术研究院有限公司 | High specific energy lithium battery electrode, dry preparation method thereof and lithium battery |
CN112246691B (en) * | 2020-09-24 | 2022-05-31 | 天津普兰能源科技有限公司 | Method for selecting Li (M1-xFex) PO4/Li4Ti5O12 high-capacity battery |
CN112103555A (en) * | 2020-10-21 | 2020-12-18 | 中国科学技术大学 | All-solid-state lithium ion battery and preparation method thereof |
CN112436108A (en) * | 2020-11-30 | 2021-03-02 | 蜂巢能源科技有限公司 | Pole piece for solid-state battery and preparation method and application thereof |
CN114765276A (en) * | 2021-01-15 | 2022-07-19 | 双登集团股份有限公司 | High-conductivity solid-state battery and manufacturing method thereof |
CN113437352B (en) * | 2021-06-24 | 2023-06-20 | 珠海冠宇电池股份有限公司 | Battery and preparation method thereof |
CN113540394B (en) * | 2021-07-19 | 2022-09-02 | 远景动力技术(江苏)有限公司 | Positive plate and preparation method thereof, solid-state lithium ion battery, semi-solid-state lithium ion battery and preparation method thereof |
CN113889598B (en) * | 2021-09-30 | 2022-10-14 | 四川大学 | A battery cathode with an integrated solid electrolyte and cathode material and its preparation and application |
CN113972373B (en) * | 2021-10-08 | 2023-05-26 | 浙江超恒动力科技有限公司 | Preparation method of lithium iron phosphate pole piece and lithium ion battery |
CN114068863A (en) * | 2021-11-12 | 2022-02-18 | 中国科学院过程工程研究所 | Electrode structure suitable for solid-state battery and construction method thereof |
CN114725323B (en) * | 2022-05-16 | 2024-04-02 | 湖北亿纬动力有限公司 | Preparation method and application of negative electrode plate |
CN115295764B (en) * | 2022-07-29 | 2024-12-17 | 江苏正力新能电池技术股份有限公司 | Negative electrode plate, preparation method thereof and secondary battery |
CN115332617A (en) * | 2022-08-19 | 2022-11-11 | 西安铂力特增材技术股份有限公司 | Preparation process of oxide solid-state battery and solid-state battery |
CN115394966A (en) * | 2022-08-26 | 2022-11-25 | 清华大学深圳国际研究生院 | Negative pole piece, preparation method thereof and battery |
CN115692658A (en) * | 2022-11-08 | 2023-02-03 | 松山湖材料实验室 | Positive electrode slurry, positive electrode plate, preparation method of positive electrode plate and lithium ion battery |
CN118763210B (en) * | 2024-09-09 | 2024-11-22 | 北京壹金新能源科技有限公司 | Preparation method of lithium ion battery composite material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102356485A (en) * | 2009-03-16 | 2012-02-15 | 丰田自动车株式会社 | All-solid secondary battery with graded electrodes |
CN102931378A (en) * | 2012-10-09 | 2013-02-13 | 东莞市创明电池技术有限公司 | Lithium ion battery electrode, preparation method thereof and lithium ion battery |
CN103746089A (en) * | 2013-12-11 | 2014-04-23 | 中南大学 | All-solid-state lithium battery with gradient structure and preparation method thereof |
CN105098227A (en) * | 2015-08-22 | 2015-11-25 | 哈尔滨工业大学 | All-solid-state lithium ion battery and preparation method thereof |
CN105280884A (en) * | 2014-05-26 | 2016-01-27 | 现代自动车株式会社 | Method for manufacturing all solid electrode having solid electrolyte concentration gradient |
-
2018
- 2018-01-30 CN CN201810091488.1A patent/CN108258323B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102356485A (en) * | 2009-03-16 | 2012-02-15 | 丰田自动车株式会社 | All-solid secondary battery with graded electrodes |
CN102931378A (en) * | 2012-10-09 | 2013-02-13 | 东莞市创明电池技术有限公司 | Lithium ion battery electrode, preparation method thereof and lithium ion battery |
CN103746089A (en) * | 2013-12-11 | 2014-04-23 | 中南大学 | All-solid-state lithium battery with gradient structure and preparation method thereof |
CN105280884A (en) * | 2014-05-26 | 2016-01-27 | 现代自动车株式会社 | Method for manufacturing all solid electrode having solid electrolyte concentration gradient |
CN105098227A (en) * | 2015-08-22 | 2015-11-25 | 哈尔滨工业大学 | All-solid-state lithium ion battery and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108258323A (en) | 2018-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108258323B (en) | A kind of production method of high specific energy solid lithium battery | |
CN108232318B (en) | Manufacturing method of all-solid-state power lithium ion battery | |
CN206878100U (en) | Current collector and electrochemical energy storage device | |
Zhang et al. | Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder | |
CN111430788A (en) | Composite solid electrolyte membrane, preparation method and solid lithium battery | |
CN105576287B (en) | Solid electrolyte lithium ion battery and preparation method thereof of the integration without interface | |
CN104934579B (en) | A kind of porous graphite doping and the preparation method of carbon coating graphite cathode material | |
CN105679983A (en) | Modified diaphragm and preparation method and application therefor | |
CN101662042B (en) | Polymer lithium ion battery and preparation method of diaphragm thereof | |
CN114709422A (en) | Composite current collector, preparation method and lithium ion battery | |
CN102709591B (en) | Lithium ion secondary battery | |
CN114335701A (en) | A kind of composite solid electrolyte membrane and preparation method thereof | |
CN102290577B (en) | A kind of negative pole of lithium ion battery | |
CN101969114A (en) | Lithium-ion secondary battery and preparation method thereof | |
CN106229464B (en) | A conductive polymer film and a positive pole piece modified with the conductive polymer film | |
CN101626099A (en) | Polymer lithium vanadium phosphate power battery and preparation method thereof | |
CN113451541B (en) | High voltage lithium ion positive electrode pole piece, battery and manufacturing method thereof | |
CN111435761A (en) | All-solid-state lithium ion battery and hot-pressing preparation method of multilayer electrolyte membrane thereof | |
CN109802094A (en) | A kind of low temperature ferric phosphate lithium cell and preparation method thereof | |
WO2022134377A1 (en) | Gel polymer lithium ion capacitor battery and electrode, and preparation method therefor | |
CN106856236A (en) | Secondary battery cathode material, preparation method thereof and battery | |
CN103928668B (en) | Lithium ion battery and preparation method of anode material thereof | |
CN110265626A (en) | Positive pole piece, its preparation method and lithium ion secondary battery | |
CN103198935B (en) | The preparation method of a kind of graphene film modified spinelle type LiMn2O4 or α type manganese dioxide electrode | |
CN112614703B (en) | Negative electrode material of ionic capacitor and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240611 Address after: 710061 3rd Floor, No. 88 Aerospace East Road, National Civil Aerospace Industry Base, Xi'an City, Shaanxi Province Patentee after: Shaanxi Qingke Energy Technology Co.,Ltd. Country or region after: China Address before: 710077 Shaanxi Coal Industry Chemical Group Co., Ltd. No. 2 Jinye Road, Xi'an High-tech Zone, Shaanxi Province Patentee before: SHAANXI COAL AND CHEMICAL TECHNOLOGY INSTITUTE Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |